Articles | Volume 18, issue 13
https://doi.org/10.5194/acp-18-9351-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-18-9351-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Future changes in surface ozone over the Mediterranean Basin in the framework of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx)
Nizar Jaidan
CNRM, Météo-France and CNRS, UMR 3589, Toulouse, France
Laaziz El Amraoui
CORRESPONDING AUTHOR
CNRM, Météo-France and CNRS, UMR 3589, Toulouse, France
Jean-Luc Attié
Laboratoire d'Aérologie, Université de Toulouse, UMR 5560, CNRS/INSU, Toulouse, France
Philippe Ricaud
CNRM, Météo-France and CNRS, UMR 3589, Toulouse, France
François Dulac
LSCE/IPSL, Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, Gif-sur-Yvette, France
Related authors
P. Ricaud, B. Sič, L. El Amraoui, J.-L. Attié, R. Zbinden, P. Huszar, S. Szopa, J. Parmentier, N. Jaidan, M. Michou, R. Abida, F. Carminati, D. Hauglustaine, T. August, J. Warner, R. Imasu, N. Saitoh, and V.-H. Peuch
Atmos. Chem. Phys., 14, 11427–11446, https://doi.org/10.5194/acp-14-11427-2014, https://doi.org/10.5194/acp-14-11427-2014, 2014
Philippe Ricaud, Pierre Durand, Paolo Grigioni, Massimo Del Guasta, Giuseppe Camporeale, Axel Roy, Jean-Luc Attié, and John Bognar
Atmos. Meas. Tech., 17, 5071–5089, https://doi.org/10.5194/amt-17-5071-2024, https://doi.org/10.5194/amt-17-5071-2024, 2024
Short summary
Short summary
Clouds in Antarctica are key elements affecting climate evolution. Some clouds are composed of supercooled liquid water (SLW; water held in liquid form below 0 °C) and are difficult to forecast by models. We performed in situ observations of SLW clouds at Concordia Station using SLW sondes attached to meteorological balloons in summer 2021–2022. The SLW clouds were observed in a saturated layer at the top of the planetary boundary layer in agreement with ground-based lidar observations.
Philippe Ricaud, Massimo Del Guasta, Angelo Lupi, Romain Roehrig, Eric Bazile, Pierre Durand, Jean-Luc Attié, Alessia Nicosia, and Paolo Grigioni
Atmos. Chem. Phys., 24, 613–630, https://doi.org/10.5194/acp-24-613-2024, https://doi.org/10.5194/acp-24-613-2024, 2024
Short summary
Short summary
Clouds affect the Earth's climate in ways that depend on the type of cloud (solid/liquid water). From observations at Concordia (Antarctica), we show that in supercooled liquid water (liquid water for temperatures below 0°C) clouds (SLWCs), temperature and SLWC radiative forcing increase with liquid water (up to 70 W m−2). We extrapolated that the maximum SLWC radiative forcing can reach 40 W m−2 over the Antarctic Peninsula, highlighting the importance of SLWCs for global climate prediction.
Karine Desboeufs, Franck Fu, Matthieu Bressac, Antonio Tovar-Sánchez, Sylvain Triquet, Jean-François Doussin, Chiara Giorio, Patrick Chazette, Julie Disnaquet, Anaïs Feron, Paola Formenti, Franck Maisonneuve, Araceli Rodríguez-Romero, Pascal Zapf, François Dulac, and Cécile Guieu
Atmos. Chem. Phys., 22, 2309–2332, https://doi.org/10.5194/acp-22-2309-2022, https://doi.org/10.5194/acp-22-2309-2022, 2022
Short summary
Short summary
This article reports the first concurrent sampling of wet deposition samples and surface seawater and was performed during the PEACETIME cruise in the remote Mediterranean (May–June 2017). Through the chemical composition of trace metals (TMs) in these samples, it emphasizes the decrease of atmospheric metal pollution in this area during the last few decades and the critical role of wet deposition as source of TMs for Mediterranean surface seawater, especially for intense dust deposition events.
Matthieu Bressac, Thibaut Wagener, Nathalie Leblond, Antonio Tovar-Sánchez, Céline Ridame, Vincent Taillandier, Samuel Albani, Sophie Guasco, Aurélie Dufour, Stéphanie H. M. Jacquet, François Dulac, Karine Desboeufs, and Cécile Guieu
Biogeosciences, 18, 6435–6453, https://doi.org/10.5194/bg-18-6435-2021, https://doi.org/10.5194/bg-18-6435-2021, 2021
Short summary
Short summary
Phytoplankton growth is limited by the availability of iron in about 50 % of the ocean. Atmospheric deposition of desert dust represents a key source of iron. Here, we present direct observations of dust deposition in the Mediterranean Sea. A key finding is that the input of iron from dust primarily occurred in the deep ocean, while previous studies mainly focused on the ocean surface. This new insight will enable us to better represent controls on global marine productivity in models.
Matthieu Plu, Guillaume Bigeard, Bojan Sič, Emanuele Emili, Luca Bugliaro, Laaziz El Amraoui, Jonathan Guth, Beatrice Josse, Lucia Mona, and Dennis Piontek
Nat. Hazards Earth Syst. Sci., 21, 3731–3747, https://doi.org/10.5194/nhess-21-3731-2021, https://doi.org/10.5194/nhess-21-3731-2021, 2021
Short summary
Short summary
Volcanic eruptions that spread out ash over large areas, like Eyjafjallajökull in 2010, may have huge economic consequences due to flight cancellations. In this article, we demonstrate the benefits of source term improvement and of data assimilation for quantifying volcanic ash concentrations. The work, which was supported by the EUNADICS-AV project, is the first one, to our knowledge, that demonstrates the benefit of the assimilation of ground-based lidar data over Europe during an eruption.
Matthieu Plu, Barbara Scherllin-Pirscher, Delia Arnold Arias, Rocio Baro, Guillaume Bigeard, Luca Bugliaro, Ana Carvalho, Laaziz El Amraoui, Kurt Eschbacher, Marcus Hirtl, Christian Maurer, Marie D. Mulder, Dennis Piontek, Lennart Robertson, Carl-Herbert Rokitansky, Fritz Zobl, and Raimund Zopp
Nat. Hazards Earth Syst. Sci., 21, 2973–2992, https://doi.org/10.5194/nhess-21-2973-2021, https://doi.org/10.5194/nhess-21-2973-2021, 2021
Short summary
Short summary
Past volcanic eruptions that spread out ash over large areas, like Eyjafjallajökull in 2010, forced the cancellation of thousands of flights and had huge economic consequences.
In this article, an international team in the H2020 EU-funded EUNADICS-AV project has designed a probabilistic model approach to quantify ash concentrations. This approach is evaluated against measurements, and its potential use to mitigate the impact of future large-scale eruptions is discussed.
Isabelle Chiapello, Paola Formenti, Lydie Mbemba Kabuiku, Fabrice Ducos, Didier Tanré, and François Dulac
Atmos. Chem. Phys., 21, 12715–12737, https://doi.org/10.5194/acp-21-12715-2021, https://doi.org/10.5194/acp-21-12715-2021, 2021
Short summary
Short summary
The Mediterranean atmosphere is impacted by a variety of particle pollution, which exerts a complex pressure on climate and air quality. We analyze the 2005–2013 POLDER-3 satellite advanced aerosol data set over the Western Mediterranean Sea. Aerosols' spatial distribution and temporal evolution suggests a large-scale improvement of air quality related to the fine aerosol component, most probably resulting from reduction of anthropogenic particle emissions in the surrounding European countries.
Iris-Amata Dion, Cyrille Dallet, Philippe Ricaud, Fabien Carminati, Thibaut Dauhut, and Peter Haynes
Atmos. Chem. Phys., 21, 2191–2210, https://doi.org/10.5194/acp-21-2191-2021, https://doi.org/10.5194/acp-21-2191-2021, 2021
Short summary
Short summary
Ice in the tropopause has a strong radiative effect on climate. The amount of ice injected (∆IWC) up to the tropical tropopause layer has been shown to be the highest over the Maritime Continent (MC), a region that includes Indonesia. ∆IWC is studied over islands and sea of the MC. Space-borne observations of ice, precipitation and lightning are used to estimate ∆IWC and are compared to ∆IWC estimated from the ERA5 reanalyses. It is shown that Java is the area of the greatest ∆IWC over the MC.
Cécile Debevec, Stéphane Sauvage, Valérie Gros, Thérèse Salameh, Jean Sciare, François Dulac, and Nadine Locoge
Atmos. Chem. Phys., 21, 1449–1484, https://doi.org/10.5194/acp-21-1449-2021, https://doi.org/10.5194/acp-21-1449-2021, 2021
Short summary
Short summary
This study provides a better characterization of the seasonal variations in VOC sources impacting the western Mediterranean region, based on a comprehensive chemical composition measured over 25 months at a representative receptor site (Ersa) and by determining factors controlling their temporal variations. Some insights into dominant drivers for VOC concentration variations in Europe are also provided, built on comparisons of Ersa observations with the concomitant ones of 17 European sites.
Cécile Guieu, Fabrizio D'Ortenzio, François Dulac, Vincent Taillandier, Andrea Doglioli, Anne Petrenko, Stéphanie Barrillon, Marc Mallet, Pierre Nabat, and Karine Desboeufs
Biogeosciences, 17, 5563–5585, https://doi.org/10.5194/bg-17-5563-2020, https://doi.org/10.5194/bg-17-5563-2020, 2020
Short summary
Short summary
We describe here the objectives and strategy of the PEACETIME project and cruise, dedicated to dust deposition and its impacts in the Mediterranean Sea. Our strategy to go a step further forward than in previous approaches in understanding these impacts by catching a real deposition event at sea is detailed. We summarize the work performed at sea, the type of data acquired and their valorization in the papers published in the special issue.
Laaziz El Amraoui, Bojan Sič, Andrea Piacentini, Virginie Marécal, Nicolas Frebourg, and Jean-Luc Attié
Atmos. Meas. Tech., 13, 4645–4667, https://doi.org/10.5194/amt-13-4645-2020, https://doi.org/10.5194/amt-13-4645-2020, 2020
Short summary
Short summary
The aim of this paper is to present the assimilation of lidar observations from the CALIOP instrument onboard the CALIPSO satellite in the chemistry-transport model of Météo-France, MOCAGE. We presented the first results of the assimilation of the extinction coefficient observations of the CALIOP lidar instrument during the pre-ChArMEx-TRAQA field campaign. We evaluated the added value of the assimilation product to better document a desert dust transport event compared to the model free run.
Philippe Ricaud, Massimo Del Guasta, Eric Bazile, Niramson Azouz, Angelo Lupi, Pierre Durand, Jean-Luc Attié, Dana Veron, Vincent Guidard, and Paolo Grigioni
Atmos. Chem. Phys., 20, 4167–4191, https://doi.org/10.5194/acp-20-4167-2020, https://doi.org/10.5194/acp-20-4167-2020, 2020
Short summary
Short summary
Thin (~ 100 m) supercooled liquid water (SLW, water staying in liquid phase below 0 °C) clouds have been detected, analysed, and modelled over the Dome C (Concordia, Antarctica) station during the austral summer 2018–2019 using observations and meteorological analyses. The SLW clouds were observed at the top of the planetary boundary layer and the SLW content was always strongly underestimated by the model indicating an incorrect simulation of the surface energy budget of the Antarctic Plateau.
Samuel Quesada-Ruiz, Jean-Luc Attié, William A. Lahoz, Rachid Abida, Philippe Ricaud, Laaziz El Amraoui, Régina Zbinden, Andrea Piacentini, Mathieu Joly, Henk Eskes, Arjo Segers, Lyana Curier, Johan de Haan, Jukka Kujanpää, Albert Christiaan Plechelmus Oude Nijhuis, Johanna Tamminen, Renske Timmermans, and Pepijn Veefkind
Atmos. Meas. Tech., 13, 131–152, https://doi.org/10.5194/amt-13-131-2020, https://doi.org/10.5194/amt-13-131-2020, 2020
Renske Timmermans, Arjo Segers, Lyana Curier, Rachid Abida, Jean-Luc Attié, Laaziz El Amraoui, Henk Eskes, Johan de Haan, Jukka Kujanpää, William Lahoz, Albert Oude Nijhuis, Samuel Quesada-Ruiz, Philippe Ricaud, Pepijn Veefkind, and Martijn Schaap
Atmos. Chem. Phys., 19, 12811–12833, https://doi.org/10.5194/acp-19-12811-2019, https://doi.org/10.5194/acp-19-12811-2019, 2019
Short summary
Short summary
We present an evaluation of the added value of the Sentinel-4 and Sentinel-5P missions for air quality analyses of NO2. For this, synthetic observations for both missions are generated and combined with a chemistry transport model. While hourly Sentinel-4 NO2 observations over Europe benefit modelled NO2 analyses throughout the entire day, daily Sentinel-5P NO2 observations with global coverage show an impact up to 3–6 h after overpass. This supports the need for a combination of missions.
Iris-Amata Dion, Philippe Ricaud, Peter Haynes, Fabien Carminati, and Thibaut Dauhut
Atmos. Chem. Phys., 19, 6459–6479, https://doi.org/10.5194/acp-19-6459-2019, https://doi.org/10.5194/acp-19-6459-2019, 2019
Short summary
Short summary
Water vapour and ice cirrus clouds near the tropical tropopause layer (TTL) have a strong radiative impact on climate. Based on space-borne observations, we have developed a model linking ice in the upper troposphere from the Microwave Limb Sounder (MLS) to precipitation in the troposphere from the Tropical Rainfall Measurement Mission (TRMM). Our study quantifies the amount of ice injected into the TTL by deep convection over tropical lands and oceans by investigating the diurnal cycle of ice.
Camille Richon, Jean-Claude Dutay, Laurent Bopp, Briac Le Vu, James C. Orr, Samuel Somot, and François Dulac
Biogeosciences, 16, 135–165, https://doi.org/10.5194/bg-16-135-2019, https://doi.org/10.5194/bg-16-135-2019, 2019
Short summary
Short summary
We evaluate the effects of climate change and biogeochemical forcing evolution on the nutrient and plankton cycles of the Mediterranean Sea for the first time. We use a high-resolution coupled physical and biogeochemical model and perform 120-year transient simulations. The results indicate that changes in external nutrient fluxes and climate change may have synergistic or antagonistic effects on nutrient concentrations, depending on the region and the scenario.
Mounir Chrit, Karine Sartelet, Jean Sciare, Marwa Majdi, José Nicolas, Jean-Eudes Petit, and François Dulac
Atmos. Chem. Phys., 18, 18079–18100, https://doi.org/10.5194/acp-18-18079-2018, https://doi.org/10.5194/acp-18-18079-2018, 2018
Paola Formenti, Lydie Mbemba Kabuiku, Isabelle Chiapello, Fabrice Ducos, François Dulac, and Didier Tanré
Atmos. Meas. Tech., 11, 6761–6784, https://doi.org/10.5194/amt-11-6761-2018, https://doi.org/10.5194/amt-11-6761-2018, 2018
Short summary
Short summary
Aerosol particles from natural and anthropogenic sources are climate regulators as they can counteract or amplify the warming effect of greenhouse gases, but are difficult to observe due to their temporal and spatial variability. Satellite sensors can provide the needed global coverage but need validation. In this paper we explore the capability of the POLDER-3 advanced space-borne sensor to observe aerosols over the western Mediterranean region.
