Articles | Volume 18, issue 13
https://doi.org/10.5194/acp-18-9351-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-18-9351-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Future changes in surface ozone over the Mediterranean Basin in the framework of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx)
Nizar Jaidan
CNRM, Météo-France and CNRS, UMR 3589, Toulouse, France
Laaziz El Amraoui
CORRESPONDING AUTHOR
CNRM, Météo-France and CNRS, UMR 3589, Toulouse, France
Jean-Luc Attié
Laboratoire d'Aérologie, Université de Toulouse, UMR 5560, CNRS/INSU, Toulouse, France
Philippe Ricaud
CNRM, Météo-France and CNRS, UMR 3589, Toulouse, France
François Dulac
LSCE/IPSL, Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, Gif-sur-Yvette, France
Related authors
P. Ricaud, B. Sič, L. El Amraoui, J.-L. Attié, R. Zbinden, P. Huszar, S. Szopa, J. Parmentier, N. Jaidan, M. Michou, R. Abida, F. Carminati, D. Hauglustaine, T. August, J. Warner, R. Imasu, N. Saitoh, and V.-H. Peuch
Atmos. Chem. Phys., 14, 11427–11446, https://doi.org/10.5194/acp-14-11427-2014, https://doi.org/10.5194/acp-14-11427-2014, 2014
Caroline Braud, Pascal Keravec, Ingrid Neunaber, Sandrine Aubrun, Jean-Luc Attie, Pierre Durand, Philippe Ricaud, Jean-François Georgis, Emmanuel Leclerc, Lise Mourre, and Claire Taymans
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-12, https://doi.org/10.5194/wes-2025-12, 2025
Preprint under review for WES
Short summary
Short summary
A meteorological 3 year dataset from an operational wind farm of six 2 MW turbines, has been made available. This includes a meteorological mast equipped with sonic anemometers at four different heights and radiometer measurements for atmospheric stability analysis. Simultaneously, supervisory control and data acquisition (SCADA) and the scanned geometry of the turbine blades are provided. This database has been made accessible to the research community (https://awit.aeris-data.fr).
Philippe Ricaud, Pierre Durand, Paolo Grigioni, Massimo Del Guasta, Giuseppe Camporeale, Axel Roy, Jean-Luc Attié, and John Bognar
Atmos. Meas. Tech., 17, 5071–5089, https://doi.org/10.5194/amt-17-5071-2024, https://doi.org/10.5194/amt-17-5071-2024, 2024
Short summary
Short summary
Clouds in Antarctica are key elements affecting climate evolution. Some clouds are composed of supercooled liquid water (SLW; water held in liquid form below 0 °C) and are difficult to forecast by models. We performed in situ observations of SLW clouds at Concordia Station using SLW sondes attached to meteorological balloons in summer 2021–2022. The SLW clouds were observed in a saturated layer at the top of the planetary boundary layer in agreement with ground-based lidar observations.
Philippe Ricaud, Massimo Del Guasta, Angelo Lupi, Romain Roehrig, Eric Bazile, Pierre Durand, Jean-Luc Attié, Alessia Nicosia, and Paolo Grigioni
Atmos. Chem. Phys., 24, 613–630, https://doi.org/10.5194/acp-24-613-2024, https://doi.org/10.5194/acp-24-613-2024, 2024
Short summary
Short summary
Clouds affect the Earth's climate in ways that depend on the type of cloud (solid/liquid water). From observations at Concordia (Antarctica), we show that in supercooled liquid water (liquid water for temperatures below 0°C) clouds (SLWCs), temperature and SLWC radiative forcing increase with liquid water (up to 70 W m−2). We extrapolated that the maximum SLWC radiative forcing can reach 40 W m−2 over the Antarctic Peninsula, highlighting the importance of SLWCs for global climate prediction.
