Articles | Volume 19, issue 14
https://doi.org/10.5194/acp-19-9153-2019
https://doi.org/10.5194/acp-19-9153-2019
Research article
 | 
18 Jul 2019
Research article |  | 18 Jul 2019

Urban population exposure to NOx emissions from local shipping in three Baltic Sea harbour cities – a generic approach

Martin Otto Paul Ramacher, Matthias Karl, Johannes Bieser, Jukka-Pekka Jalkanen, and Lasse Johansson

Related authors

POPE: a Global Gridded Emission Inventory for PFAS 1950–2020
Pascal Simon, Martin Otto Paul Ramacher, Stefan Hagemann, Volker Matthias, Hanna Joerss, and Johannes Bieser
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-236,https://doi.org/10.5194/essd-2024-236, 2024
Preprint under review for ESSD
Short summary
The role of emission reductions and the meteorological situation for air quality improvements during the COVID-19 lockdown period in central Europe
Volker Matthias, Markus Quante, Jan A. Arndt, Ronny Badeke, Lea Fink, Ronny Petrik, Josefine Feldner, Daniel Schwarzkopf, Eliza-Maria Link, Martin O. P. Ramacher, and Ralf Wedemann
Atmos. Chem. Phys., 21, 13931–13971, https://doi.org/10.5194/acp-21-13931-2021,https://doi.org/10.5194/acp-21-13931-2021, 2021
Short summary
The urban dispersion model EPISODE v10.0 – Part 1: An Eulerian and sub-grid-scale air quality model and its application in Nordic winter conditions
Paul D. Hamer, Sam-Erik Walker, Gabriela Sousa-Santos, Matthias Vogt, Dam Vo-Thanh, Susana Lopez-Aparicio, Philipp Schneider, Martin O. P. Ramacher, and Matthias Karl
Geosci. Model Dev., 13, 4323–4353, https://doi.org/10.5194/gmd-13-4323-2020,https://doi.org/10.5194/gmd-13-4323-2020, 2020
Short summary
The impact of ship emissions on air quality and human health in the Gothenburg area – Part II: Scenarios for 2040
Martin O. P. Ramacher, Lin Tang, Jana Moldanová, Volker Matthias, Matthias Karl, Erik Fridell, and Lasse Johansson
Atmos. Chem. Phys., 20, 10667–10686, https://doi.org/10.5194/acp-20-10667-2020,https://doi.org/10.5194/acp-20-10667-2020, 2020
Short summary
The impact of ship emissions on air quality and human health in the Gothenburg area – Part 1: 2012 emissions
Lin Tang, Martin O. P. Ramacher, Jana Moldanová, Volker Matthias, Matthias Karl, Lasse Johansson, Jukka-Pekka Jalkanen, Katarina Yaramenka, Armin Aulinger, and Malin Gustafsson
Atmos. Chem. Phys., 20, 7509–7530, https://doi.org/10.5194/acp-20-7509-2020,https://doi.org/10.5194/acp-20-7509-2020, 2020
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Monoterpene oxidation pathways initiated by acyl peroxy radical addition
Dominika Pasik, Thomas Golin Almeida, Emelda Ahongshangbam, Siddharth Iyer, and Nanna Myllys
Atmos. Chem. Phys., 25, 4313–4331, https://doi.org/10.5194/acp-25-4313-2025,https://doi.org/10.5194/acp-25-4313-2025, 2025
Short summary
Local and transboundary contributions to NOy loadings across East Asia using CMAQ-ISAM and a GEMS-informed emission inventory during the winter–spring transition
Jincheol Park, Yunsoo Choi, and Sagun Kayastha
Atmos. Chem. Phys., 25, 4291–4311, https://doi.org/10.5194/acp-25-4291-2025,https://doi.org/10.5194/acp-25-4291-2025, 2025
Short summary
Estimating the variability in NOx emissions from Wuhan with TROPOMI NO2 data during 2018 to 2023
Qianqian Zhang, K. Folkert Boersma, Chiel van der Laan, Alba Mols, Bin Zhao, Shengyue Li, and Yuepeng Pan
Atmos. Chem. Phys., 25, 3313–3326, https://doi.org/10.5194/acp-25-3313-2025,https://doi.org/10.5194/acp-25-3313-2025, 2025
Short summary
Enhanced understanding of atmospheric blocking modulation on ozone dynamics within a high-resolution Earth system model
Wenbin Kou, Yang Gao, Dan Tong, Xiaojie Guo, Xiadong An, Wenyu Liu, Mengshi Cui, Xiuwen Guo, Shaoqing Zhang, Huiwang Gao, and Lixin Wu
Atmos. Chem. Phys., 25, 3029–3048, https://doi.org/10.5194/acp-25-3029-2025,https://doi.org/10.5194/acp-25-3029-2025, 2025
Short summary
Natural emissions of VOC and NOx over Africa constrained by TROPOMI HCHO and NO2 data using the MAGRITTEv1.1 model
Beata Opacka, Trissevgeni Stavrakou, Jean-François Müller, Isabelle De Smedt, Jos van Geffen, Eloise A. Marais, Rebekah P. Horner, Dylan B. Millet, Kelly C. Wells, and Alex B. Guenther
Atmos. Chem. Phys., 25, 2863–2894, https://doi.org/10.5194/acp-25-2863-2025,https://doi.org/10.5194/acp-25-2863-2025, 2025
Short summary

Cited articles

Ahas, R., Silm, S., Järv, O., Saluveer, E., and Tiru, M.: Using Mobile Positioning Data to Model Locations Meaningful to Users of Mobile Phones, J. Urban Technol., 17, 3–27, https://doi.org/10.1080/10630731003597306, 2010. 
Andersson, C., Bergström, R., and Johansson, C.: Population exposure and mortality due to regional background PM in Europe – Long-term simulations of source region and shipping contributions, Atmos. Environ., 43, 3614–3620, https://doi.org/10.1016/j.atmosenv.2009.03.040, 2009. 
Aulinger, A., Matthias, V., Zeretzke, M., Bieser, J., Quante, M., and Backes, A.: The impact of shipping emissions on air pollution in the greater North Sea region – Part 1: Current emissions and concentrations, Atmos. Chem. Phys., 16, 739–758, https://doi.org/10.5194/acp-16-739-2016, 2016. 
Backes, A. M., Aulinger, A., Bieser, J., Matthias, V., and Quante, M.: Ammonia emissions in Europe, part II: How ammonia emission abatement strategies affect secondary aerosols, Atmos. Environ., 126, 153–161, https://doi.org/10.1016/j.atmosenv.2015.11.039, 2016. 
Baek, S.-O., Kim, Y.-S., and Perry, R.: Indoor air quality in homes, offices and restaurants in Korean urban areas – indoor/outdoor relationships, Atmos. Environ., 31, 529–544, https://doi.org/10.1016/S1352-2310(96)00215-4, 1997. 
Download
Short summary
We simulated the impact of NOx shipping emissions on air quality and exposure in the Baltic Sea harbour cities Rostock (Germany), Riga (Latvia) and Gdańsk–Gdynia (Poland) for 2012. We found that local shipping affects total NO2, with contributions of 22 %, 11 % and 16 % in Rostock, Riga and Gdańsk–Gdynia. Exposure to NO2 from all emission sources was highest at home addresses (54 %–59 %). Emissions from shipping have a high impact on NO2 exposure in the port area (50 %–80 %).
Share
Altmetrics
Final-revised paper
Preprint