Karine Desboeufs, Elisabeth Bon Nguyen, Servanne Chevaillier, Sylvain Triquet, and François Dulac
Atmos. Chem. Phys., 18, 14477–14492, https://doi.org/10.5194/acp-18-14477-2018, https://doi.org/10.5194/acp-18-14477-2018, 2018
Short summary
Short summary
Atmospheric deposition is known to be a major source of nutrients for the marine biosphere in the Mediterranean Sea. The study of the origin of nutrients and trace metals in Corsica presented here shows that the dust events were the major sources of Si and Fe. Conversely, combustion sources predominated the inputs of N, P, and trace metals. This work showed the importance of considering background anthropogenic deposition for estimating the impact of atmospheric forcing on marine biota.
Mounir Chrit, Karine Sartelet, Jean Sciare, Jorge Pey, José B. Nicolas, Nicolas Marchand, Evelyn Freney, Karine Sellegri, Matthias Beekmann, and François Dulac
Atmos. Chem. Phys., 18, 9631–9659, https://doi.org/10.5194/acp-18-9631-2018, https://doi.org/10.5194/acp-18-9631-2018, 2018
Short summary
Short summary
Fine particulate matter (PM) in the atmosphere is of concern due to its effects on health, climate, ecosystems and biological cycles, and visibility.
These effects are especially important in the Mediterranean region. In this study, the air quality model Polyphemus is used to understand the
sources of inorganic and organic particles in the western Mediterranean and evaluate the uncertainties linked to the model parameters and hypotheses related to condensation/evaporation in the model.
Arineh Cholakian, Matthias Beekmann, Augustin Colette, Isabelle Coll, Guillaume Siour, Jean Sciare, Nicolas Marchand, Florian Couvidat, Jorge Pey, Valerie Gros, Stéphane Sauvage, Vincent Michoud, Karine Sellegri, Aurélie Colomb, Karine Sartelet, Helen Langley DeWitt, Miriam Elser, André S. H. Prévot, Sonke Szidat, and François Dulac
Atmos. Chem. Phys., 18, 7287–7312, https://doi.org/10.5194/acp-18-7287-2018, https://doi.org/10.5194/acp-18-7287-2018, 2018
Short summary
Short summary
In this work, four schemes for the simulation of organic aerosols in the western Mediterranean basin are added to the CHIMERE chemistry–transport model; the resulting simulations are then compared to measurements obtained from ChArMEx. It is concluded that the scheme taking into account the fragmentation and the formation of nonvolatile organic aerosols corresponds better to measurements; the major source of this aerosol in the western Mediterranean is found to be of biogenic origin.
Evelyn Freney, Karine Sellegri, Mounir Chrit, Kouji Adachi, Joel Brito, Antoine Waked, Agnès Borbon, Aurélie Colomb, Régis Dupuy, Jean-Marc Pichon, Laetitia Bouvier, Claire Delon, Corinne Jambert, Pierre Durand, Thierry Bourianne, Cécile Gaimoz, Sylvain Triquet, Anaïs Féron, Matthias Beekmann, François Dulac, and Karine Sartelet
Atmos. Chem. Phys., 18, 7041–7056, https://doi.org/10.5194/acp-18-7041-2018, https://doi.org/10.5194/acp-18-7041-2018, 2018
Short summary
Short summary
The focus of these experiments, within the ChArMEx project, were to better understand the chemical properties of ambient aerosols over the Mediterranean region. A series of airborne measurements were performed aboard the French research aircraft, the ATR42, during the summer period. Aerosol and gas-phase chemical mass spectrometry allowed us to understand the sources and formation of organic aerosols. Numerical models were incorporated into this study to help interpret our observations.
Vanessa Brocchi, Gisèle Krysztofiak, Valéry Catoire, Jonathan Guth, Virginie Marécal, Régina Zbinden, Laaziz El Amraoui, François Dulac, and Philippe Ricaud
Atmos. Chem. Phys., 18, 6887–6906, https://doi.org/10.5194/acp-18-6887-2018, https://doi.org/10.5194/acp-18-6887-2018, 2018
Short summary
Short summary
The Mediterranean Basin still suffers from a limited amount of in situ measurements for a good characterization of its environmental state. This study shows that intercontinental transport of very high CO concentrations can affect the upper Mediterranean Basin troposphere. By using modeling, 5- to 12-day eastward transport of biomass burning starting from North America and Siberia impacts the mid-troposphere of the Mediterranean Basin.
Camille Richon, Jean-Claude Dutay, François Dulac, Rong Wang, and Yves Balkanski
Biogeosciences, 15, 2499–2524, https://doi.org/10.5194/bg-15-2499-2018, https://doi.org/10.5194/bg-15-2499-2018, 2018
Short summary
Short summary
This work is part of the Mermex and ChArMEx projects of the MISTRALS program. It aims at studying the impacts of phosphorus deposition from contrasted sources on the biogeochemical cycles of the Mediterranean Sea.
The results show that combustion-related phosphorus deposition effects dominate P deposition over the northern Mediterranean, whereas dust-derived phosphorus deposition effects dominate in the southern part.
Yannick Kangah, Philippe Ricaud, Jean-Luc Attié, Naoko Saitoh, Jérôme Vidot, Pascal Brunel, and Samuel Quesada-Ruiz
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-21, https://doi.org/10.5194/amt-2018-21, 2018
Revised manuscript not accepted
Jean-Baptiste Renard, François Dulac, Pierre Durand, Quentin Bourgeois, Cyrielle Denjean, Damien Vignelles, Benoit Couté, Matthieu Jeannot, Nicolas Verdier, and Marc Mallet
Atmos. Chem. Phys., 18, 3677–3699, https://doi.org/10.5194/acp-18-3677-2018, https://doi.org/10.5194/acp-18-3677-2018, 2018
Short summary
Short summary
A campaign was performed in the summer of 2013 above the Mediterranean basin, including in situ counting balloon-borne aerosol measurements (LOAC), for the detection of mineral dust. Three modes in the dust particle volume size distributions were detected, at roughly 0.2, 4, and 30 mm. Particles larger than 40 mm were often observed. They were lifted several days before and their persistence after transport over long distances is in conflict with dust sedimentation calculations.
Yinghe Fu, Karine Desboeufs, Julie Vincent, Elisabeth Bon Nguyen, Benoit Laurent, Remi Losno, and François Dulac
Atmos. Meas. Tech., 10, 4389–4401, https://doi.org/10.5194/amt-10-4389-2017, https://doi.org/10.5194/amt-10-4389-2017, 2017
Uri Dayan, Philippe Ricaud, Régina Zbinden, and François Dulac
Atmos. Chem. Phys., 17, 13233–13263, https://doi.org/10.5194/acp-17-13233-2017, https://doi.org/10.5194/acp-17-13233-2017, 2017
Jovanna Arndt, Jean Sciare, Marc Mallet, Greg C. Roberts, Nicolas Marchand, Karine Sartelet, Karine Sellegri, François Dulac, Robert M. Healy, and John C. Wenger
Atmos. Chem. Phys., 17, 6975–7001, https://doi.org/10.5194/acp-17-6975-2017, https://doi.org/10.5194/acp-17-6975-2017, 2017
Short summary
Short summary
The chemical composition of individual PM2.5 particles was measured at a background site on Corsica in the Mediterranean to determine the contribution of different sources to background aerosol in the region. Most of the particles were from fossil fuel combustion and biomass burning, transported to the site from France, Italy and eastern Europe, and also accumulated other species en route. This work shows that largest impact on air quality in the Mediterranean is from anthropogenic emissions.
Philippe Ricaud, Eric Bazile, Massimo del Guasta, Christian Lanconelli, Paolo Grigioni, and Achraf Mahjoub
Atmos. Chem. Phys., 17, 5221–5237, https://doi.org/10.5194/acp-17-5221-2017, https://doi.org/10.5194/acp-17-5221-2017, 2017
Short summary
Short summary
The novelty of the paper is to combine a large set of measurements and meteorological models to study the genesis of thick cloud and diamond dust/ice fog (ice crystals) episodes above Dome C, Antarctica. The originality of the work is to attribute the presence of thick cloud and diamond dust/ice fog to advection and microphysical processes with oceanic and continental origin of air masses, respectively. Thick cloud episodes are reproduced by the models but not diamond dust/ice fog episode.
Rachid Abida, Jean-Luc Attié, Laaziz El Amraoui, Philippe Ricaud, William Lahoz, Henk Eskes, Arjo Segers, Lyana Curier, Johan de Haan, Jukka Kujanpää, Albert Oude Nijhuis, Johanna Tamminen, Renske Timmermans, and Pepijn Veefkind
Atmos. Chem. Phys., 17, 1081–1103, https://doi.org/10.5194/acp-17-1081-2017, https://doi.org/10.5194/acp-17-1081-2017, 2017
Short summary
Short summary
A detailed Observing System Simulation Experiment is performed to quantify the impact of future satellite instrument S-5P carbon monoxide (CO) on tropospheric analyses and forecasts. We focus on Europe for the period of northern summer 2003, when there was a severe heat wave episode. S-5P is able to capture the CO from forest fires that occurred in Portugal. Furthermore, our results provide evidence of S-5P CO benefits for monitoring processes contributing to atmospheric pollution.
François Gheusi, Pierre Durand, Nicolas Verdier, François Dulac, Jean-Luc Attié, Philippe Commun, Brice Barret, Claude Basdevant, Antoine Clenet, Solène Derrien, Alexis Doerenbecher, Laaziz El Amraoui, Alain Fontaine, Emeric Hache, Corinne Jambert, Elodie Jaumouillé, Yves Meyerfeld, Laurent Roblou, and Flore Tocquer
Atmos. Meas. Tech., 9, 5811–5832, https://doi.org/10.5194/amt-9-5811-2016, https://doi.org/10.5194/amt-9-5811-2016, 2016
Short summary
Short summary
Boundary-layer pressurised balloons allow for horizontal multi-day flights in the lower atmosphere, carrying light scientific payloads. Ozonesondes, usually used for balloon soundings have too short a lifetime for such flights. An adaptation is proposed, whereby conventional sondes are operated with short measurement phases alternating with longer periods of dormancy. The sondes were operated over the western Mediterranean, offering an original perspective on tropospheric ozone.
Bojan Sič, Laaziz El Amraoui, Andrea Piacentini, Virginie Marécal, Emanuele Emili, Daniel Cariolle, Michael Prather, and Jean-Luc Attié
Atmos. Meas. Tech., 9, 5535–5554, https://doi.org/10.5194/amt-9-5535-2016, https://doi.org/10.5194/amt-9-5535-2016, 2016
Michaël Sicard, Rubén Barragan, François Dulac, Lucas Alados-Arboledas, and Marc Mallet
Atmos. Chem. Phys., 16, 12177–12203, https://doi.org/10.5194/acp-16-12177-2016, https://doi.org/10.5194/acp-16-12177-2016, 2016
Short summary
Short summary
The seasonal variability of the aerosol optical, microphysical and radiative properties at three insular sites in the western Mediterranean Basin is presented. The main drivers of the observed annual cycles and NE–SW gradients are mineral dust outbreaks in summer and European continental aerosols in spring. The lack of NE–W gradients of some aerosol properties is attributed to a homogeneous spatial distribution of the fine particle load and absorption low values in the southwesternmost site.
Swagata Payra, Philippe Ricaud, Rachid Abida, Laaziz El Amraoui, Jean-Luc Attié, Emmanuel Rivière, Fabien Carminati, and Thomas von Clarmann
Atmos. Meas. Tech., 9, 4355–4373, https://doi.org/10.5194/amt-9-4355-2016, https://doi.org/10.5194/amt-9-4355-2016, 2016
Short summary
Short summary
The study deals with the budget of water vapour (H2O) at the tropical tropopause. The MOCAGE-VALENTINA assimilation tool has been used to assimilate Microwave Limb Sounder H2O space-borne measurements within the 316–5 hPa range from August 2011 to March 2013. Diagnostics are developed to assess the quality of the analyses depending on several parameters. Sensitivity studies show the improvement on the analyses when assimilating measurements of better quality, mainly over the convective areas.
Claudia Di Biagio, Paola Formenti, Lionel Doppler, Cécile Gaimoz, Noel Grand, Gerard Ancellet, Jean-Luc Attié, Silvia Bucci, Philippe Dubuisson, Federico Fierli, Marc Mallet, and François Ravetta
Atmos. Chem. Phys., 16, 10591–10607, https://doi.org/10.5194/acp-16-10591-2016, https://doi.org/10.5194/acp-16-10591-2016, 2016
Short summary
Short summary
Pollution aerosols strongly influence the composition of the Western Mediterranean, but at present little is known on their optical properties. Here, we report observations of pollution aerosols measured during the TRAQA airborne campaign in summer 2012. Data from this study indicate a large variability of the absorption for pollution particles. This variability strongly influences their direct radiative effect, with possible consequences on the hydrological cycle in this part of the basin.
Jean-Baptiste Renard, François Dulac, Gwenaël Berthet, Thibaut Lurton, Damien Vignelles, Fabrice Jégou, Thierry Tonnelier, Matthieu Jeannot, Benoit Couté, Rony Akiki, Nicolas Verdier, Marc Mallet, François Gensdarmes, Patrick Charpentier, Samuel Mesmin, Vincent Duverger, Jean-Charles Dupont, Thierry Elias, Vincent Crenn, Jean Sciare, Paul Zieger, Matthew Salter, Tjarda Roberts, Jérôme Giacomoni, Matthieu Gobbi, Eric Hamonou, Haraldur Olafsson, Pavla Dagsson-Waldhauserova, Claude Camy-Peyret, Christophe Mazel, Thierry Décamps, Martin Piringer, Jérémy Surcin, and Daniel Daugeron
Atmos. Meas. Tech., 9, 3673–3686, https://doi.org/10.5194/amt-9-3673-2016, https://doi.org/10.5194/amt-9-3673-2016, 2016
Short summary
Short summary
We illustrate the first Light Optical Aerosol Counter (LOAC) airborne results obtained from an unmanned aerial vehicle (UAV) and a variety of scientific balloons: tethered balloons deployed in urban environments, pressurized balloons drifting in the lower troposphere over the western Mediterranean during the Chemistry-Aerosol Mediterranean Experiment (ChArMEx), and meteorological sounding balloons launched in the western Mediterranean region and in the south-west of France.
Julie Vincent, Benoit Laurent, Rémi Losno, Elisabeth Bon Nguyen, Pierre Roullet, Stéphane Sauvage, Servanne Chevaillier, Patrice Coddeville, Noura Ouboulmane, Alcide Giorgio di Sarra, Antonio Tovar-Sánchez, Damiano Sferlazzo, Ana Massanet, Sylvain Triquet, Rafael Morales Baquero, Michel Fornier, Cyril Coursier, Karine Desboeufs, François Dulac, and Gilles Bergametti
Atmos. Chem. Phys., 16, 8749–8766, https://doi.org/10.5194/acp-16-8749-2016, https://doi.org/10.5194/acp-16-8749-2016, 2016
Short summary
Short summary
To investigate dust deposition dynamics at the regional scale, five automatic deposition collectors named CARAGA have been deployed in the western Mediterranean basin (Lampedusa, Majorca, Corsica, Frioul and Le Casset) during 1 to 3 years depending on the station. Complementary observations provided by both satellite and air mass trajectories are used to identify the dust provenance areas and the transport pathways from the Sahara to the stations for the studied period.