Karine Desboeufs, Franck Fu, Matthieu Bressac, Antonio Tovar-Sánchez, Sylvain Triquet, Jean-François Doussin, Chiara Giorio, Patrick Chazette, Julie Disnaquet, Anaïs Feron, Paola Formenti, Franck Maisonneuve, Araceli Rodríguez-Romero, Pascal Zapf, François Dulac, and Cécile Guieu
Atmos. Chem. Phys., 22, 2309–2332, https://doi.org/10.5194/acp-22-2309-2022, https://doi.org/10.5194/acp-22-2309-2022, 2022
Short summary
Short summary
This article reports the first concurrent sampling of wet deposition samples and surface seawater and was performed during the PEACETIME cruise in the remote Mediterranean (May–June 2017). Through the chemical composition of trace metals (TMs) in these samples, it emphasizes the decrease of atmospheric metal pollution in this area during the last few decades and the critical role of wet deposition as source of TMs for Mediterranean surface seawater, especially for intense dust deposition events.
Matthieu Bressac, Thibaut Wagener, Nathalie Leblond, Antonio Tovar-Sánchez, Céline Ridame, Vincent Taillandier, Samuel Albani, Sophie Guasco, Aurélie Dufour, Stéphanie H. M. Jacquet, François Dulac, Karine Desboeufs, and Cécile Guieu
Biogeosciences, 18, 6435–6453, https://doi.org/10.5194/bg-18-6435-2021, https://doi.org/10.5194/bg-18-6435-2021, 2021
Short summary
Short summary
Phytoplankton growth is limited by the availability of iron in about 50 % of the ocean. Atmospheric deposition of desert dust represents a key source of iron. Here, we present direct observations of dust deposition in the Mediterranean Sea. A key finding is that the input of iron from dust primarily occurred in the deep ocean, while previous studies mainly focused on the ocean surface. This new insight will enable us to better represent controls on global marine productivity in models.
Matthieu Plu, Guillaume Bigeard, Bojan Sič, Emanuele Emili, Luca Bugliaro, Laaziz El Amraoui, Jonathan Guth, Beatrice Josse, Lucia Mona, and Dennis Piontek
Nat. Hazards Earth Syst. Sci., 21, 3731–3747, https://doi.org/10.5194/nhess-21-3731-2021, https://doi.org/10.5194/nhess-21-3731-2021, 2021
Short summary
Short summary
Volcanic eruptions that spread out ash over large areas, like Eyjafjallajökull in 2010, may have huge economic consequences due to flight cancellations. In this article, we demonstrate the benefits of source term improvement and of data assimilation for quantifying volcanic ash concentrations. The work, which was supported by the EUNADICS-AV project, is the first one, to our knowledge, that demonstrates the benefit of the assimilation of ground-based lidar data over Europe during an eruption.
Matthieu Plu, Barbara Scherllin-Pirscher, Delia Arnold Arias, Rocio Baro, Guillaume Bigeard, Luca Bugliaro, Ana Carvalho, Laaziz El Amraoui, Kurt Eschbacher, Marcus Hirtl, Christian Maurer, Marie D. Mulder, Dennis Piontek, Lennart Robertson, Carl-Herbert Rokitansky, Fritz Zobl, and Raimund Zopp
Nat. Hazards Earth Syst. Sci., 21, 2973–2992, https://doi.org/10.5194/nhess-21-2973-2021, https://doi.org/10.5194/nhess-21-2973-2021, 2021
Short summary
Short summary
Past volcanic eruptions that spread out ash over large areas, like Eyjafjallajökull in 2010, forced the cancellation of thousands of flights and had huge economic consequences.
In this article, an international team in the H2020 EU-funded EUNADICS-AV project has designed a probabilistic model approach to quantify ash concentrations. This approach is evaluated against measurements, and its potential use to mitigate the impact of future large-scale eruptions is discussed.
Isabelle Chiapello, Paola Formenti, Lydie Mbemba Kabuiku, Fabrice Ducos, Didier Tanré, and François Dulac
Atmos. Chem. Phys., 21, 12715–12737, https://doi.org/10.5194/acp-21-12715-2021, https://doi.org/10.5194/acp-21-12715-2021, 2021
Short summary
Short summary
The Mediterranean atmosphere is impacted by a variety of particle pollution, which exerts a complex pressure on climate and air quality. We analyze the 2005–2013 POLDER-3 satellite advanced aerosol data set over the Western Mediterranean Sea. Aerosols' spatial distribution and temporal evolution suggests a large-scale improvement of air quality related to the fine aerosol component, most probably resulting from reduction of anthropogenic particle emissions in the surrounding European countries.
