Articles | Volume 19, issue 15
https://doi.org/10.5194/acp-19-10009-2019
https://doi.org/10.5194/acp-19-10009-2019
Research article
 | 
09 Aug 2019
Research article |  | 09 Aug 2019

Machine learning for observation bias correction with application to dust storm data assimilation

Jianbing Jin, Hai Xiang Lin, Arjo Segers, Yu Xie, and Arnold Heemink

Related authors

The sensitivity of aerosol data assimilation to vertical profiles: case study of dust storm assimilation with LOTOS-EUROS v2.2
Mijie Pang, Jianbing Jin, Ting Yang, Xi Chen, Arjo Segers, Hai Xiang Lin, Hong Liao, and Wei Han
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-113,https://doi.org/10.5194/gmd-2024-113, 2024
Preprint under review for GMD
Short summary
Improving estimation of a record breaking East Asian dust storm emission with lagged aerosol Ångström Exponent observations
Yueming Cheng, Tie Dai, Junji Cao, Daisuke Goto, Jianbing Jin, Teruyuki Nakajima, and Guangyu Shi
EGUsphere, https://doi.org/10.5194/egusphere-2024-840,https://doi.org/10.5194/egusphere-2024-840, 2024
Short summary
Observational operator for fair model calibration with ground NO2 measurements
Li Fang, Jianbing Jin, Arjo Segers, Ke Li, Ji Xia, Wei Han, Baojie Li, Hai Xiang Lin, Lei Zhu, Song Liu, and Hong Liao
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-216,https://doi.org/10.5194/gmd-2023-216, 2024
Revised manuscript under review for GMD
Short summary
Neighbouring time ensemble Kalman filter (NTEnKF) data assimilation for dust storm forecasting
Mijie Pang, Jianbing Jin, Segers Arjo, Huiya Jiang, Wei Han, Ji Xia, Li Fang, Jiandong Li, Hai Xiang Lin, and Hong Liao
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-219,https://doi.org/10.5194/gmd-2023-219, 2023
Revised manuscript accepted for GMD
Short summary
A gridded air quality forecast through fusing site-available machine learning predictions from RFSML v1.0 and chemical transport model results from GEOS-Chem v13.1.0 using the ensemble Kalman filter
Li Fang, Jianbing Jin, Arjo Segers, Hong Liao, Ke Li, Bufan Xu, Wei Han, Mijie Pang, and Hai Xiang Lin
Geosci. Model Dev., 16, 4867–4882, https://doi.org/10.5194/gmd-16-4867-2023,https://doi.org/10.5194/gmd-16-4867-2023, 2023
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Synergistic effects of the winter North Atlantic Oscillation (NAO) and El Niño–Southern Oscillation (ENSO) on dust activities in North China during the following spring
Falei Xu, Shuang Wang, Yan Li, and Juan Feng
Atmos. Chem. Phys., 24, 10689–10705, https://doi.org/10.5194/acp-24-10689-2024,https://doi.org/10.5194/acp-24-10689-2024, 2024
Short summary
Aerosol composition, air quality, and boundary layer dynamics in the urban background of Stuttgart in winter
Hengheng Zhang, Wei Huang, Xiaoli Shen, Ramakrishna Ramisetty, Junwei Song, Olga Kiseleva, Christopher Claus Holst, Basit Khan, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 24, 10617–10637, https://doi.org/10.5194/acp-24-10617-2024,https://doi.org/10.5194/acp-24-10617-2024, 2024
Short summary
Measurement report: Source attribution and estimation of black carbon levels in an urban hotspot of the central Po Valley – an integrated approach combining high-resolution dispersion modelling and micro-aethalometers
Giorgio Veratti, Alessandro Bigi, Michele Stortini, Sergio Teggi, and Grazia Ghermandi
Atmos. Chem. Phys., 24, 10475–10512, https://doi.org/10.5194/acp-24-10475-2024,https://doi.org/10.5194/acp-24-10475-2024, 2024
Short summary
Microphysical modelling of aerosol scavenging by different types of clouds: description and validation of the approach
Pascal Lemaitre, Arnaud Quérel, Alexis Dépée, Alice Guerra Devigne, Marie Monier, Thibault Hiron, Chloé Soto Minguez, Daniel Hardy, and Andrea Flossmann
Atmos. Chem. Phys., 24, 9713–9732, https://doi.org/10.5194/acp-24-9713-2024,https://doi.org/10.5194/acp-24-9713-2024, 2024
Short summary
Insights into the sources of ultrafine particle numbers at six European urban sites obtained by investigating COVID-19 lockdowns
Alex Rowell, James Brean, David C. S. Beddows, Tuukka Petäjä, Máté Vörösmarty, Imre Salma, Jarkko V. Niemi, Hanna E. Manninen, Dominik van Pinxteren, Thomas Tuch, Kay Weinhold, Zongbo Shi, and Roy M. Harrison
Atmos. Chem. Phys., 24, 9515–9531, https://doi.org/10.5194/acp-24-9515-2024,https://doi.org/10.5194/acp-24-9515-2024, 2024
Short summary

Cited articles

Benedetti, A., Di Giuseppe, F., Jones, L., Peuch, V.-H., Rémy, S., and Zhang, X.: The value of satellite observations in the analysis and short-range prediction of Asian dust, Atmos. Chem. Phys., 19, 987–998, https://doi.org/10.5194/acp-19-987-2019, 2019. a
Berry, T. and Harlim, J.: Correcting Biased Observation Model Error in Data Assimilation, Mon. Weather Rev., 145, 2833–2853, https://doi.org/10.1175/MWR-D-16-0428.1, 2017. a
Brasseur, G. P., Xie, Y., Petersen, A. K., Bouarar, I., Flemming, J., Gauss, M., Jiang, F., Kouznetsov, R., Kranenburg, R., Mijling, B., Peuch, V.-H., Pommier, M., Segers, A., Sofiev, M., Timmermans, R., van der A, R., Walters, S., Xu, J., and Zhou, G.: Ensemble forecasts of air quality in eastern China – Part 1: Model description and implementation of the MarcoPolo–Panda prediction system, version 1, Geosci. Model Dev., 12, 33–67, https://doi.org/10.5194/gmd-12-33-2019, 2019. a
Cesnulyte, V., Lindfors, A. V., Pitkänen, M. R. A., Lehtinen, K. E. J., Morcrette, J.-J., and Arola, A.: Comparing ECMWF AOD with AERONET observations at visible and UV wavelengths, Atmos. Chem. Phys., 14, 593–608, https://doi.org/10.5194/acp-14-593-2014, 2014. a
Chen, G., Li, S., Knibbs, L. D., Hamm, N. A. S., Cao, W., Li, T., Guo, J., Ren, H., Abramson, M. J., and Guo, Y.: A machine learning method to estimate PM2.5 concentrations across China with remote sensing, meteorological and land use information, Sci. Total Environ., 636, 52–60, https://doi.org/10.1016/j.scitotenv.2018.04.251, 2018. a, b
Download
Altmetrics
Final-revised paper
Preprint