Hélène Angot, Olivier Magand, Detlev Helmig, Philippe Ricaud, Boris Quennehen, Hubert Gallée, Massimo Del Guasta, Francesca Sprovieri, Nicola Pirrone, Joël Savarino, and Aurélien Dommergue
Atmos. Chem. Phys., 16, 8249–8264, https://doi.org/10.5194/acp-16-8249-2016, https://doi.org/10.5194/acp-16-8249-2016, 2016
Short summary
Short summary
While the Arctic has been extensively monitored, there is still much to be learned from the Antarctic continent regarding the processes that govern the budget of atmospheric mercury species. We report here the first year-round measurements of gaseous elemental mercury (Hg(0)) in the atmosphere and in snowpack interstitial air on the East Antarctic ice sheet. The striking reactivity observed on the Antarctic plateau most likely influences the cycle of atmospheric mercury on a continental scale.
María José Granados-Muñoz, Francisco Navas-Guzmán, Juan Luis Guerrero-Rascado, Juan Antonio Bravo-Aranda, Ioannis Binietoglou, Sergio Nepomuceno Pereira, Sara Basart, José María Baldasano, Livio Belegante, Anatoli Chaikovsky, Adolfo Comerón, Giuseppe D'Amico, Oleg Dubovik, Luka Ilic, Panos Kokkalis, Constantino Muñoz-Porcar, Slobodan Nickovic, Doina Nicolae, Francisco José Olmo, Alexander Papayannis, Gelsomina Pappalardo, Alejandro Rodríguez, Kerstin Schepanski, Michaël Sicard, Ana Vukovic, Ulla Wandinger, François Dulac, and Lucas Alados-Arboledas
Atmos. Chem. Phys., 16, 7043–7066, https://doi.org/10.5194/acp-16-7043-2016, https://doi.org/10.5194/acp-16-7043-2016, 2016
Short summary
Short summary
This study provides a detailed overview of the Mediterranean region regarding aerosol microphysical properties during the ChArMEx/EMEP campaign in July 2012. An in-depth analysis of the horizontal, vertical, and temporal dimensions is performed using LIRIC, proving the algorithm's ability in automated retrieval of microphysical property profiles within a network. A validation of four dust models is included, obtaining fair good agreement, especially for the vertical distribution of the aerosol.
Jean-Baptiste Renard, François Dulac, Gwenaël Berthet, Thibaut Lurton, Damien Vignelles, Fabrice Jégou, Thierry Tonnelier, Matthieu Jeannot, Benoit Couté, Rony Akiki, Nicolas Verdier, Marc Mallet, François Gensdarmes, Patrick Charpentier, Samuel Mesmin, Vincent Duverger, Jean-Charles Dupont, Thierry Elias, Vincent Crenn, Jean Sciare, Paul Zieger, Matthew Salter, Tjarda Roberts, Jérôme Giacomoni, Matthieu Gobbi, Eric Hamonou, Haraldur Olafsson, Pavla Dagsson-Waldhauserova, Claude Camy-Peyret, Christophe Mazel, Thierry Décamps, Martin Piringer, Jérémy Surcin, and Daniel Daugeron
Atmos. Meas. Tech., 9, 1721–1742, https://doi.org/10.5194/amt-9-1721-2016, https://doi.org/10.5194/amt-9-1721-2016, 2016
Short summary
Short summary
LOAC is a light aerosols counter for performing measurements at the surface and under all kinds of atmospheric balloons. LOAC performs observations at two scattering angles. The first one at 12° is insensitive to the refractive index of the particles; the second one at 60° is strongly sensitive to the refractive index. By combining the measurements, it is possible to retrieve the size distribution between 0.2 and 100 micrometeres and to estimate the nature of the dominant particles.
Gerard Ancellet, Jacques Pelon, Julien Totems, Patrick Chazette, Ariane Bazureau, Michaël Sicard, Tatiana Di Iorio, Francois Dulac, and Marc Mallet
Atmos. Chem. Phys., 16, 4725–4742, https://doi.org/10.5194/acp-16-4725-2016, https://doi.org/10.5194/acp-16-4725-2016, 2016
Short summary
Short summary
A multi-lidar analysis conducted in the Mediterranean basin compares the impact of the long-range transport of North American biomass burning aerosols with the role of frequently observed Saharan dust outbreaks. This paper provides a detailed analysis of the potential North American aerosol sources, their transport to Europe and the mixing of different aerosol sources, using simulations of a particle dispersion model and lidar measurements of the aerosol optical properties.
M. Mallet, F. Dulac, P. Formenti, P. Nabat, J. Sciare, G. Roberts, J. Pelon, G. Ancellet, D. Tanré, F. Parol, C. Denjean, G. Brogniez, A. di Sarra, L. Alados-Arboledas, J. Arndt, F. Auriol, L. Blarel, T. Bourrianne, P. Chazette, S. Chevaillier, M. Claeys, B. D'Anna, Y. Derimian, K. Desboeufs, T. Di Iorio, J.-F. Doussin, P. Durand, A. Féron, E. Freney, C. Gaimoz, P. Goloub, J. L. Gómez-Amo, M. J. Granados-Muñoz, N. Grand, E. Hamonou, I. Jankowiak, M. Jeannot, J.-F. Léon, M. Maillé, S. Mailler, D. Meloni, L. Menut, G. Momboisse, J. Nicolas, T. Podvin, V. Pont, G. Rea, J.-B. Renard, L. Roblou, K. Schepanski, A. Schwarzenboeck, K. Sellegri, M. Sicard, F. Solmon, S. Somot, B Torres, J. Totems, S. Triquet, N. Verdier, C. Verwaerde, F. Waquet, J. Wenger, and P. Zapf
Atmos. Chem. Phys., 16, 455–504, https://doi.org/10.5194/acp-16-455-2016, https://doi.org/10.5194/acp-16-455-2016, 2016
Short summary
Short summary
The aim of this article is to present an experimental campaign over the Mediterranean focused on aerosol-radiation measurements and modeling. Results indicate an important atmospheric loading associated with a moderate absorbing ability of mineral dust. Observations suggest a complex vertical structure and size distributions characterized by large aerosols within dust plumes. The radiative effect is highly variable, with negative forcing over the Mediterranean and positive over northern Africa.
A. M. Toihir, H. Bencherif, V. Sivakumar, L. El Amraoui, T. Portafaix, and N. Mbatha
Ann. Geophys., 33, 1135–1146, https://doi.org/10.5194/angeo-33-1135-2015, https://doi.org/10.5194/angeo-33-1135-2015, 2015
J.-F. Léon, P. Augustin, M. Mallet, T. Bourrianne, V. Pont, F. Dulac, M. Fourmentin, D. Lambert, and B. Sauvage
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-9507-2015, https://doi.org/10.5194/acpd-15-9507-2015, 2015
Preprint withdrawn
Short summary
Short summary
This paper presents the aerosol vertical distribution observed by lidar soundings in Corsica (western Mediterranean) between February 2012 and August 2013. A seasonal cycle is observed in the extinction coefficient profiles and aerosol optical thickness with minima in winter and maxima in spring-summer. Less than 10% of the daily observations show high AOD corresponding to the large-scale advection of desert dust from Northern Africa or pollution aerosols from Europe.
B. Sič, L. El Amraoui, V. Marécal, B. Josse, J. Arteta, J. Guth, M. Joly, and P. D. Hamer
Geosci. Model Dev., 8, 381–408, https://doi.org/10.5194/gmd-8-381-2015, https://doi.org/10.5194/gmd-8-381-2015, 2015
J.-B. Renard, F. Dulac, G. Berthet, T. Lurton, D. Vignelles, F. Jégou, T. Tonnelier, C. Thaury, M. Jeannot, B. Couté, R. Akiki, J.-L. Mineau, N. Verdier, M. Mallet, F. Gensdarmes, P. Charpentier, S. Mesmin, V. Duverger, J.-C. Dupont, T. Elias, V. Crenn, J. Sciare, J. Giacomoni, M. Gobbi, E. Hamonou, H. Olafsson, P. Dagsson-Waldhauserova, C. Camy-Peyret, C. Mazel, T. Décamps, M. Piringer, J. Surcin, and D. Daugeron
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-8-1203-2015, https://doi.org/10.5194/amtd-8-1203-2015, 2015
Revised manuscript not accepted
J.-B. Renard, F. Dulac, G. Berthet, T. Lurton, D. Vignelle, F. Jégou, T. Tonnelier, C. Thaury, M. Jeannot, B. Couté, R. Akiki, J.-L. Mineau, N. Verdier, M. Mallet, F. Gensdarmes, P. Charpentier, S. Mesmin, V. Duverger, J.-C. Dupont, T. Elias, V. Crenn, J. Sciare, J. Giacomoni, M. Gobbi, E. Hamonou, H. Olafsson, P. Dagsson-Waldhauserova, C. Camy-Peyret, C. Mazel, T. Décamps, M. Piringer, J. Surcin, and D. Daugeron
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-8-1261-2015, https://doi.org/10.5194/amtd-8-1261-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
We present exemples of measurements obtained by the new light optical aerosol counter LOAC. The measurement were conducted from different kinds of balloons in the troposphre and stratosphere.
A. T. J. de Laat, I. Aben, M. Deeter, P. Nédélec, H. Eskes, J.-L. Attié, P. Ricaud, R. Abida, L. El Amraoui, and J. Landgraf
Atmos. Meas. Tech., 7, 3783–3799, https://doi.org/10.5194/amt-7-3783-2014, https://doi.org/10.5194/amt-7-3783-2014, 2014
Y. Wang, K. N. Sartelet, M. Bocquet, P. Chazette, M. Sicard, G. D'Amico, J. F. Léon, L. Alados-Arboledas, A. Amodeo, P. Augustin, J. Bach, L. Belegante, I. Binietoglou, X. Bush, A. Comerón, H. Delbarre, D. García-Vízcaino, J. L. Guerrero-Rascado, M. Hervo, M. Iarlori, P. Kokkalis, D. Lange, F. Molero, N. Montoux, A. Muñoz, C. Muñoz, D. Nicolae, A. Papayannis, G. Pappalardo, J. Preissler, V. Rizi, F. Rocadenbosch, K. Sellegri, F. Wagner, and F. Dulac
Atmos. Chem. Phys., 14, 12031–12053, https://doi.org/10.5194/acp-14-12031-2014, https://doi.org/10.5194/acp-14-12031-2014, 2014
P. Ricaud, B. Sič, L. El Amraoui, J.-L. Attié, R. Zbinden, P. Huszar, S. Szopa, J. Parmentier, N. Jaidan, M. Michou, R. Abida, F. Carminati, D. Hauglustaine, T. August, J. Warner, R. Imasu, N. Saitoh, and V.-H. Peuch
Atmos. Chem. Phys., 14, 11427–11446, https://doi.org/10.5194/acp-14-11427-2014, https://doi.org/10.5194/acp-14-11427-2014, 2014
C. Guieu, C. Ridame, E. Pulido-Villena, M. Bressac, K. Desboeufs, and F. Dulac
Biogeosciences, 11, 5621–5635, https://doi.org/10.5194/bg-11-5621-2014, https://doi.org/10.5194/bg-11-5621-2014, 2014
L. El Amraoui, J.-L. Attié, P. Ricaud, W. A. Lahoz, A. Piacentini, V.-H. Peuch, J. X. Warner, R. Abida, J. Barré, and R. Zbinden
Atmos. Meas. Tech., 7, 3035–3057, https://doi.org/10.5194/amt-7-3035-2014, https://doi.org/10.5194/amt-7-3035-2014, 2014
C. Aghnatios, R. Losno, and F. Dulac
Biogeosciences, 11, 4627–4633, https://doi.org/10.5194/bg-11-4627-2014, https://doi.org/10.5194/bg-11-4627-2014, 2014
E. Hache, J.-L. Attié, C. Tourneur, P. Ricaud, L. Coret, W. A. Lahoz, L. El Amraoui, B. Josse, P. Hamer, J. Warner, X. Liu, K. Chance, M. Höpfner, R. Spurr, V. Natraj, S. Kulawik, A. Eldering, and J. Orphal
Atmos. Meas. Tech., 7, 2185–2201, https://doi.org/10.5194/amt-7-2185-2014, https://doi.org/10.5194/amt-7-2185-2014, 2014
F. Carminati, P. Ricaud, J.-P. Pommereau, E. Rivière, S. Khaykin, J.-L. Attié, and J. Warner
Atmos. Chem. Phys., 14, 6195–6211, https://doi.org/10.5194/acp-14-6195-2014, https://doi.org/10.5194/acp-14-6195-2014, 2014
C. Guieu, F. Dulac, C. Ridame, and P. Pondaven
Biogeosciences, 11, 425–442, https://doi.org/10.5194/bg-11-425-2014, https://doi.org/10.5194/bg-11-425-2014, 2014
E. Emili, B. Barret, S. Massart, E. Le Flochmoen, A. Piacentini, L. El Amraoui, O. Pannekoucke, and D. Cariolle
Atmos. Chem. Phys., 14, 177–198, https://doi.org/10.5194/acp-14-177-2014, https://doi.org/10.5194/acp-14-177-2014, 2014
J. X. Warner, R. Yang, Z. Wei, F. Carminati, A. Tangborn, Z. Sun, W. Lahoz, J.-L. Attié, L. El Amraoui, and B. Duncan
Atmos. Chem. Phys., 14, 103–114, https://doi.org/10.5194/acp-14-103-2014, https://doi.org/10.5194/acp-14-103-2014, 2014
R. M. Zbinden, V. Thouret, P. Ricaud, F. Carminati, J.-P. Cammas, and P. Nédélec
Atmos. Chem. Phys., 13, 12363–12388, https://doi.org/10.5194/acp-13-12363-2013, https://doi.org/10.5194/acp-13-12363-2013, 2013
J.-L. Baray, Y. Courcoux, P. Keckhut, T. Portafaix, P. Tulet, J.-P. Cammas, A. Hauchecorne, S. Godin Beekmann, M. De Mazière, C. Hermans, F. Desmet, K. Sellegri, A. Colomb, M. Ramonet, J. Sciare, C. Vuillemin, C. Hoareau, D. Dionisi, V. Duflot, H. Vérèmes, J. Porteneuve, F. Gabarrot, T. Gaudo, J.-M. Metzger, G. Payen, J. Leclair de Bellevue, C. Barthe, F. Posny, P. Ricaud, A. Abchiche, and R. Delmas
Atmos. Meas. Tech., 6, 2865–2877, https://doi.org/10.5194/amt-6-2865-2013, https://doi.org/10.5194/amt-6-2865-2013, 2013
P. Huszar, H. Teyssèdre, M. Michou, A. Voldoire, D. J. L. Olivié, D. Saint-Martin, D. Cariolle, S. Senesi, D. Salas Y Melia, A. Alias, F. Karcher, P. Ricaud, and T. Halenka
Atmos. Chem. Phys., 13, 10027–10048, https://doi.org/10.5194/acp-13-10027-2013, https://doi.org/10.5194/acp-13-10027-2013, 2013
M. Mallet, O. Dubovik, P. Nabat, F. Dulac, R. Kahn, J. Sciare, D. Paronis, and J. F. Léon
Atmos. Chem. Phys., 13, 9195–9210, https://doi.org/10.5194/acp-13-9195-2013, https://doi.org/10.5194/acp-13-9195-2013, 2013
P. Nabat, S. Somot, M. Mallet, I. Chiapello, J. J. Morcrette, F. Solmon, S. Szopa, F. Dulac, W. Collins, S. Ghan, L. W. Horowitz, J. F. Lamarque, Y. H. Lee, V. Naik, T. Nagashima, D. Shindell, and R. Skeie
Atmos. Meas. Tech., 6, 1287–1314, https://doi.org/10.5194/amt-6-1287-2013, https://doi.org/10.5194/amt-6-1287-2013, 2013
Related subject area
Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Impact of improved representation of volatile organic compound emissions and production of NOx reservoirs on modeled urban ozone production
The effect of different climate and air quality policies in China on in situ ozone production in Beijing
Enhancing long-term trend simulation of the global tropospheric hydroxyl (TOH) and its drivers from 2005 to 2019: a synergistic integration of model simulations and satellite observations
Intercomparison of GEOS-Chem and CAM-chem tropospheric oxidant chemistry within the Community Earth System Model version 2 (CESM2)
Development of a detailed gaseous oxidation scheme of naphthalene for secondary organic aerosol (SOA) formation and speciation
Large contributions of soil emissions to the atmospheric nitrogen budget and their impacts on air quality and temperature rise in North China
Why did ozone concentrations remain high during Shanghai's static management? A statistical and radical-chemistry perspective
Revising VOC emissions speciation improves the simulation of global background ethane and propane
Changes in South American surface ozone trends: exploring the influences of precursors and extreme events