Iris-Amata Dion, Cyrille Dallet, Philippe Ricaud, Fabien Carminati, Thibaut Dauhut, and Peter Haynes
Atmos. Chem. Phys., 21, 2191–2210, https://doi.org/10.5194/acp-21-2191-2021, https://doi.org/10.5194/acp-21-2191-2021, 2021
Short summary
Short summary
Ice in the tropopause has a strong radiative effect on climate. The amount of ice injected (∆IWC) up to the tropical tropopause layer has been shown to be the highest over the Maritime Continent (MC), a region that includes Indonesia. ∆IWC is studied over islands and sea of the MC. Space-borne observations of ice, precipitation and lightning are used to estimate ∆IWC and are compared to ∆IWC estimated from the ERA5 reanalyses. It is shown that Java is the area of the greatest ∆IWC over the MC.
Cécile Debevec, Stéphane Sauvage, Valérie Gros, Thérèse Salameh, Jean Sciare, François Dulac, and Nadine Locoge
Atmos. Chem. Phys., 21, 1449–1484, https://doi.org/10.5194/acp-21-1449-2021, https://doi.org/10.5194/acp-21-1449-2021, 2021
Short summary
Short summary
This study provides a better characterization of the seasonal variations in VOC sources impacting the western Mediterranean region, based on a comprehensive chemical composition measured over 25 months at a representative receptor site (Ersa) and by determining factors controlling their temporal variations. Some insights into dominant drivers for VOC concentration variations in Europe are also provided, built on comparisons of Ersa observations with the concomitant ones of 17 European sites.
Cécile Guieu, Fabrizio D'Ortenzio, François Dulac, Vincent Taillandier, Andrea Doglioli, Anne Petrenko, Stéphanie Barrillon, Marc Mallet, Pierre Nabat, and Karine Desboeufs
Biogeosciences, 17, 5563–5585, https://doi.org/10.5194/bg-17-5563-2020, https://doi.org/10.5194/bg-17-5563-2020, 2020
Short summary
Short summary
We describe here the objectives and strategy of the PEACETIME project and cruise, dedicated to dust deposition and its impacts in the Mediterranean Sea. Our strategy to go a step further forward than in previous approaches in understanding these impacts by catching a real deposition event at sea is detailed. We summarize the work performed at sea, the type of data acquired and their valorization in the papers published in the special issue.
Laaziz El Amraoui, Bojan Sič, Andrea Piacentini, Virginie Marécal, Nicolas Frebourg, and Jean-Luc Attié
Atmos. Meas. Tech., 13, 4645–4667, https://doi.org/10.5194/amt-13-4645-2020, https://doi.org/10.5194/amt-13-4645-2020, 2020
Short summary
Short summary
The aim of this paper is to present the assimilation of lidar observations from the CALIOP instrument onboard the CALIPSO satellite in the chemistry-transport model of Météo-France, MOCAGE. We presented the first results of the assimilation of the extinction coefficient observations of the CALIOP lidar instrument during the pre-ChArMEx-TRAQA field campaign. We evaluated the added value of the assimilation product to better document a desert dust transport event compared to the model free run.
Philippe Ricaud, Massimo Del Guasta, Eric Bazile, Niramson Azouz, Angelo Lupi, Pierre Durand, Jean-Luc Attié, Dana Veron, Vincent Guidard, and Paolo Grigioni
Atmos. Chem. Phys., 20, 4167–4191, https://doi.org/10.5194/acp-20-4167-2020, https://doi.org/10.5194/acp-20-4167-2020, 2020
Short summary
Short summary
Thin (~ 100 m) supercooled liquid water (SLW, water staying in liquid phase below 0 °C) clouds have been detected, analysed, and modelled over the Dome C (Concordia, Antarctica) station during the austral summer 2018–2019 using observations and meteorological analyses. The SLW clouds were observed at the top of the planetary boundary layer and the SLW content was always strongly underestimated by the model indicating an incorrect simulation of the surface energy budget of the Antarctic Plateau.
