Azeem, S. M., Killeen, T. L., Johnson, R. M., Wu, Q., and Gell, D. A.:
Space-time analysis of TIMED Doppler Interferometer (TIDI) measurements,
Geophys. Res. Lett., 27, 3297–3300,
https://doi.org/10.1029/1999GL011289, 2000.
a
Baumgaertner, A. J., Jarvis, M. J., McDonald, A. J., and Fraser, G. J.:
Observations of the wavenumber 1 and 2 components of the semi-diurnal tide
over Antarctica, J. Atmos. Sol.-Terr. Phys., 68, 1195–1214,
https://doi.org/10.1016/j.jastp.2006.03.001,
2006.
a,
b,
c
Butler, A. H., Sjoberg, J. P., Seidel, D. J., and Rosenlof, K. H.: A sudden
stratospheric warming compendium, Earth Syst. Sci. Data, 9, 63–76,
https://doi.org/10.5194/essd-9-63-2017, 2017.
a
Chau, J. L., Hoffmann, P., Pedatella, N. M., Matthias, V., and Stober, G.:
Upper mesospheric lunar tides over middle and high latitudes during sudden
stratospheric warming events, J. Geophys. Res.-Space, 120, 3084–3096,
https://doi.org/10.1002/2015JA020998,
2015.
a,
b,
c,
d,
e,
f,
g
Conte, J. F., Chau, J. L., Stober, G., Pedatella, N., Maute, A., Hoffmann,
P.,
Janches, D., Fritts, D., and Murphy, D. J.: Climatology of semidiurnal lunar
and solar tides at middle and high latitudes: Interhemispheric comparison,
J. Geophys. Res.-Space, 122, 7750–7760,
https://doi.org/10.1002/2017JA024396,
2017.
a,
b
Conte, J. F., Chau, J. L., Laskar, F. I., Stober, G., Schmidt, H., and Brown,
P.: Semidiurnal solar tide differences between fall and spring transition
times in the Northern Hemisphere, Ann. Geophys., 36, 999–1008,
https://doi.org/10.5194/angeo-36-999-2018, 2018.
a
Esler, J. G. and Matthewman, N. J.: Stratospheric Sudden Warmings as
Self-Tuning Resonances, Part II: Vortex Displacement Events, J. Atmos. Sci.,
68, 2505–2523,
https://doi.org/10.1175/JAS-D-11-08.1,
2011.
a
Fejer, B. G., Olson, M. E., Chau, J. L., Stolle, C., Luehr, H., Goncharenko,
L. P., Yumoto, K., and Nagatsuma, T.: Lunar-dependent equatorial ionospheric
electrodynamic effects during sudden stratospheric warmings, J. Geophys.
Res.-Space, 115, 1–9,
https://doi.org/10.1029/2010JA015273, 2010.
a
Fejer, B. G., Tracy, B. D., Olson, M. E., and Chau, J. L.: Enhanced lunar
semidiurnal equatorial vertical plasma drifts during sudden stratospheric
warmings, Geophys. Res. Lett., 38, 7271,
https://doi.org/10.1029/2011GL049788, 2011.
a
Forbes, J. M. and Zhang, X.: Lunar tide amplification during the January
2009
stratosphere warming event: Observations and theory, J. Geophys. Res.-Space, 117, 1–13,
https://doi.org/10.1029/2012JA017963, 2012.
a,
b
Goncharenko, L. and Zhang, S. R.: Ionospheric signatures of sudden
stratospheric warming: Ion temperature at middle latitude, Geophys. Res.