Evaluating NOx stack plume emissions using a high-resolution atmospheric chemistry model and satellite-derived NO2 columns
NOx emissions in France in 2019–2021 as estimated by the high-spatial-resolution assimilation of TROPOMI NO2 observations
Aggravated surface O3 pollution primarily driven by meteorological variations in China during the 2020 COVID-19 pandemic lockdown period
Identifying decadal trends in deweathered concentrations of criteria air pollutants in Canadian urban atmospheres with machine learning approaches
Evaluation of modelled versus observed non-methane volatile organic compounds at European Monitoring and Evaluation Programme sites in Europe
Constraining non-methane VOC emissions with TROPOMI HCHO observations: impact on summertime ozone simulation in August 2022 in China
Revealing the significant acceleration of hydrofluorocarbon (HFC) emissions in eastern Asia through long-term atmospheric observations
Interpreting Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite observations of the diurnal variation in nitrogen dioxide (NO2) over East Asia
An intercomparison of satellite, airborne, and ground-level observations with WRF–CAMx simulations of NO2 columns over Houston, Texas, during the September 2021 TRACER-AQ campaign
Impact of methane and other precursor emission reductions on surface ozone in Europe: Scenario analysis using the EMEP MSC-W model
Interannual variability of summertime formaldehyde (HCHO) vertical column density and its main drivers at northern high latitudes
The impact of multi-decadal changes in VOC speciation on urban ozone chemistry: a case study in Birmingham, United Kingdom
Technical note: Challenges in detecting free tropospheric ozone trends in a sparsely sampled environment
Combined assimilation of NOAA surface and MIPAS satellite observations to constrain the global budget of carbonyl sulfide
The impact of gaseous degradation on the gas–particle partitioning of methylated polycyclic aromatic hydrocarbons
Technical note: An assessment of the performance of statistical bias correction techniques for global chemistry–climate model surface ozone fields
A better representation of volatile organic compound chemistry in WRF-Chem and its impact on ozone over Los Angeles
High-resolution US methane emissions inferred from an inversion of 2019 TROPOMI satellite data: contributions from individual states, urban areas, and landfills
Summertime tropospheric ozone source apportionment study in the Madrid region (Spain)
CO anthropogenic emissions in Europe from 2011 to 2021: insights from Measurement of Pollution in the Troposphere (MOPITT) satellite data
Constraining long-term NOx emissions over the United States and Europe using nitrate wet deposition monitoring networks
An investigation into atmospheric nitrous acid (HONO) processes in South Korea
Analysis of an intense O3 pollution episode on the Atlantic coast of the Iberian Peninsula using photochemical modeling: characterization of transport pathways and accumulation processes
Atmospheric oxygen as a tracer for fossil fuel carbon dioxide: a sensitivity study in the UK
MIXv2: a long-term mosaic emission inventory for Asia (2010–2017)
Ether and ester formation from peroxy radical recombination: A qualitative reaction channel analysis
Organosulfate produced from consumption of SO3 speeds up sulfuric acid–dimethylamine atmospheric nucleation
Contribution of expanded marine sulfur chemistry to the seasonal variability of dimethyl sulfide oxidation products and size-resolved sulfate aerosol
Verifying national inventory-based combustion emissions of CO2 across the UK and mainland Europe using satellite observations of atmospheric CO and CO2
Spatial disparities of ozone pollution in the Sichuan Basin spurred by extreme, hot weather
Global impacts of aviation on air quality evaluated at high resolution
Bias correction of OMI HCHO columns based on FTIR and aircraft measurements and impact on top-down emission estimates
Investigation of the renewed methane growth post-2007 with high-resolution 3-D variational inverse modeling and isotopic constraints
Revisiting day-of-week ozone patterns in an era of evolving US air quality
The contribution of transport emissions to ozone mixing ratios and methane lifetime in 2015 and 2050 in the Shared Socioeconomic Pathways (SSPs)
Air quality and radiative impacts of downward-propagating sudden stratospheric warmings (SSWs)
Estimation of the atmospheric hydroxyl radical oxidative capacity using multiple hydrofluorocarbons (HFCs)
Investigating the differences in calculating global mean surface CO2 abundance: the impact of analysis methodologies and site selection
Meteorological characteristics of extreme ozone pollution events in China and their future predictions
Evaluating modelled tropospheric columns of CH4, CO, and O3 in the Arctic using ground-based Fourier transform infrared (FTIR) measurements
The high-resolution Global Aviation emissions Inventory based on ADS-B (GAIA) for 2019–2021
Katherine R. Travis, Benjamin A. Nault, James H. Crawford, Kelvin H. Bates, Donald R. Blake, Ronald C. Cohen, Alan Fried, Samuel R. Hall, L. Gregory Huey, Young Ro Lee, Simone Meinardi, Kyung-Eun Min, Isobel J. Simpson, and Kirk Ullman
Atmos. Chem. Phys., 24, 9555–9572, https://doi.org/10.5194/acp-24-9555-2024, https://doi.org/10.5194/acp-24-9555-2024, 2024
Short summary
Short summary
Human activities result in the emission of volatile organic compounds (VOCs) that contribute to air pollution. Detailed VOC measurements were taken during a field study in South Korea. When compared to VOC inventories, large discrepancies showed underestimates from chemical products, liquefied petroleum gas, and long-range transport. Improved emissions and chemistry of these VOCs better described urban pollution. The new chemical scheme is relevant to urban areas and other VOC sources.
Beth S. Nelson, Zhenze Liu, Freya A. Squires, Marvin Shaw, James R. Hopkins, Jacqueline F. Hamilton, Andrew R. Rickard, Alastair C. Lewis, Zongbo Shi, and James D. Lee
Atmos. Chem. Phys., 24, 9031–9044, https://doi.org/10.5194/acp-24-9031-2024, https://doi.org/10.5194/acp-24-9031-2024, 2024
Short summary
Short summary
The impact of combined air quality and carbon neutrality policies on O3 formation in Beijing was investigated. Emissions inventory data were used to estimate future pollutant mixing ratios relative to ground-level observations. O3 production was found to be most sensitive to changes in alkenes, but large reductions in less reactive compounds led to larger reductions in future O3 production. This study highlights the importance of understanding the emissions of organic pollutants.
Amir H. Souri, Bryan N. Duncan, Sarah A. Strode, Daniel C. Anderson, Michael E. Manyin, Junhua Liu, Luke D. Oman, Zhen Zhang, and Brad Weir
Atmos. Chem. Phys., 24, 8677–8701, https://doi.org/10.5194/acp-24-8677-2024, https://doi.org/10.5194/acp-24-8677-2024, 2024
Short summary
Short summary
We explore a new method of using the wealth of information obtained from satellite observations of Aura OMI NO2, HCHO, and MERRA-2 reanalysis in NASA’s GEOS model equipped with an efficient tropospheric OH (TOH) estimator to enhance the representation of TOH spatial distribution and its long-term trends. This new framework helps us pinpoint regional inaccuracies in TOH and differentiate between established prior knowledge and newly acquired information from satellites on TOH trends.
Haipeng Lin, Louisa K. Emmons, Elizabeth W. Lundgren, Laura Hyesung Yang, Xu Feng, Ruijun Dang, Shixian Zhai, Yunxiao Tang, Makoto M. Kelp, Nadia K. Colombi, Sebastian D. Eastham, Thibaud M. Fritz, and Daniel J. Jacob
Atmos. Chem. Phys., 24, 8607–8624, https://doi.org/10.5194/acp-24-8607-2024, https://doi.org/10.5194/acp-24-8607-2024, 2024
Short summary
Short summary
Tropospheric ozone is a major air pollutant, a greenhouse gas, and a major indicator of model skill. Global atmospheric chemistry models show large differences in simulations of tropospheric ozone, but isolating sources of differences is complicated by different model environments. By implementing the GEOS-Chem model side by side to CAM-chem within a common Earth system model, we identify and evaluate specific differences between the two models and their impacts on key chemical species.
Victor Lannuque and Karine Sartelet
Atmos. Chem. Phys., 24, 8589–8606, https://doi.org/10.5194/acp-24-8589-2024, https://doi.org/10.5194/acp-24-8589-2024, 2024
Short summary
Short summary
Large uncertainties remain in understanding secondary organic aerosol (SOA) formation and speciation from naphthalene oxidation. This study details the development of the first near-explicit chemical scheme for naphthalene oxidation by OH, which includes kinetic and mechanistic data, and is able to reproduce most of the experimentally identified products in both gas and particle phases.
Tong Sha, Siyu Yang, Qingcai Chen, Liangqing Li, Xiaoyan Ma, Yan-Lin Zhang, Zhaozhong Feng, K. Folkert Boersma, and Jun Wang
Atmos. Chem. Phys., 24, 8441–8455, https://doi.org/10.5194/acp-24-8441-2024, https://doi.org/10.5194/acp-24-8441-2024, 2024
Short summary
Short summary
Using an updated soil reactive nitrogen emission scheme in the Unified Inputs for Weather Research and Forecasting coupled with Chemistry (UI-WRF-Chem) model, we investigate the role of soil NO and HONO (Nr) emissions in air quality and temperature in North China. Contributions of soil Nr emissions to O3 and secondary pollutants are revealed, exceeding effects of soil NOx or HONO emission. Soil Nr emissions play an important role in mitigating O3 pollution and addressing climate change.
Jian Zhu, Shanshan Wang, Chuanqi Gu, Zhiwen Jiang, Sanbao Zhang, Ruibin Xue, Yuhao Yan, and Bin Zhou
Atmos. Chem. Phys., 24, 8383–8395, https://doi.org/10.5194/acp-24-8383-2024, https://doi.org/10.5194/acp-24-8383-2024, 2024
Short summary
Short summary
In 2022, Shanghai implemented city-wide static management measures during the high-ozone season in April and May, providing a chance to study ozone pollution control. Despite significant emissions reductions, ozone levels increased by 23 %. Statistically, the number of days with higher ozone diurnal variation types increased during the lockdown period. The uneven decline in VOC and NO2 emissions led to heightened photochemical processes, resulting in the observed ozone level rise.
Matthew J. Rowlinson, Mat J. Evans, Lucy J. Carpenter, Katie A. Read, Shalini Punjabi, Adedayo Adedeji, Luke Fakes, Ally Lewis, Ben Richmond, Neil Passant, Tim Murrells, Barron Henderson, Kelvin H. Bates, and Detlev Helmig
Atmos. Chem. Phys., 24, 8317–8342, https://doi.org/10.5194/acp-24-8317-2024, https://doi.org/10.5194/acp-24-8317-2024, 2024
Short summary
Short summary
Ethane and propane are volatile organic compounds emitted from human activities which help to form ozone, a pollutant and greenhouse gas, and also affect the chemistry of the lower atmosphere. Atmospheric models tend to do a poor job of reproducing the abundance of these compounds in the atmosphere. By using regional estimates of their emissions, rather than globally consistent estimates, we can significantly improve the simulation of ethane in the model and make some improvement for propane.
Rodrigo J. Seguel, Lucas Castillo, Charlie Opazo, Néstor Y. Rojas, Thiago Nogueira, María Cazorla, Mario Gavidia-Calderón, Laura Gallardo, René Garreaud, Tomás Carrasco-Escaff, and Yasin Elshorbany
Atmos. Chem. Phys., 24, 8225–8242, https://doi.org/10.5194/acp-24-8225-2024, https://doi.org/10.5194/acp-24-8225-2024, 2024
Short summary
Short summary
Trends of surface ozone were examined across South America. Our findings indicate that ozone trends in major South American cities either increase or remain steady, with no signs of decline. The upward trends can be attributed to chemical regimes that efficiently convert nitric oxide into nitrogen dioxide. Additionally, our results suggest a climate penalty for ozone driven by meteorological conditions that favor wildfire propagation in Chile and extensive heat waves in southern Brazil.
Maarten Krol, Bart van Stratum, Isidora Anglou, and Klaas Folkert Boersma
Atmos. Chem. Phys., 24, 8243–8262, https://doi.org/10.5194/acp-24-8243-2024, https://doi.org/10.5194/acp-24-8243-2024, 2024
Short summary
Short summary
This paper presents detailed plume simulations of nitrogen oxides and carbon dioxide that are emitted from four large industrial facilities world-wide. Results from the high-resolution simulations that include atmospheric chemistry are compared to nitrogen dioxide observations from satellites. We find good performance of the model and show that common assumptions that are used in simplified models need revision. This work is important for the monitoring of emissions using satellite data.
Robin Plauchu, Audrey Fortems-Cheiney, Grégoire Broquet, Isabelle Pison, Antoine Berchet, Elise Potier, Gaëlle Dufour, Adriana Coman, Dilek Savas, Guillaume Siour, and Henk Eskes
Atmos. Chem. Phys., 24, 8139–8163, https://doi.org/10.5194/acp-24-8139-2024, https://doi.org/10.5194/acp-24-8139-2024, 2024
Short summary
Short summary
This study uses the Community Inversion Framework and CHIMERE model to assess the potential of TROPOMI-S5P PAL NO2 tropospheric column data to estimate NOx emissions in France (2019–2021). Results show a 3 % decrease in average emissions compared to the 2016 CAMS-REG/INS, lower than the 14 % decrease from CITEPA. The study highlights challenges in capturing emission anomalies due to limited data coverage and error levels but shows promise for local inventory improvements.
