Articles | Volume 19, issue 19
https://doi.org/10.5194/acp-19-12141-2019
https://doi.org/10.5194/acp-19-12141-2019
Research article
 | 
30 Sep 2019
Research article |  | 30 Sep 2019

Assessment of the theoretical limit in instrumental detectability of northern high-latitude methane sources using δ13CCH4 atmospheric signals

Thibaud Thonat, Marielle Saunois, Isabelle Pison, Antoine Berchet, Thomas Hocking, Brett F. Thornton, Patrick M. Crill, and Philippe Bousquet

Related authors

Detectability of Arctic methane sources at six sites performing continuous atmospheric measurements
Thibaud Thonat, Marielle Saunois, Philippe Bousquet, Isabelle Pison, Zeli Tan, Qianlai Zhuang, Patrick M. Crill, Brett F. Thornton, David Bastviken, Ed J. Dlugokencky, Nikita Zimov, Tuomas Laurila, Juha Hatakka, Ove Hermansen, and Doug E. J. Worthy
Atmos. Chem. Phys., 17, 8371–8394, https://doi.org/10.5194/acp-17-8371-2017,https://doi.org/10.5194/acp-17-8371-2017, 2017
Short summary
Signature of tropical fires in the diurnal cycle of tropospheric CO as seen from Metop-A/IASI
T. Thonat, C. Crevoisier, N. A. Scott, A. Chédin, R. Armante, and L. Crépeau
Atmos. Chem. Phys., 15, 13041–13057, https://doi.org/10.5194/acp-15-13041-2015,https://doi.org/10.5194/acp-15-13041-2015, 2015
Short summary
The 2007–2011 evolution of tropical methane in the mid-troposphere as seen from space by MetOp-A/IASI
C. Crevoisier, D. Nobileau, R. Armante, L. Crépeau, T. Machida, Y. Sawa, H. Matsueda, T. Schuck, T. Thonat, J. Pernin, N. A. Scott, and A. Chédin
Atmos. Chem. Phys., 13, 4279–4289, https://doi.org/10.5194/acp-13-4279-2013,https://doi.org/10.5194/acp-13-4279-2013, 2013

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
The atmospheric oxidizing capacity in China – Part 1: Roles of different photochemical processes
Jianing Dai, Guy P. Brasseur, Mihalis Vrekoussis, Maria Kanakidou, Kun Qu, Yijuan Zhang, Hongliang Zhang, and Tao Wang
Atmos. Chem. Phys., 23, 14127–14158, https://doi.org/10.5194/acp-23-14127-2023,https://doi.org/10.5194/acp-23-14127-2023, 2023
Short summary
Benefits of net-zero policies for future ozone pollution in China
Zhenze Liu, Oliver Wild, Ruth M. Doherty, Fiona M. O'Connor, and Steven T. Turnock
Atmos. Chem. Phys., 23, 13755–13768, https://doi.org/10.5194/acp-23-13755-2023,https://doi.org/10.5194/acp-23-13755-2023, 2023
Short summary
Simulating impacts on UK air quality from net-zero forest planting scenarios
Gemma Purser, Mathew R. Heal, Edward J. Carnell, Stephen Bathgate, Julia Drewer, James I. L. Morison, and Massimo Vieno
Atmos. Chem. Phys., 23, 13713–13733, https://doi.org/10.5194/acp-23-13713-2023,https://doi.org/10.5194/acp-23-13713-2023, 2023
Short summary
Understanding offshore high-ozone events during TRACER-AQ 2021 in Houston: insights from WRF–CAMx photochemical modeling
Wei Li, Yuxuan Wang, Xueying Liu, Ehsan Soleimanian, Travis Griggs, James Flynn, and Paul Walter
Atmos. Chem. Phys., 23, 13685–13699, https://doi.org/10.5194/acp-23-13685-2023,https://doi.org/10.5194/acp-23-13685-2023, 2023
Short summary
Opinion: Establishing a science-into-policy process for tropospheric ozone assessment
Richard G. Derwent, David D. Parrish, and Ian C. Faloona
Atmos. Chem. Phys., 23, 13613–13623, https://doi.org/10.5194/acp-23-13613-2023,https://doi.org/10.5194/acp-23-13613-2023, 2023
Short summary

Cited articles

Anthony, K. M. W., Anthony, P., Grosse, G., and Chanton, J. P.: Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers, Nat. Geosci., 5, 419–426, https://doi.org/10.1038/ngeo1480, 2012. 
Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M., and Enrich-Prast, A.: Freshwater methane emissions offset the continental carbon sink, Science, 331, 50 pp., https://doi.org/10.1126/science.1196808, 2011. 
Berchet, A., Pison, I., Chevallier, F., Paris, J.-D., Bousquet, P., Bonne, J.-L., Arshinov, M. Y., Belan, B. D., Cressot, C., Davydov, D. K., Dlugokencky, E. J., Fofonov, A. V., Galanin, A., Lavrič, J., Machida, T., Parker, R., Sasakawa, M., Spahni, R., Stocker, B. D., and Winderlich, J.: Natural and anthropogenic methane fluxes in Eurasia: a mesoscale quantification by generalized atmospheric inversion, Biogeosciences, 12, 5393–5414, https://doi.org/10.5194/bg-12-5393-2015, 2015. 
Berchet, A., Bousquet, P., Pison, I., Locatelli, R., Chevallier, F., Paris, J.-D., Dlugokencky, E. J., Laurila, T., Hatakka, J., Viisanen, Y., Worthy, D. E. J., Nisbet, E., Fisher, R., France, J., Lowry, D., Ivakhov, V., and Hermansen, O.: Atmospheric constraints on the methane emissions from the East Siberian Shelf, Atmos. Chem. Phys., 16, 4147–4157, https://doi.org/10.5194/acp-16-4147-2016, 2016. 
Bergamaschi, P., Lubina, C., Königstedt, R., Fischer, H., Veltkamp, A. C., and Zwaagstra, O.: Stable isotopic signatures (δ13C, δD) of methane from European landfill sites, J. Geophys. Res., 103, 8251–8265, https://doi.org/10.1029/98JD00105, 1998. 
Download
Short summary
This paper discusses the methane isotopic signals that could be detected at instrumental surface sites in the northern high latitudes using a 3–D chemistry transport model. Isotopic signals may be used in atmospheric inverse systems to better characterize methane emissions and changes. We show that depending on the source magnitude and the location of the site, detecting isotopic signals of specific individual sources may be challenging for the new generation of methane isotope instruments.
Altmetrics
Final-revised paper
Preprint