Lett., 35, 4–7,
https://doi.org/10.1029/2008GL035684, 2008.
a
Goncharenko, L., Chau, J. L., Condor, P., Coster, A., and Benkevitch, L.:
Ionospheric effects of sudden stratospheric warming during moderate-to-high
solar activity: Case study of January 2013, Geophys. Res. Lett., 40,
4982–4986,
https://doi.org/10.1002/grl.50980, 2013.
a
Grossmann, A., Kronland-Martinet, R., and Morlet, J.: Reading and
Understanding
Continuous Wavelet Transforms, in: Wavelets, edited by: Combes, J.-M.,
Grossmann, A., and Tchamitchian, P., 2–20, Springer,
Berlin, Heidelberg, 1990. a
He, M., Liu, L., Wan, W., and Wei, Y.: Strong evidence for couplings between
the ionospheric wave-4 structure and atmospheric tides, Geophys. Res. Lett.,
38, L14101,
https://doi.org/10.1029/2011GL047855, 2011.
a
He, M., Chau, J. L., Stober, G., Hall, C. M., Tsutsumi, M., and Hoffmann, P.:
Application of Manley-Rowe relation in analyzing nonlinear interactions
between planetary waves and the solar semidiurnal tide during 2009 sudden
stratospheric warming event, J. Geophys. Res.-Space, 122, 10783–10795,
https://doi.org/10.1002/2017JA024630, 2017.
a,
b,
c,
d,
e,
f,
g,
h,
i
He, M., Chau, J. L., Hall, C., Tsutsumi, M., Meek, C., and Hoffmann, P.: The
16-day planetary wave triggers the SW1-tidal-like signatures during 2009
sudden stratospheric warming, Geophys. Res. Lett., 45, 12631–12638,
https://doi.org/10.1029/2018GL079798,
2018a.
a,
b,
c,
d,
e,
f,
g,
h
He, M., Chau, J. L., Stober, G., Li, G., Ning, B., and Hoffmann, P.:
Relations
Between Semidiurnal Tidal Variants Through Diagnosing the Zonal Wavenumber
Using a Phase Differencing Technique Based on Two Ground-Based Detectors, J.
Geophys. Res.-Atmos., 123, 4015–4026,
https://doi.org/10.1002/2018JD028400, 2018b.
a,
b,
c,
d,
e,
f,
g
Hocking, W., Fuller, B., and Vandepeer, B.: Real-time determination of
meteor-related parameters utilizing modern digital technology, J.
Atmos. Sol.-Terr. Phys., 63, 155–169,
https://doi.org/10.1016/S1364-6826(00)00138-3, 2001.
a
Jones, J., Brown, P., Ellis, K., Webster, A., Campbell-Brown, M., Krzemenski,
Z., and Weryk, R.: The Canadian Meteor Orbit
Radar: system overview and
preliminary results, Planet. Space Sci., 53, 413–421,
https://doi.org/10.1016/j.pss.2004.11.002,
2005.
a,
b
Laskar, F. I., Chau, J. L., Stober, G., Hoffmann, P., Hall, C. M., and
Tsutsumi, M.: Quasi-biennial oscillation modulation of the middle- and
high-latitude mesospheric semidiurnal tides during August–September, J.
Geophys. Res.-Space, 121, 4869–4879,
https://doi.org/10.1002/2015JA022065, 2016.
a
Limpasuvan, V., Hartmann, D. L., Thompson, D. W., Jeev, K., and Yung, Y. L.:
Stratosphere-troposphere evolution during polar vortex intensification, J.
Geophys. Res.-Atmos., 110, 1–15,
https://doi.org/10.1029/2005JD006302, 2005.
a
Liu, H. L., Wang, W., Richmond, A. D., and Roble, R. G.: Ionospheric
variability due to planetary waves and tides for solar minimum conditions,
J. Geophys. Res.-Space, 115, A00G01,
https://doi.org/10.1029/2009JA015188,
2010.
a,
b
Liu, L., Liu, H., Chen, Y., Le, H., Sun, Y.-Y., Ning, B., Hu, L., and Wan,
W.:
Variations of the meteor echo heights at Beijing and Mohe, China, J.