Zhendong Lu, Jun Wang, Yi Wang, Daven K. Henze, Xi Chen, Tong Sha, and Kang Sun
Atmos. Chem. Phys., 24, 7793–7813, https://doi.org/10.5194/acp-24-7793-2024, https://doi.org/10.5194/acp-24-7793-2024, 2024
Short summary
Short summary
In contrast with past work showing that the reduction of emissions was the dominant factor for the nationwide increase of surface O3 during the lockdown in China, this study finds that the variation in meteorology (temperature and other parameters) plays a more important role. This result is obtained through sensitivity simulations using a chemical transport model constrained by satellite (TROPOMI) data and calibrated with surface observations.
Xiaohong Yao and Leiming Zhang
Atmos. Chem. Phys., 24, 7773–7791, https://doi.org/10.5194/acp-24-7773-2024, https://doi.org/10.5194/acp-24-7773-2024, 2024
Short summary
Short summary
This study investigates long-term trends of criteria air pollutants, including NO2, CO, SO2, O3 and PM2.5, and NO2+O3 measured in 10 Canadian cities during the last 2 to 3 decades. We also investigate associated driving forces in terms of emission reductions, perturbations from varying weather conditions and large-scale wildfires, as well as changes in O3 sources and sinks.
Yao Ge, Sverre Solberg, Mathew R. Heal, Stefan Reimann, Willem van Caspel, Bryan Hellack, Thérèse Salameh, and David Simpson
Atmos. Chem. Phys., 24, 7699–7729, https://doi.org/10.5194/acp-24-7699-2024, https://doi.org/10.5194/acp-24-7699-2024, 2024
Short summary
Short summary
Atmospheric volatile organic compounds (VOCs) constitute many species, acting as precursors to ozone and aerosol. Given the uncertainties in VOC emissions, lack of evaluation studies, and recent changes in emissions, this work adapts the EMEP MSC-W to evaluate emission inventories in Europe. We focus on the varying agreement between modelled and measured VOCs across different species and underscore potential inaccuracies in total and sector-specific emission estimates.
Shuzhuang Feng, Fei Jiang, Tianlu Qian, Nan Wang, Mengwei Jia, Songci Zheng, Jiansong Chen, Fang Ying, and Weimin Ju
Atmos. Chem. Phys., 24, 7481–7498, https://doi.org/10.5194/acp-24-7481-2024, https://doi.org/10.5194/acp-24-7481-2024, 2024
Short summary
Short summary
We developed a multi-air-pollutant inversion system to estimate non-methane volatile organic compound (NMVOC) emissions using TROPOMI formaldehyde retrievals. We found that the inversion significantly improved formaldehyde simulations and reduced NMVOC emission uncertainties. The optimized NMVOC emissions effectively corrected the overestimation of O3 levels, mainly by decreasing the rate of the RO2 + NO reaction and increasing the rate of the NO2 + OH reaction.
Haklim Choi, Alison L. Redington, Hyeri Park, Jooil Kim, Rona L. Thompson, Jens Mühle, Peter K. Salameh, Christina M. Harth, Ray F. Weiss, Alistair J. Manning, and Sunyoung Park
Atmos. Chem. Phys., 24, 7309–7330, https://doi.org/10.5194/acp-24-7309-2024, https://doi.org/10.5194/acp-24-7309-2024, 2024
Short summary
Short summary
We analyzed with an inversion model the atmospheric abundance of hydrofluorocarbons (HFCs), potent greenhouse gases, from 2008 to 2020 at Gosan station in South Korea and revealed a significant increase in emissions, especially from eastern China and Japan. This increase contradicts reported data, underscoring the need for accurate monitoring and reporting. Our findings are crucial for understanding and managing global HFCs emissions, highlighting the importance of efforts to reduce HFCs.
Laura Hyesung Yang, Daniel J. Jacob, Ruijun Dang, Yujin J. Oak, Haipeng Lin, Jhoon Kim, Shixian Zhai, Nadia K. Colombi, Drew C. Pendergrass, Ellie Beaudry, Viral Shah, Xu Feng, Robert M. Yantosca, Heesung Chong, Junsung Park, Hanlim Lee, Won-Jin Lee, Soontae Kim, Eunhye Kim, Katherine R. Travis, James H. Crawford, and Hong Liao
Atmos. Chem. Phys., 24, 7027–7039, https://doi.org/10.5194/acp-24-7027-2024, https://doi.org/10.5194/acp-24-7027-2024, 2024
Short summary
Short summary
The Geostationary Environment Monitoring Spectrometer (GEMS) provides hourly measurements of NO2. We use the chemical transport model to find how emissions, chemistry, and transport drive the changes in NO2 observed by GEMS at different times of the day. In winter, the chemistry plays a minor role, and high daytime emissions dominate the diurnal variation in NO2, balanced by transport. In summer, emissions, chemistry, and transport play an important role in shaping the diurnal variation in NO2.
M. Omar Nawaz, Jeremiah Johnson, Greg Yarwood, Benjamin de Foy, Laura Judd, and Daniel L. Goldberg
Atmos. Chem. Phys., 24, 6719–6741, https://doi.org/10.5194/acp-24-6719-2024, https://doi.org/10.5194/acp-24-6719-2024, 2024
Short summary
Short summary
NO2 is a gas with implications for air pollution. A campaign conducted in Houston provided an opportunity to compare NO2 from different instruments and a model. Aircraft and satellite observations agreed well with measurements on the ground; however, the latter estimated lower values. We find that model-simulated NO2 was lower than observations, especially downtown, suggesting that NO2 sources associated with the urban core of Houston, such as vehicle emissions, may be underestimated.
Willem Elias van Caspel, Zbigniew Klimont, Chris Heyes, and Hilde Fagerli
EGUsphere, https://doi.org/10.5194/egusphere-2024-1422, https://doi.org/10.5194/egusphere-2024-1422, 2024
Short summary
Short summary
Methane in the atmosphere contributes to the production of ozone gas, which is an air pollutant as well as a greenhouse gas. In this study, the impact of reducing methane emissions on surface ozone is investigated for the United Nations Economic Commission for Europe (UNECE) region excluding North America and Israel (the "EMEP region"), in particular in terms of its importance in reaching the ozone exposure guideline limits set by the World Health Organization.
Tianlang Zhao, Jingqiu Mao, Zolal Ayazpour, Gonzalo González Abad, Caroline R. Nowlan, and Yiqi Zheng
Atmos. Chem. Phys., 24, 6105–6121, https://doi.org/10.5194/acp-24-6105-2024, https://doi.org/10.5194/acp-24-6105-2024, 2024
Short summary
Short summary
HCHO variability is a key tracer in understanding VOC emissions in response to climate change. We investigate the role of methane oxidation and biogenic and wildfire emissions in HCHO interannual variability over northern high latitudes in summer, emphasizing wildfires as a key driver of HCHO interannual variability in Alaska, Siberia and northern Canada using satellite HCHO and SIF retrievals and then GEOS-Chem model. We show SIF is a tool to understand biogenic HCHO variability in this region.
Jianghao Li, Alastair C. Lewis, Jim R. Hopkins, Stephen J. Andrews, Tim Murrells, Neil Passant, Ben Richmond, Siqi Hou, William J. Bloss, Roy M. Harrison, and Zongbo Shi
Atmos. Chem. Phys., 24, 6219–6231, https://doi.org/10.5194/acp-24-6219-2024, https://doi.org/10.5194/acp-24-6219-2024, 2024
Short summary
Short summary
A summertime ozone event at an urban site in Birmingham is sensitive to volatile organic compounds (VOCs) – particularly those of oxygenated VOCs. The roles of anthropogenic VOC sources in urban ozone chemistry are examined by integrating the 1990–2019 national atmospheric emission inventory into model scenarios. Road transport remains the most powerful means of further reducing ozone in this case study, but the benefits may be offset if solvent emissions of VOCs continue to increase.
Kai-Lan Chang, Owen R. Cooper, Audrey Gaudel, Irina Petropavlovskikh, Peter Effertz, Gary Morris, and Brian C. McDonald
Atmos. Chem. Phys., 24, 6197–6218, https://doi.org/10.5194/acp-24-6197-2024, https://doi.org/10.5194/acp-24-6197-2024, 2024
Short summary
Short summary
A great majority of observational trend studies of free tropospheric ozone use sparsely sampled ozonesonde and aircraft measurements as reference data sets. A ubiquitous assumption is that trends are accurate and reliable so long as long-term records are available. We show that sampling bias due to sparse samples can persistently reduce the trend accuracy, and we highlight the importance of maintaining adequate frequency and continuity of observations.
Jin Ma, Linda M. J. Kooijmans, Norbert Glatthor, Stephen A. Montzka, Marc von Hobe, Thomas Röckmann, and Maarten C. Krol
Atmos. Chem. Phys., 24, 6047–6070, https://doi.org/10.5194/acp-24-6047-2024, https://doi.org/10.5194/acp-24-6047-2024, 2024
Short summary
Short summary
The global budget of atmospheric COS can be optimised by inverse modelling using TM5-4DVAR, with the co-constraints of NOAA surface observations and MIPAS satellite data. We found reduced COS biosphere uptake from inversions and improved land and ocean separation using MIPAS satellite data assimilation. Further improvements are expected from better quantification of COS ocean and biosphere fluxes.
Fu-Jie Zhu, Zi-Feng Zhang, Li-Yan Liu, Pu-Fei Yang, Peng-Tuan Hu, Geng-Bo Ren, Meng Qin, and Wan-Li Ma
Atmos. Chem. Phys., 24, 6095–6103, https://doi.org/10.5194/acp-24-6095-2024, https://doi.org/10.5194/acp-24-6095-2024, 2024
Short summary
Short summary
Gas–particle (G–P) partitioning is an important atmospheric behavior for semi-volatile organic compounds (SVOCs). Diurnal variation in G–P partitioning of methylated polycyclic aromatic hydrocarbons (Me-PAHs) demonstrates the possible influence of gaseous degradation; the enhancement of gaseous degradation (1.10–5.58 times) on G–P partitioning is verified by a steady-state G–P partitioning model. The effect of gaseous degradation on G–P partitioning of (especially light) SVOCs is important.
Christoph Staehle, Harald E. Rieder, Arlene M. Fiore, and Jordan L. Schnell
Atmos. Chem. Phys., 24, 5953–5969, https://doi.org/10.5194/acp-24-5953-2024, https://doi.org/10.5194/acp-24-5953-2024, 2024
Short summary
Short summary
Chemistry–climate models show biases compared to surface ozone observations and thus require bias correction for impact studies and the assessment of air quality changes. We compare the performance of commonly used correction techniques for model outputs available via CMIP6. While all methods can reduce model biases, better results are obtained from more complex approaches. Thus, our study suggests broader use of these techniques in studies seeking to inform air quality management and policy.
Qindan Zhu, Rebecca H. Schwantes, Matthew Coggon, Colin Harkins, Jordan Schnell, Jian He, Havala O. T. Pye, Meng Li, Barry Baker, Zachary Moon, Ravan Ahmadov, Eva Y. Pfannerstill, Bryan Place, Paul Wooldridge, Benjamin C. Schulze, Caleb Arata, Anthony Bucholtz, John H. Seinfeld, Carsten Warneke, Chelsea E. Stockwell, Lu Xu, Kristen Zuraski, Michael A. Robinson, J. Andrew Neuman, Patrick R. Veres, Jeff Peischl, Steven S. Brown, Allen H. Goldstein, Ronald C. Cohen, and Brian C. McDonald
Atmos. Chem. Phys., 24, 5265–5286, https://doi.org/10.5194/acp-24-5265-2024, https://doi.org/10.5194/acp-24-5265-2024, 2024
Short summary
Short summary
Volatile organic compounds (VOCs) fuel the production of air pollutants like ozone and particulate matter. The representation of VOC chemistry remains challenging due to its complexity in speciation and reactions. Here, we develop a chemical mechanism, RACM2B-VCP, that better represents VOC chemistry in urban areas such as Los Angeles. We also discuss the contribution of VOCs emitted from volatile chemical products and other anthropogenic sources to total VOC reactivity and O3.
Hannah Nesser, Daniel J. Jacob, Joannes D. Maasakkers, Alba Lorente, Zichong Chen, Xiao Lu, Lu Shen, Zhen Qu, Melissa P. Sulprizio, Margaux Winter, Shuang Ma, A. Anthony Bloom, John R. Worden, Robert N. Stavins, and Cynthia A. Randles
Atmos. Chem. Phys., 24, 5069–5091, https://doi.org/10.5194/acp-24-5069-2024, https://doi.org/10.5194/acp-24-5069-2024, 2024
Short summary
Short summary
We quantify 2019 methane emissions in the contiguous US (CONUS) at a ≈ 25 km × 25 km resolution using satellite methane observations. We find a 13 % upward correction to the 2023 US Environmental Protection Agency (EPA) Greenhouse Gas Emissions Inventory (GHGI) for 2019, with large corrections to individual states, urban areas, and landfills. This may present a challenge for US climate policies and goals, many of which target significant reductions in methane emissions.
David de la Paz, Rafael Borge, Juan Manuel de Andrés, Luis Tovar, Golam Sarwar, and Sergey L. Napelenok
Atmos. Chem. Phys., 24, 4949–4972, https://doi.org/10.5194/acp-24-4949-2024, https://doi.org/10.5194/acp-24-4949-2024, 2024
Short summary
Short summary
This source apportionment modeling study shows that around 70 % of ground-level O3 in Madrid (Spain) is transported from other regions. Nonetheless, emissions from local sources, mainly road traffic, play a significant role, especially under atmospheric stagnation. Local measures during those conditions may be able to reduce O3 peaks by up to 30 % and, thus, lessen impacts from high-O3 episodes in the Madrid metropolitan area.
Audrey Fortems-Cheiney, Gregoire Broquet, Elise Potier, Robin Plauchu, Antoine Berchet, Isabelle Pison, Hugo Denier van der Gon, and Stijn Dellaert
Atmos. Chem. Phys., 24, 4635–4649, https://doi.org/10.5194/acp-24-4635-2024, https://doi.org/10.5194/acp-24-4635-2024, 2024
Short summary
Short summary
We have estimated the carbon monixide (CO) European emissions from satellite observations of the MOPITT instrument at the relatively high resolution of 0.5° for a period of over 10 years from 2011 to 2021. The analysis of the inversion results reveals the challenges associated with the inversion of CO emissions at the regional scale over Europe.
Amy Christiansen, Loretta J. Mickley, and Lu Hu
Atmos. Chem. Phys., 24, 4569–4589, https://doi.org/10.5194/acp-24-4569-2024, https://doi.org/10.5194/acp-24-4569-2024, 2024
Short summary
Short summary
In this work, we provide an additional constraint on emissions and trends of nitrogen oxides using nitrate wet deposition (NWD) fluxes over the United States and Europe from 1980–2020. We find that NWD measurements constrain total NOx emissions well. We also find evidence of NOx emission overestimates in both domains, but especially over Europe, where NOx emissions are overestimated by a factor of 2. Reducing NOx emissions over Europe improves model representation of ozone at the surface.
Kiyeon Kim, Kyung Man Han, Chul Han Song, Hyojun Lee, Ross Beardsley, Jinhyeok Yu, Greg Yarwood, Bonyoung Koo, Jasper Madalipay, Jung-Hun Woo, and Seogju Cho
EGUsphere, https://doi.org/10.5194/egusphere-2024-886, https://doi.org/10.5194/egusphere-2024-886, 2024
Short summary
Short summary
We incoporated each HONO process into the current CMAQ modeling framework to enhance the accuracy of HONO mixing ratios predictions. These results expand our understanding of HONO photochemistry and identify crucial sources of HONO that impact the total HONO budget in Seoul, South Korea. Through this investigation, we contribute to resolving discrepancies in understading chemical transport models, with implications for better air quality mangement and environmental protection in the region.
Eduardo Torre-Pascual, Gotzon Gangoiti, Ana Rodríguez-García, Estibaliz Sáez de Cámara, Joana Ferreira, Carla Gama, María Carmen Gómez, Iñaki Zuazo, Jose Antonio García, and Maite de Blas
Atmos. Chem. Phys., 24, 4305–4329, https://doi.org/10.5194/acp-24-4305-2024, https://doi.org/10.5194/acp-24-4305-2024, 2024
Short summary
Short summary
We present an analysis of an intense air pollution episode of tropospheric ozone (O3) along the Atlantic coast of the Iberian Peninsula, incorporating both measured and simulated parameters. Our study extends beyond surface-level factors to include altitude-related parameters. These episodes stem from upper-atmosphere O3 accumulation in preceding days, transported to surface layers, causing rapid O3 concentration increase.
Hannah Chawner, Eric Saboya, Karina E. Adcock, Tim Arnold, Yuri Artioli, Caroline Dylag, Grant L. Forster, Anita Ganesan, Heather Graven, Gennadi Lessin, Peter Levy, Ingrid T. Luijkx, Alistair Manning, Penelope A. Pickers, Chris Rennick, Christian Rödenbeck, and Matthew Rigby
Atmos. Chem. Phys., 24, 4231–4252, https://doi.org/10.5194/acp-24-4231-2024, https://doi.org/10.5194/acp-24-4231-2024, 2024
Short summary
Short summary
The quantity of atmospheric potential oxygen (APO), derived from coincident measurements of carbon dioxide (CO2) and oxygen (O2), has been proposed as a tracer for fossil fuel CO2 emissions. In this model sensitivity study, we examine the use of APO for this purpose in the UK and compare our model to observations. We find that our model simulations are most sensitive to uncertainties relating to ocean fluxes and boundary conditions.
Meng Li, Junichi Kurokawa, Qiang Zhang, Jung-Hun Woo, Tazuko Morikawa, Satoru Chatani, Zifeng Lu, Yu Song, Guannan Geng, Hanwen Hu, Jinseok Kim, Owen R. Cooper, and Brian C. McDonald
Atmos. Chem. Phys., 24, 3925–3952, https://doi.org/10.5194/acp-24-3925-2024, https://doi.org/10.5194/acp-24-3925-2024, 2024
Short summary
Short summary
In this work, we developed MIXv2, a mosaic Asian emission inventory for 2010–2017. With high spatial (0.1°) and monthly temporal resolution, MIXv2 integrates anthropogenic and open biomass burning emissions across seven sectors following a mosaic methodology. It provides CO2 emissions data alongside nine key pollutants and three chemical mechanisms. Our publicly accessible gridded monthly emissions data can facilitate long-term atmospheric and climate model analyses.
Lauri Johannes Franzon, Marie Camredon, Richard Valorso, Bernard Aumont, and Theo Christian Kurtén
EGUsphere, https://doi.org/10.5194/egusphere-2024-920, https://doi.org/10.5194/egusphere-2024-920, 2024
Short summary
Short summary
In this article we investigate the formation of large, sticky molecules from various organic compounds entering the atmosphere as primary emissions, and the degree to which these processes may contribute to organic aerosol particle mass. More specifically, we are qualitatively investigating a recently discovered chemical reaction channel for one of the most important short-lived radical compounds, peroxy radicals, and discovering which of these reactions are most atmospherically important.
Xiaomeng Zhang, Yongjian Lian, Shendong Tan, and Shi Yin
Atmos. Chem. Phys., 24, 3593–3612, https://doi.org/10.5194/acp-24-3593-2024, https://doi.org/10.5194/acp-24-3593-2024, 2024
Short summary
Short summary
Atmospheric new particle formation (NPF) has a significant influence on the global climate, local air quality and human health. Using a combination of quantum chemical calculations and kinetics modeling, we find that thhe gas-phase organosulfate produced from consumption of SO3 can significantly enhance SA–DMA nucleation in the polluted boundary layer, resulting in non-negligible contributions to NPF. Our findings provide important insights into organic sulfur in atmospheric aerosol formation.
Linia Tashmim, William C. Porter, Qianjie Chen, Becky Alexander, Charles H. Fite, Christopher D. Holmes, Jeffrey R. Pierce, Betty Croft, and Sakiko Ishino
Atmos. Chem. Phys., 24, 3379–3403, https://doi.org/10.5194/acp-24-3379-2024, https://doi.org/10.5194/acp-24-3379-2024, 2024
Short summary
Short summary
Dimethyl sulfide (DMS) is mostly emitted from ocean surfaces and represents the largest natural source of sulfur for the atmosphere. Once in the atmosphere, DMS forms stable oxidation products such as SO2 and H2SO4, which can subsequently contribute to airborne particle formation and growth. In this study, we update the DMS oxidation mechanism in the chemical transport model GEOS-Chem and describe resulting changes in particle growth as well as the overall global sulfur budget.
Tia Scarpelli, Paul Palmer, Mark Lunt, Ingrid Super, and Arjan Droste
EGUsphere, https://doi.org/10.5194/egusphere-2024-416, https://doi.org/10.5194/egusphere-2024-416, 2024
Short summary
Short summary
Under the Paris Agreement, countries must track their anthropogenic greenhouse gas emissions. This study describes a method to determine self-consistent estimates for combustion emissions and natural fluxes of CO2 from atmospheric data We report consistent estimates inferred using this approach from satellite data and ground-based data over Europe, suggesting that satellite data can be used to determine national anthropogenic CO2 emissions for countries where ground-based CO2 data are absent.
Nan Wang, Yunsong Du, Dongyang Chen, Haiyan Meng, Xi Chen, Li Zhou, Guangming Shi, Yu Zhan, Miao Feng, Wei Li, Mulan Chen, Zhenliang Li, and Fumo Yang
Atmos. Chem. Phys., 24, 3029–3042, https://doi.org/10.5194/acp-24-3029-2024, https://doi.org/10.5194/acp-24-3029-2024, 2024
Short summary
Short summary
In the scorching August 2022 heatwave, China's Sichuan Basin saw a stark contrast in ozone (O3) levels between Chengdu and Chongqing. The regional disparities were studied considering meteorology, precursors, photochemistry, and transportation. The study highlighted the importance of tailored pollution control measures and underlined the necessity for region-specific strategies to combat O3 pollution on a regional scale.
Sebastian D. Eastham, Guillaume P. Chossière, Raymond L. Speth, Daniel J. Jacob, and Steven R. H. Barrett
Atmos. Chem. Phys., 24, 2687–2703, https://doi.org/10.5194/acp-24-2687-2024, https://doi.org/10.5194/acp-24-2687-2024, 2024
Short summary
Short summary
Emissions from aircraft are known to cause air quality impacts worldwide, but the scale and mechanisms of this impact are not well understood. This work uses high-resolution computational modeling of the atmosphere to show that air pollution changes from aviation are mostly the result of emissions during cruise (high-altitude) operations, that these impacts are related to how much non-aviation pollution is present, and that prior regional assessments have underestimated these impacts.
Jean-François Müller, Trissevgeni Stavrakou, Glenn-Michael Oomen, Beata Opacka, Isabelle De Smedt, Alex Guenther, Corinne Vigouroux, Bavo Langerock, Carlos Augusto Bauer Aquino, Michel Grutter, James Hannigan, Frank Hase, Rigel Kivi, Erik Lutsch, Emmanuel Mahieu, Maria Makarova, Jean-Marc Metzger, Isamu Morino, Isao Murata, Tomoo Nagahama, Justus Notholt, Ivan Ortega, Mathias Palm, Amelie Röhling, Wolfgang Stremme, Kimberly Strong, Ralf Sussmann, Yao Té, and Alan Fried
Atmos. Chem. Phys., 24, 2207–2237, https://doi.org/10.5194/acp-24-2207-2024, https://doi.org/10.5194/acp-24-2207-2024, 2024
Short summary
Short summary
Formaldehyde observations from satellites can be used to constrain the emissions of volatile organic compounds, but those observations have biases. Using an atmospheric model, aircraft and ground-based remote sensing data, we quantify these biases, propose a correction to the data, and assess the consequence of this correction for the evaluation of emissions.
Joël Thanwerdas, Marielle Saunois, Antoine Berchet, Isabelle Pison, and Philippe Bousquet
Atmos. Chem. Phys., 24, 2129–2167, https://doi.org/10.5194/acp-24-2129-2024, https://doi.org/10.5194/acp-24-2129-2024, 2024
Short summary
Short summary
We investigate the causes of the renewed growth of atmospheric methane (CH4) after 2007 using inverse modeling. We use the additional information provided by observations of CH4 isotopic compositions to better differentiate between the emission categories. Accounting for the large uncertainties in source signatures, our results suggest that the post-2007 increase in atmospheric CH4 was caused by similar increases in emissions from (1) fossil fuels and (2) agriculture and waste.
Heather Simon, Christian Hogrefe, Andrew Whitehill, Kristen M. Foley, Jennifer Liljegren, Norm Possiel, Benjamin Wells, Barron H. Henderson, Lukas C. Valin, Gail Tonnesen, K. Wyat Appel, and Shannon Koplitz
Atmos. Chem. Phys., 24, 1855–1871, https://doi.org/10.5194/acp-24-1855-2024, https://doi.org/10.5194/acp-24-1855-2024, 2024
Short summary
Short summary
We assess observed and modeled ozone weekend–weekday differences in the USA from 2002–2019. A subset of urban areas that were NOx-saturated at the beginning of the period transitioned to NOx-limited conditions. Multiple rural areas of California were NOx-limited for the entire period but become less influenced by local day-of-week emission patterns in more recent years. The model produces more NOx-saturated conditions than the observations but captures trends in weekend–weekday ozone patterns.
Mariano Mertens, Sabine Brinkop, Phoebe Graf, Volker Grewe, Johannes Hendricks, Patrick Jöckel, Anna Lanteri, Sigrun Matthes, Vanessa S. Rieger, Mattia Righi, and Robin N. Thor
EGUsphere, https://doi.org/10.5194/egusphere-2024-324, https://doi.org/10.5194/egusphere-2024-324, 2024
Short summary
Short summary
We quantified the contributions of land transport, shipping and aviation emissions to tropospheric ozone and the reductions of the methane lifetime using chemistry-climate model simulations. The contributions were analysed for the conditions of 2015 and for three projections for the year 2050. The results highllight the challenges of mitigating ozone formed by emissions of the transport sector, caused by the non-linearitiy of the ozone chemistry and the long life-time.
Ryan S. Williams, Michaela I. Hegglin, Patrick Jöckel, Hella Garny, and Keith P. Shine
Atmos. Chem. Phys., 24, 1389–1413, https://doi.org/10.5194/acp-24-1389-2024, https://doi.org/10.5194/acp-24-1389-2024, 2024
Short summary
Short summary
During winter, a brief but abrupt reversal of the mean stratospheric westerly flow (~30 km high) around the Arctic occurs ~6 times a decade. Using a chemistry–climate model, about half of these events are shown to induce large anomalies in Arctic ozone (>25 %) and water vapour (>±25 %) around ~8–12 km altitude for up to 2–3 months, important for weather forecasting. We also calculate a doubling to trebling of the risk in breaches of mid-latitude surface air quality (ozone) standards (~60 ppbv).
Rona L. Thompson, Stephen A. Montzka, Martin K. Vollmer, Jgor Arduini, Molly Crotwell, Paul B. Krummel, Chris Lunder, Jens Mühle, Simon O'Doherty, Ronald G. Prinn, Stefan Reimann, Isaac Vimont, Hsiang Wang, Ray F. Weiss, and Dickon Young
Atmos. Chem. Phys., 24, 1415–1427, https://doi.org/10.5194/acp-24-1415-2024, https://doi.org/10.5194/acp-24-1415-2024, 2024
Short summary
Short summary
The hydroxyl radical determines the atmospheric lifetimes of numerous species including methane. Since OH is very short-lived, it is not possible to directly measure its concentration on scales relevant for understanding its effect on other species. Here, OH is inferred by looking at changes in hydrofluorocarbons (HFCs). We find that OH levels have been fairly stable over our study period (2004 to 2021), suggesting that OH is not the main driver of the recent increase in atmospheric methane.
Zhendong Wu, Alex Vermeulen, Yousuke Sawa, Ute Karstens, Wouter Peters, Remco de Kok, Xin Lan, Yasuyuki Nagai, Akinori Ogi, and Oksana Tarasova
Atmos. Chem. Phys., 24, 1249–1264, https://doi.org/10.5194/acp-24-1249-2024, https://doi.org/10.5194/acp-24-1249-2024, 2024
Short summary
Short summary
This study focuses on exploring the differences in calculating global surface CO2 and its growth rate, considering the impact of analysis methodologies and site selection. Our study reveals that the current global CO2 network has a good capacity to represent global surface CO2 and its growth rate, as well as trends in atmospheric CO2 mass changes. However, small differences exist in different analyses due to the impact of methodology and site selection.
Yang Yang, Yang Zhou, Hailong Wang, Mengyun Li, Huimin Li, Pinya Wang, Xu Yue, Ke Li, Jia Zhu, and Hong Liao
Atmos. Chem. Phys., 24, 1177–1191, https://doi.org/10.5194/acp-24-1177-2024, https://doi.org/10.5194/acp-24-1177-2024, 2024
Short summary
Short summary
This study reveals that extreme ozone pollution over the North China Plain and Yangtze River Delta is due to the chemical production related to hot and dry conditions, and the regional transport explains the ozone pollution over the Sichuan Basin and Pearl River Delta. The frequency of meteorological conditions of the extreme ozone pollution increases from the past to the future. The sustainable scenario is the optimal path to retaining clean air in China in the future.
Victoria A. Flood, Kimberly Strong, Cynthia H. Whaley, Kaley A. Walker, Thomas Blumenstock, James W. Hannigan, Johan Mellqvist, Justus Notholt, Mathias Palm, Amelie N. Röhling, Stephen Arnold, Stephen Beagley, Rong-You Chien, Jesper Christensen, Makoto Deushi, Srdjan Dobricic, Xinyi Dong, Joshua S. Fu, Michael Gauss, Wanmin Gong, Joakim Langner, Kathy S. Law, Louis Marelle, Tatsuo Onishi, Naga Oshima, David A. Plummer, Luca Pozzoli, Jean-Christophe Raut, Manu A. Thomas, Svetlana Tsyro, and Steven Turnock
Atmos. Chem. Phys., 24, 1079–1118, https://doi.org/10.5194/acp-24-1079-2024, https://doi.org/10.5194/acp-24-1079-2024, 2024
Short summary
Short summary
It is important to understand the composition of the Arctic atmosphere and how it is changing. Atmospheric models provide simulations that can inform policy. This study examines simulations of CH4, CO, and O3 by 11 models. Model performance is assessed by comparing results matched in space and time to measurements from five high-latitude ground-based infrared spectrometers. This work finds that models generally underpredict the concentrations of these gases in the Arctic troposphere.