Geophys. Res.-Space, 122, 1117–1127,
https://doi.org/10.1002/2016JA023448,
2016.
a
Liu, L., Liu, H., Le, H., Chen, Y., Sun, Y. Y., Ning, B., Hu, L., Wan, W.,
Li,
N., and Xiong, J.: Mesospheric temperatures estimated from the meteor radar
observations at Mohe, China, J. Geophys. Res.-Space, 122, 2249–2259,
https://doi.org/10.1002/2016JA023776, 2017.
a
Luo, Y., Manson, A. H., Meek, C. E., Meyer, C. K., Burrage, M. D., Fritts, D.
C., Hall, C. M., Hocking, W. K., MacDougall, J., Riggin, D. M., and Vincent,
R. A.: The 16-day planetary waves: multi-MF radar observations from the
arctic to equator and comparisons with the HRDI measurements and the GSWM
modelling results, Ann. Geophys., 20, 691–709,
https://doi.org/10.5194/angeo-20-691-2002, 2002.
a
Manson, A. H., Meek, C. E., Chshyolkova, T., Xu, X., Aso, T., Drummond, J.
R., Hall, C. M., Hocking, W. K., Jacobi, Ch., Tsutsumi, M., and Ward, W. E.:
Arctic tidal characteristics at Eureka (80∘ N, 86∘ W) and
Svalbard (78∘ N, 16∘ E) for 2006/07: seasonal and
longitudinal variations, migrating and non-migrating tides, Ann. Geophys.,
27, 1153–1173,
https://doi.org/10.5194/angeo-27-1153-2009, 2009.
a,
b
Murphy, D. J., Forbes, J. M., Walterscheid, R. L., Hagan, M. E., Avery,
S. K.,
Aso, T., Fraser, G. J., Fritts, D. C., Jarvis, M. J., McDonald, A. J.,
Riggin, D. M., Tsutsumi, M., and Vincent, R. A.: A climatology of tides in
the antarctic mesosphere and lower thermosphere, J. Geophys. Res.-Atmos.,
111, 1–17,
https://doi.org/10.1029/2005JD006803, 2006.
a
Murphy, D. J., Aso, T., Fritts, D. C., Hibbins, R. E., McDonald, A. J.,
Riggin,
D. M., Tsutsumi, M., and Vincent, R. A.: Source regions for antarctic MLT
non-migrating semidiurnal tides, Geophys. Res. Lett., 36, 1–5,
https://doi.org/10.1029/2008GL037064, 2009.
a
Oberheide, J., Hagan, M. E., and Roble, R. G.: Tidal signatures and aliasing
in
temperature data from slowly precessing satellites, J. Geophys.
Res.-Space, 108, 1055,
https://doi.org/10.1029/2002JA009585,
2002.
a
Oberheide, J., Forbes, J. M., Zhang, X., and Bruinsma, S. L.: Climatology of
upward propagating diurnal and semidiurnal tides in the thermosphere, J.
Geophys. Res.-Space, 116, A11306,
https://doi.org/10.1029/2011JA016784, 2011.
a,
b,
c,
d,
e,
f,
g,
h
Pancheva, D. and Mukhtarov, P.: Global response of the ionosphere to
atmospheric tides forced from below: Recent progress based on satellite
measurements: Esponse of the ionosphere, vol. 168,
https://doi.org/10.1007/s11214-011-9837-1, 2012.
a
Pancheva, D., Mukhtarov, P., Mitchell, N. J., Merzlyakov, E., Smith, A. K.,
Andonov, B., Singer, W., Hocking, W., Meek, C., Manson, A., and Murayama, Y.:
Planetary waves in coupling the stratosphere and mesosphere during the major
stratospheric warming in 2003/2004, J. Geophys. Res.-Atmos., 113, 1–22,
https://doi.org/10.1029/2007JD009011, 2008.
a
Pedatella, N. M. and Forbes, J. M.: Evidence for stratosphere sudden
warming-ionosphere coupling due to vertically propagating tides, Geophys.