Roger Teoh, Zebediah Engberg, Marc Shapiro, Lynnette Dray, and Marc E. J. Stettler
Atmos. Chem. Phys., 24, 725–744, https://doi.org/10.5194/acp-24-725-2024, https://doi.org/10.5194/acp-24-725-2024, 2024
Short summary
Short summary
Emissions from aircraft contribute to climate change and degrade air quality. We describe an up-to-date 4D emissions inventory of global aviation from 2019 to 2021 based on actual flown trajectories. In 2019, 40.2 million flights collectively travelled 61 billion kilometres using 283 Tg of fuel. Long-haul flights were responsible for 43 % of CO2. The emissions inventory is made available for use in future studies to evaluate the negative externalities arising from global aviation.
Cited articles
Akritidis, D., Zanis, P., Pytharoulis, I., and Karacostas, T.: Near-surface
ozone trends over Europe in RegCM3/CAMx simulations for the time period
1996–2006, Atmos. Environ., 97, 6–18,
https://doi.org/10.1016/j.atmosenv.2014.08.002, 2014. a
Atmospheric Chemistry and Climate Model Intercomparison Project: National
Centre for Atmospheric Research, Shindell, D.,
Zeng, G., Lamarque, J. F., Szopa, S., Nagashima, T., Naik, V., Eyring, V., and Collins, W.:
The model data outputs from the Atmospheric Chemistry & Climate Model
Intercomparison Project (ACCMIP), NCAS British Atmospheric Data Centre,
available at:
http://catalogue.ceda.ac.uk/uuid/ded523bf23d59910e5d73f1703a2d540 (last
access: 22 June 2018), 2011. a
Beekmann, M. and Vautard, R.: A modelling study of photochemical regimes over
Europe: robustness and variability, Atmos. Chem. Phys., 10, 10067–10084,
https://doi.org/10.5194/acp-10-10067-2010, 2010. a, b
Bell, M. L., McDermott, A., Zeger, S. L., Samet, J. M., and Dominici, F.:
Ozone
and short-term mortality in 95 US urban communities, 1987–2000, Jama, 292,
2372–2378, https://doi.org/10.1001/jama.292.19.2372, 2004. a
Benjamini, Y. and Hochberg, Y.: Controlling the false discovery rate: a
practical and powerful approach to multiple testing, J. R.
Stat. Soc. B Met., 57, 289–300, 1995. a
Brook, R. D., Brook, J. R., Urch, B., Vincent, R., Rajagopalan, S., and
Silverman, F.: Inhalation of fine particulate air pollution and ozone causes
acute arterial vasoconstriction in healthy adults, Circulation, 105,
1534–1536, https://doi.org/10.1161/01.CIR.0000013838.94747.64, 2002. a
Butchart, N. and Scaife, A. A.: Removal of chlorofluorocarbons by increased
mass exchange between the stratosphere and troposphere in a changing climate,
Nature, 410, 799–802, https://doi.org/10.1038/35071047,
2001. a
Butchart, N., Scaife, A., Bourqui, M., De Grandpré, J., Hare, S.,
Kettleborough, J., Langematz, U., Manzini, E., Sassi, F., Shibata, K.,
Shindell, D., and Sigmond, M.: Simulations of anthropogenic change in the strength of the
Brewer–Dobson circulation, Clim. Dynam., 27, 727–741,
https://doi.org/10.1007/s00382-006-0162-4, 2006. a
Butler, T. M., Stock, Z. S., Russo, M. R., Denier van der Gon, H. A. C., and
Lawrence, M. G.: Megacity ozone air quality under four alternative future
scenarios, Atmos. Chem. Phys., 12, 4413–4428,
https://doi.org/10.5194/acp-12-4413-2012, 2012. a
Cionni, I., Eyring, V., Lamarque, J. F., Randel, W. J., Stevenson, D. S., Wu,
F., Bodeker, G. E., Shepherd, T. G., Shindell, D. T., and Waugh, D. W.: Ozone
database in support of CMIP5 simulations: results and corresponding radiative
forcing, Atmos. Chem. Phys., 11, 11267–11292,
https://doi.org/10.5194/acp-11-11267-2011, 2011. a
Coleman, L., Varghese, S., Tripathi, O., Jennings, S., and O'Dowd, C.:
Regional-scale ozone deposition to North-East Atlantic waters, Adv.
Meteorol., 2010, 243701, https://doi.org/10.1155/2010/243701, 2010. a
Colette, A., Granier, C., Hodnebrog, Ø., Jakobs, H., Maurizi, A., Nyiri,
A., Rao, S., Amann, M., Bessagnet, B., D'Angiola, A., Gauss, M., Heyes, C.,
Klimont, Z., Meleux, F., Memmesheimer, M., Mieville, A., Rouïl, L.,
Russo, F., Schucht, S., Simpson, D., Stordal, F., Tampieri, F., and Vrac, M.:
Future air quality in Europe: a multi-model assessment of projected exposure
to ozone, Atmos. Chem. Phys., 12, 10613–10630,
https://doi.org/10.5194/acp-12-10613-2012, 2012. a
Collins, W., Derwent, R., Garnier, B., Johnson, C., Sanderson, M., and
Stevenson, D.: Effect of stratosphere-troposphere exchange on the future
tropospheric ozone trend, J. Geophys. Res.-Atmos., 108, 8528,
https://doi.org/10.1029/2002jd002617, 2003. a, b
Danielsen, E. F.: Stratospheric-tropospheric exchange based on radioactivity,
ozone and potential vorticity, J. Atmos. Sci., 25,
502–518, https://doi.org/10.1175/1520-0469(1968)025<0502:stebor>2.0.co;2, 1968. a
Derwent, R., Jenkin, M., Saunders, S., Pilling, M., Simmonds, P., Passant,
N.,
Dollard, G., Dumitrean, P., and Kent, A.: Photochemical ozone formation in
north west Europe and its control, Atmos. Environ., 37, 1983–1991,
https://doi.org/10.1016/s1352-2310(03)00031-1, 2003. a
Doherty, R., Wild, O., Shindell, D., Zeng, G., MacKenzie, I., Collins, W.,
Fiore, A. M., Stevenson, D., Dentener, F., Schultz, M., Hess, P., Derwent, R. G., and Keating, T. J.: Impacts of
climate change on surface ozone and intercontinental ozone pollution: A
multi-model study, J. Geophys. Res.-Atmos., 118,
3744–3763, https://doi.org/10.1002/jgrd.50266, 2013. a
Evans, M. J. and Sofen, E. D.: Gridded Global Surface Ozone Metrics data
(1971–2015) for Atmospheric Chemistry Model Evaluation –version 2.7, Centre
for Environmental Data Analysis, 2 February 2016,
https://doi.org/10.5285/897a3958-5bfc-4311-9bb0-01134bf6aefa,
2016. a
Finzi, G., Silibello, C., and Volta, M.: Evaluation of urban pollution
abatement strategies by a photochemical dispersion model, Int.
J. Environ. Pollut., 14, 616–624,
https://doi.org/10.1504/ijep.2000.000586, 2000. a
Fiore, A. M., West, J. J., Horowitz, L. W., Naik, V., and Schwarzkopf, M. D.:
Characterizing the tropospheric ozone response to methane emission controls
and the benefits to climate and air quality, J. Geophys. Res.-Atmos., 113, D08307, https://doi.org/10.1029/2007jd009162,
2008. a
Fiore, A. M., Dentener, F., Wild, O., Cuvelier, C., Schultz, M., Hess, P.,
Textor, C., Schulz, M., Doherty, R., Horowitz, L.,
MacKenzie, I. A., Sanderson, M. G., Shindell, D. T., Stevenson, D. S., Szopa,
S., Van Dingenen, R., Zeng, G., Atherton, C., Bergmann, D., Bey, I.
Carmichael, G., Collins, W. J., Duncan, B. N.,
Faluvegi, G., Folberth, G., Gauss, M., Gong, S., Hauglustaine, D.,
Holloway, T. Isaksen, I. S. A., Jacob, D. J., Jonson, J. E., Kaminski,
J. W. Keating, T. J., Lupu, A., Marmer, E., Montanaro, V., Park, R. J.,
Pitari, G., Pringle, K. J.,
Pyle, A., Schroeder, S., Vivanco, M. G., Wind, P., Wojcik, G.,
Wu, S., and Zuber, A.: Multimodel
estimates of intercontinental source-receptor relationships for ozone
pollution, J. Geophys. Res.-Atmos., 114, D04301,
https://doi.org/10.1029/2008jd010816, 2009. a
Forkel, R. and Knoche, R.: Nested regional climate–chemistry simulations for
central Europe, C. R. Geosci., 339, 734–746,
https://doi.org/10.1016/j.crte.2007.09.018, 2007. a
Fuhrer, J. and Booker, F.: Ecological issues related to ozone: agricultural
issues, Environ. Int., 29, 141–154,
https://doi.org/10.1016/s0160-4120(02)00157-5, 2003. a
Fujino, J., Nair, R., Kainuma, M., Masui, T., and Matsuoka, Y.: Multi-gas
mitigation analysis on stabilization scenarios using AIM global model,
Energ. J., 27, 343–353,
https://doi.org/10.5547/issn0195-6574-ej-volsi2006-nosi3-17, 2006. a
Ganzeveld, L., Helmig, D., Fairall, C., Hare, J., and Pozzer, A.:
Atmosphere-ocean ozone exchange: A global modeling study of biogeochemical,
atmospheric, and waterside turbulence dependencies, Global Biogeochem.
Cy., 23, GB4021, https://doi.org/10.1029/2008gb003301, 2009. a
Gerasopoulos, E., Kouvarakis, G., Vrekoussis, M., Kanakidou, M., and
Mihalopoulos, N.: Ozone variability in the marine boundary layer of the
eastern Mediterranean based on 7-year observations, J. Geophys.
Res.-Atmos., 110, D15309, https://doi.org/10.1029/2005JD005991,
2005. a
Giorgi, F.: Climate change hot-spots, Geophys. Res. Lett., 33, L08707,
https://doi.org/10.1029/2006gl025734, 2006. a
Goldberg, D. L., Vinciguerra, T. P., Anderson, D. C., Hembeck, L., Canty,
T. P., Ehrman, S. H., Martins, D. K., Stauffer, R. M., Thompson, A. M.,
Salawitch, R. J., and Dickerson, R.: CAMx ozone source attribution in the eastern United
States using guidance from observations during DISCOVER-AQ Maryland,
Geophys. Res. Lett., 43, 2249–2258, https://doi.org/10.1002/2015gl067332,
2016. a
Hedegaard, G. B., Brandt, J., Christensen, J. H., Frohn, L. M., Geels, C.,
Hansen, K. M., and Stendel, M.: Impacts of climate change on air pollution
levels in the Northern Hemisphere with special focus on Europe and the
Arctic, Atmos. Chem. Phys., 8, 3337–3367,
https://doi.org/10.5194/acp-8-3337-2008, 2008. a
Hedegaard, G. B., Christensen, J. H., and Brandt, J.: The relative importance
of impacts from climate change vs. emissions change on air pollution levels
in the 21st century, Atmos. Chem. Phys., 13, 3569–3585,
https://doi.org/10.5194/acp-13-3569-2013, 2013. a
Hijioka, Y., matsuoka, Y., nishimoto, H., Masui, T., and Kainuma, M.: Global
GHG emission scenarios under GHG concentration stabilization targets, Journal
of Global Environment Engineering, 13, 97–108, 2008. a
Hu, L., Jacob, D. J., Liu, X., Zhang, Y., Zhang, L., Kim, P. S., Sulprizio,
M. P., and Yantosca, R. M.: Global budget of tropospheric ozone: evaluating
recent model advances with satellite (OMI), aircraft (IAGOS), and ozonesonde
observations, Atmos. Environ., 167, 323–334,
https://doi.org/10.1016/j.atmosenv.2017.08.036, 2017. a
Iglesias-Suarez, F., Young, P. J., and Wild, O.: Stratospheric ozone change and related climate impacts over 1850–2100 as modelled by the ACCMIP ensemble, Atmos. Chem. Phys., 16, 343–363, https://doi.org/10.5194/acp-16-343-2016, 2016. a
Im, U., Markakis, K., Poupkou, A., Melas, D., Unal, A., Gerasopoulos, E.,
Daskalakis, N., Kindap, T., and Kanakidou, M.: The impact of temperature
changes on summer time ozone and its precursors in the Eastern Mediterranean,
Atmos. Chem. Phys., 11, 3847–3864, https://doi.org/10.5194/acp-11-3847-2011,
2011. a
Jacob, D. J.: Heterogeneous chemistry and tropospheric ozone, Atmos.
Environ., 34, 2131–2159, https://doi.org/10.1016/s1352-2310(99)00462-8, 2000. a
Jacob, D. J. and Winner, D. A.: Effect of climate change on air quality,
Atmos. Environ., 43, 51–63, https://doi.org/10.1016/j.atmosenv.2008.09.051,
2009. a, b, c, d
Katragkou, E., Zanis, P., Kioutsioukis, I., Tegoulias, I., Melas, D.,
Krüger, B., and Coppola, E.: Future climate change impacts on summer
surface ozone from regional climate-air quality simulations over Europe,
J. Geophys. Res.-Atmos., 116, D22307,
https://doi.org/10.1029/2011jd015899, 2011. a
Kawase, H., Nagashima, T., Sudo, K., and Nozawa, T.: Future changes in
tropospheric ozone under Representative Concentration Pathways (RCPs),
Geophys. Res. Lett., 38, L05801, https://doi.org/10.1029/2010gl046402, 2011. a, b
Lacressonnière, G., Peuch, V.-H., Arteta, J., Josse, B., Joly, M.,
Marécal, V., Saint Martin, D., Déqué, M., and Watson, L.: How realistic
are air quality hindcasts driven by forcings from climate model simulations?,
Geosci. Model Dev., 5, 1565–1587, https://doi.org/10.5194/gmd-5-1565-2012,
2012. a
Lacressonnière, G., Peuch, V.-H., Vautard, R., Arteta, J., Déqué,
M., Joly, M., Josse, B., Marécal, V., and Saint-Martin, D.: European air
quality in the 2030s and 2050s: Impacts of global and regional emission
trends and of climate change, Atmos. Environ., 92, 348–358,
https://doi.org/10.1016/j.atmosenv.2014.04.033, 2014. a, b, c
Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D., Liousse, C., Mieville, A., Owen,
B., Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E., Van Aardenne, J., Cooper, O. R., Kainuma, M., Mahowald, N.,
McConnell, J. R., Naik, V., Riahi, K., and van Vuuren, D. P.: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application,
Atmos. Chem. Phys., 10, 7017–7039, https://doi.org/10.5194/acp-10-7017-2010, 2010. a, b
Lamarque, J.-F., Shindell, D. T., Josse, B., Young, P. J., Cionni, I.,
Eyring, V., Bergmann, D., Cameron-Smith, P., Collins, W. J., Doherty, R.,
Dalsoren, S., Faluvegi, G., Folberth, G., Ghan, S. J., Horowitz, L. W., Lee,
Y. H., MacKenzie, I. A., Nagashima, T., Naik, V., Plummer, D., Righi, M.,
Rumbold, S. T., Schulz, M., Skeie, R. B., Stevenson, D. S., Strode, S., Sudo,
K., Szopa, S., Voulgarakis, A., and Zeng, G.: The Atmospheric Chemistry and
Climate Model Intercomparison Project (ACCMIP): overview and description of
models, simulations and climate diagnostics, Geosci. Model Dev., 6, 179–206,
https://doi.org/10.5194/gmd-6-179-2013, 2013. a, b, c, d, e
Langner, J., Engardt, M., Baklanov, A., Christensen, J. H., Gauss, M., Geels,
C., Hedegaard, G. B., Nuterman, R., Simpson, D., Soares, J., Sofiev, M.,
Wind, P., and Zakey, A.: A multi-model study of impacts of climate change on
surface ozone in Europe, Atmos. Chem. Phys., 12, 10423–10440,
https://doi.org/10.5194/acp-12-10423-2012, 2012. a, b
Lei, H., Wuebbles, D. J., and Liang, X.-Z.: Projected risk of high ozone
episodes in 2050, Atmos. Environ., 59, 567–577,
https://doi.org/10.1016/j.atmosenv.2012.05.051, 2012. a
Lelieveld, J. and Dentener, F. J.: What controls tropospheric ozone?, J.
Geophys. Res.-Atmos., 105, 3531–3551,
https://doi.org/10.1029/1999jd901011,
2000. a
Lelieveld, J., Berresheim, H., Borrmann, S., Crutzen, P., Dentener, F.,
Fischer, H., Feichter, J., Flatau, P., Heland, J., Holzinger, R.,
Korrmann, R., Lawrence, M. G., Levin, Z., Markowicz, K. M., Mihalopoulos, N.,
Minikin, A., Ramanathan, V., de Reus, M., Roelofs, G. J., Scheeren, H. A.,
Sciare, J., Schlager, H., Schultz, M., Siegmund, P., Steil, B., Stephanou, E.
G., Stier, P., Traub, M., Warneke, C., Williams, J., and Zierei, H.:
Global air pollution crossroads over the Mediterranean, Science, 298,
794–799, https://doi.org/10.1126/science.1075457, 2002. a
Lin, J.-T., Youn, D., Liang, X.-Z., and Wuebbles, D. J.: Global model
simulation of summertime US ozone diurnal cycle and its sensitivity to PBL
mixing, spatial resolution, and emissions, Atmos. Environ., 42,
8470–8483, https://doi.org/10.1016/j.atmosenv.2008.08.012, 2008. a
Lippmann, M.: Health effects of ozone a critical review, Japca, 39, 672–695,
https://doi.org/10.1080/08940630.1989.10466554, 1989. a
Martilli, A., Neftel, A., Favaro, G., Kirchner, F., Sillman, S., and
Clappier,
A.: Simulation of the ozone formation in the northern part of the Po Valley,
J. Geophys. Res.-Atmos., 107, 8195,
https://doi.org/10.1029/2001jd000534, 2002. a
Meleux, F., Solmon, F., and Giorgi, F.: Increase in summer European ozone
amounts due to climate change, Atmos. Environ., 41, 7577–7587,
https://doi.org/10.1016/j.atmosenv.2007.05.048, 2007. a, b, c
Millán, M., Salvador, R., Mantilla, E., and Artnano, B.: Meteorology and
photochemical air pollution in southern Europe: experimental results from EC
research projects, Atmos. Environ., 30, 1909–1924,
https://doi.org/10.1016/1352-2310(95)00220-0, 1996. a
Millán, M., Salvador, R., Mantilla, E., and Kallos, G.: Photooxidant
dynamics in the Mediterranean basin in summer: results from European research
projects, J. Geophys. Res.-Atmos., 102, 8811–8823,
https://doi.org/10.1029/96jd03610, 1997. a
Monks, P. S., Archibald, A. T., Colette, A., Cooper, O., Coyle, M., Derwent,
R., Fowler, D., Granier, C., Law, K. S., Mills, G. E., Stevenson, D. S.,
Tarasova, O., Thouret, V., von Schneidemesser, E., Sommariva, R., Wild, O.,
and Williams, M. L.: Tropospheric ozone and its precursors from the urban to
the global scale from air quality to short-lived climate forcer, Atmos. Chem.
Phys., 15, 8889–8973, https://doi.org/10.5194/acp-15-8889-2015, 2015. a
Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K.,
Van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T.,
Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi,
K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., and
Wilbanks, T. J.,:
The next generation of scenarios for climate change research and assessment,
Nature, 463, 747–756, https://doi.org/10.1038/nature08823, 2010. a, b
Riahi, K., Grübler, A., and Nakicenovic, N.: Scenarios of long-term
socio-economic and environmental development under climate stabilization,
Technol. Forecast. Soc., 74, 887–935,
https://doi.org/10.1016/j.techfore.2006.05.026, 2007. a
Safieddine, S., Boynard, A., Coheur, P.-F., Hurtmans, D., Pfister, G.,
Quennehen, B., Thomas, J. L., Raut, J.-C., Law, K. S., Klimont, Z.,
Hadji-Lazaro, J., George, M., and Clerbaux, C.: Summertime tropospheric ozone
assessment over the Mediterranean region using the thermal infrared
IASI/MetOp sounder and the WRF-Chem model, Atmos. Chem. Phys., 14,
10119–10131, https://doi.org/10.5194/acp-14-10119-2014, 2014. a
Sandermann Jr., H.: Ozone and plant health, Annu. Rev. Phytopathol.,
34, 347–366, https://doi.org/10.1146/annurev.phyto.34.1.347, 1996. a
Schicker, I., Radanovics, S., and Seibert, P.: Origin and transport of Mediterranean moisture and air, Atmos. Chem. Phys., 10, 5089–5105, https://doi.org/10.5194/acp-10-5089-2010, 2010. a
Schnell, J. L., Prather, M. J., Josse, B., Naik, V., Horowitz, L. W.,
Cameron-Smith, P., Bergmann, D., Zeng, G., Plummer, D. A., Sudo, K.,
Nagashima, T., Shindell, D. T., Faluvegi, G., and Strode, S. A.: Use of North
American and European air quality networks to evaluate global
chemistry–climate modeling of surface ozone, Atmos. Chem. Phys., 15,
10581–10596, https://doi.org/10.5194/acp-15-10581-2015, 2015. a
Silibello, C., Calori, G., Brusasca, G., Catenacci, G., and Finzi, G.:
Application of a photochemical grid model to Milan metropolitan area,
Atmos. Environ., 32, 2025–2038, 1998. a
Sillman, S.: The use of NOy, H2O2, and HNO3 as
indicators for ozone-NOx-hydrocarbon sensitivity in urban locations, J.
Geophys. Res.-Atmos., 100, 14175–14188, https://doi.org/10.1029/94jd02953, 1995. a
Smith, S. J. and Wigley, T.: Multi-gas forcing stabilization with Minicam,
Energ. J., 27, 373–391,
https://doi.org/10.5547/issn0195-6574-ej-volsi2006-nosi3-19, 2006. a
Sofen, E. D., Bowdalo, D., Evans, M. J., Apadula, F., Bonasoni, P., Cupeiro,
M., Ellul, R., Galbally, I. E., Girgzdiene, R., Luppo, S., Mimouni, M.,
Nahas, A. C., Saliba, M., and Tørseth, K.: Gridded global surface ozone
metrics for atmospheric chemistry model evaluation, Earth Syst. Sci. Data, 8,
41–59, https://doi.org/10.5194/essd-8-41-2016, 2016. a, b, c, d, e
Spivakovsky, C., Logan, J., Montzka, S., Balkanski, Y., Foreman-Fowler, M.,
Jones, D., Horowitz, L., Fusco, A., Brenninkmeijer, C., Prather, M., Wofsy, S. C., and McElroy, M. B.:
Three-dimensional climatological distribution of tropospheric OH: Update and
evaluation, J. Geophys. Res., 105, 8931–8980, https://doi.org/10.1029/1999jd901006,
2000. a
Sudo, K., Takahashi, M., and Akimoto, H.: Future changes in
stratosphere-troposphere exchange and their impacts on future tropospheric
ozone simulations, Geophys. Res. Lett., 30, 2256,
https://doi.org/10.1029/2003gl018526, 2003. a
Taylor, K. E.: Summarizing multiple aspects of model performance in a single
diagram, J. Geophys. Res.-Atmos., 106, 7183–7192,
https://doi.org/10.1029/2000jd900719, 2001. a
Travis, K. R., Jacob, D. J., Fisher, J. A., Kim, P. S., Marais, E. A., Zhu,
L., Yu, K., Miller, C. C., Yantosca, R. M., Sulprizio, M. P., Thompson, A.
M., Wennberg, P. O., Crounse, J. D., St. Clair, J. M., Cohen, R. C.,
Laughner, J. L., Dibb, J. E., Hall, S. R., Ullmann, K., Wolfe, G. M.,
Pollack, I. B., Peischl, J., Neuman, J. A., and Zhou, X.: Why do models
overestimate surface ozone in the Southeast United States?, Atmos. Chem.
Phys., 16, 13561–13577, https://doi.org/10.5194/acp-16-13561-2016, 2016. a, b
Tukey, J. W.: Exploratory data analysis, vol. 2, Reading, Mass., 1977. a
Van Vuuren, D., Eickhout, B., Lucas, P. L., and Den Elzen, M.: Long-term
multi-gas scenarios to stabilise radiative forcing–exploring costs and
benefits within an integrated assessment framework, Energ. J.,
27, 201–233, https://doi.org/10.5547/issn0195-6574-ej-volsi2006-nosi3-10,
2006. a
Van Vuuren, D., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard,
K.,
Hurtt, G., Kram, T., Krey, V., Lamarque, J., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J.,
and Rose, S. K.: The representative
concentration pathways: an overview, Climatic
Change, 109, 5–31, https://doi.org/10.1007/s10584-011-0148-z,
2011. a, b, c, d
Van Vuuren, D. P., Den Elzen, M. G., Lucas, P. L., Eickhout, B., Strengers,
B. J., Van Ruijven, B., Wonink, S., and van Houdt, R.: Stabilizing greenhouse
gas concentrations at low levels: an assessment of reduction strategies and
costs, Climatic Change, 81, 119–159, https://doi.org/10.1007/s10584-006-9172-9, 2007. a
Vautard, R., Builtjes, P., Thunis, P., Cuvelier, C., Bedogni, M., Bessagnet,
B., Honore, C., Moussiopoulos, N., Pirovano, G., Schaap, M., Sterni, R., Tarrason, L., and Windj, P.,:
Evaluation and intercomparison of Ozone and PM10 simulations by several
chemistry transport models over four European cities within the CityDelta
project, Atmos. Environ., 41, 173–188,
https://doi.org/10.1016/j.atmosenv.2006.07.039, 2007. a
West, J. J., Fiore, A. M., Naik, V., Horowitz, L. W., Schwarzkopf, M. D., and
Mauzerall, D. L.: Ozone air quality and radiative forcing consequences of
changes in ozone precursor emissions, Geophys. Res. Lett., 34, L06806,
https://doi.org/10.1029/2006gl029173, 2007. a, b
Wild, O., Fiore, A. M., Shindell, D. T., Doherty, R. M., Collins, W. J.,
Dentener, F. J., Schultz, M. G., Gong, S., MacKenzie, I. A., Zeng, G., Hess,
P., Duncan, B. N., Bergmann, D. J., Szopa, S., Jonson, J. E., Keating, T. J.,
and Zuber, A.: Modelling future changes in surface ozone: a parameterized
approach, Atmos. Chem. Phys., 12, 2037–2054,
https://doi.org/10.5194/acp-12-2037-2012, 2012. a, b, c
Wilks, D.: On “field significance” and the false discovery rate, J.
Appl. Meteorol. Clim., 45, 1181–1189, 2006. a
Wise, M., Calvin, K., Thomson, A., Clarke, L., Bond-Lamberty, B., Sands, R.,
Smith, S. J., Janetos, A., and Edmonds, J.: Implications of limiting
CO2
concentrations for land use and energy, Science, 324, 1183–1186, https://doi.org/10.1126/science.1168475, 2009. a
Young, P. J., Archibald, A. T., Bowman, K. W., Lamarque, J.-F., Naik, V.,
Stevenson, D. S., Tilmes, S., Voulgarakis, A., Wild, O., Bergmann, D.,
Cameron-Smith, P., Cionni, I., Collins, W. J., Dalsøren, S. B., Doherty,
R. M., Eyring, V., Faluvegi, G., Horowitz, L. W., Josse, B., Lee, Y. H.,
MacKenzie, I. A., Nagashima, T., Plummer, D. A., Righi, M., Rumbold, S. T.,
Skeie, R. B., Shindell, D. T., Strode, S. A., Sudo, K., Szopa, S., and Zeng,
G.: Pre-industrial to end 21st century projections of tropospheric ozone from
the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP),
Atmos. Chem. Phys., 13, 2063–2090, https://doi.org/10.5194/acp-13-2063-2013, 2013.
a, b, c, d, e, f, g, h, i, j, k, l
Yu, S., Eder, B., Dennis, R., Chu, S.-H., and Schwartz, S. E.: New unbiased
symmetric metrics for evaluation of air quality models, Atmos. Sci.
Lett., 7, 26–34, https://doi.org/10.1002/asl.125, 2006. a
Zeng, G., Pyle, J. A., and Young, P. J.: Impact of climate change on tropospheric ozone and its global budgets, Atmos. Chem. Phys., 8, 369–387, https://doi.org/10.5194/acp-8-369-2008, 2008. a
Zeng, G., Morgenstern, O., Braesicke, P., and Pyle, J.: Impact of
stratospheric
ozone recovery on tropospheric ozone and its budget, Geophys. Res.
Lett., 37, L09805, https://doi.org/10.1029/2010gl042812, 2010. a
Zeng, T., Wang, Y., Chance, K., Browell, E. V., Ridley, B. A., and Atlas,
E. L.: Widespread persistent near-surface ozone depletion at northern high
latitudes in spring, Geophys. Res. Lett., 30, 2298,
https://doi.org/10.1029/2003gl018587, 2003. a
Short summary
The Mediterranean Basin, surrounded by three continents with diverse pollution sources, is particularly sensitive to climate change due to its location and diversity of ecosystems. In this work, we investigate the future change of surface ozone from 2000 to 2100 over this region using a set of atmospheric model outputs and ground-based observations. We also highlight how the future climate change and the increase of methane concentrations can offset the benefit of the pollution reduction policy.
The Mediterranean Basin, surrounded by three continents with diverse pollution sources, is...
Altmetrics
Final-revised paper
Preprint