Res. Lett., 37, L11104,
https://doi.org/10.1029/2010GL043560, 2010.
a
Pedatella, N. M. and Liu, H. L.: The influence of atmospheric tide and
planetary wave variability during sudden stratosphere warmings on the low
latitude ionosphere, J. Geophys. Res.-Space, 118, 5333–5347,
https://doi.org/10.1002/jgra.50492, 2013.
a
Pedatella, N. M., Liu, H. L., Richmond, A. D., Maute, A., and Fang, T. W.:
Simulations of solar and lunar tidal variability in the mesosphere and lower
thermosphere during sudden stratosphere warmings and their influence on the
low-latitude ionosphere, J. Geophys. Res.-Space, 117, A08326,
https://doi.org/10.1029/2012JA017858, 2012.
a
Seviour, W. J., Gray, L. J., and Mitchell, D. M.: Stratospheric polar vortex
splits and displacements in the high-top CMIP5 climate models, J. Geophys.
Res., 121, 1400–1413,
https://doi.org/10.1002/2015JD024178, 2016.
a
Siddiqui, T. A., Yamazaki, Y., Stolle, C., Lühr, H., Matzka, J., Maute,
A., and Pedatella, N.: Dependence of Lunar Tide of the Equatorial Electrojet
on the Wintertime Polar Vortex, Solar Flux, and QBO, Geophys. Res. Lett.,
45, 3801–3810,
https://doi.org/10.1029/2018GL077510,
2018.
a
Singer, W., Hoffmann, P., Kishore Kumar, G., Mitchell, N. J., and Matthias,
V.:
Atmospheric Coupling by Gravity Waves: Climatology of Gravity Wave Activity,
Mesospheric Turbulence and Their Relations to Solar Activity, 409–427,
Springer Netherlands, Dordrecht,
https://doi.org/10.1007/978-94-007-4348-9_22, 2013.
a
Stober, G., Jacobi, C., Matthias, V., Hoffmann, P., and Gerding, M.: Neutral
air density variations during strong planetary wave activity in the mesopause
region derived from meteor radar observations, J. Atmos.
Sol.-Terr. Phys., 74, 55–63,
https://doi.org/10.1016/j.jastp.2011.10.007,
2012.
a
Xu, X., Manson, A. H., Meek, C. E., Riggin, D. M., Jacobi, C., and Drummond,
J. R.: Mesospheric wind diurnal tides within the Canadian Middle Atmosphere
Model Data Assimilation System, J. Atmos. Sol.-Terr. Phys., 74,
24–43,
https://doi.org/10.1016/j.jastp.2011.09.003, 2012.
a
Yu, Y., Wan, W., Ning, B., Liu, L., Wang, Z., Hu, L., and Ren, Z.: Tidal
wind
mapping from observations of a meteor radar chain in December 2011, J.
Geophys. Res.-Space, 118, 2321–2332,
https://doi.org/10.1029/2012JA017976,
2013.
a
Yu, Y., Wan, W., Ren, Z., Xiong, B., Zhang, Y., Hu, L., Ning, B., and Liu,
L.:
Seasonal variations of MLT tides revealed by a meteor radar chain based on
Hough mode decomposition, J. Geophys. Res.-Space, 120, 7030–7048,
https://doi.org/10.1002/2015JA021276, 2015.
a
Zhang, J. T., Forbes, J. M., Zhang, C. H., Doornbos, E., and Bruinsma, S. L.:
Lunar tide contribution to thermosphere weather, Sp. Weather, 12, 538–551,
https://doi.org/10.1002/2014SW001079, 2014.
a
Zhang, X. and Forbes, J. M.: Lunar tide in the thermosphere and weakening of
the northern polar vortex, Geophys. Res. Lett., 41, 8201–8207,
https://doi.org/10.1002/2014GL062103, 2014.
a
Zhou, X., Wan, W., Yu, Y., Ning, B., Hu, L., and Yue, X.: New Approach to
Estimate Tidal Climatology From Ground- and Space-Based Observations, J.
Geophys. Res.-Space, 123, 5087–5101,
https://doi.org/10.1029/2017JA024967, 2018.
a