Samuel Quesada-Ruiz, Jean-Luc Attié, William A. Lahoz, Rachid Abida, Philippe Ricaud, Laaziz El Amraoui, Régina Zbinden, Andrea Piacentini, Mathieu Joly, Henk Eskes, Arjo Segers, Lyana Curier, Johan de Haan, Jukka Kujanpää, Albert Christiaan Plechelmus Oude Nijhuis, Johanna Tamminen, Renske Timmermans, and Pepijn Veefkind
Atmos. Meas. Tech., 13, 131–152, https://doi.org/10.5194/amt-13-131-2020, https://doi.org/10.5194/amt-13-131-2020, 2020
Renske Timmermans, Arjo Segers, Lyana Curier, Rachid Abida, Jean-Luc Attié, Laaziz El Amraoui, Henk Eskes, Johan de Haan, Jukka Kujanpää, William Lahoz, Albert Oude Nijhuis, Samuel Quesada-Ruiz, Philippe Ricaud, Pepijn Veefkind, and Martijn Schaap
Atmos. Chem. Phys., 19, 12811–12833, https://doi.org/10.5194/acp-19-12811-2019, https://doi.org/10.5194/acp-19-12811-2019, 2019
Short summary
Short summary
We present an evaluation of the added value of the Sentinel-4 and Sentinel-5P missions for air quality analyses of NO2. For this, synthetic observations for both missions are generated and combined with a chemistry transport model. While hourly Sentinel-4 NO2 observations over Europe benefit modelled NO2 analyses throughout the entire day, daily Sentinel-5P NO2 observations with global coverage show an impact up to 3–6 h after overpass. This supports the need for a combination of missions.
Iris-Amata Dion, Philippe Ricaud, Peter Haynes, Fabien Carminati, and Thibaut Dauhut
Atmos. Chem. Phys., 19, 6459–6479, https://doi.org/10.5194/acp-19-6459-2019, https://doi.org/10.5194/acp-19-6459-2019, 2019
Short summary
Short summary
Water vapour and ice cirrus clouds near the tropical tropopause layer (TTL) have a strong radiative impact on climate. Based on space-borne observations, we have developed a model linking ice in the upper troposphere from the Microwave Limb Sounder (MLS) to precipitation in the troposphere from the Tropical Rainfall Measurement Mission (TRMM). Our study quantifies the amount of ice injected into the TTL by deep convection over tropical lands and oceans by investigating the diurnal cycle of ice.
Camille Richon, Jean-Claude Dutay, Laurent Bopp, Briac Le Vu, James C. Orr, Samuel Somot, and François Dulac
Biogeosciences, 16, 135–165, https://doi.org/10.5194/bg-16-135-2019, https://doi.org/10.5194/bg-16-135-2019, 2019
Short summary
Short summary
We evaluate the effects of climate change and biogeochemical forcing evolution on the nutrient and plankton cycles of the Mediterranean Sea for the first time. We use a high-resolution coupled physical and biogeochemical model and perform 120-year transient simulations. The results indicate that changes in external nutrient fluxes and climate change may have synergistic or antagonistic effects on nutrient concentrations, depending on the region and the scenario.
Mounir Chrit, Karine Sartelet, Jean Sciare, Marwa Majdi, José Nicolas, Jean-Eudes Petit, and François Dulac
Atmos. Chem. Phys., 18, 18079–18100, https://doi.org/10.5194/acp-18-18079-2018, https://doi.org/10.5194/acp-18-18079-2018, 2018
Paola Formenti, Lydie Mbemba Kabuiku, Isabelle Chiapello, Fabrice Ducos, François Dulac, and Didier Tanré
Atmos. Meas. Tech., 11, 6761–6784, https://doi.org/10.5194/amt-11-6761-2018, https://doi.org/10.5194/amt-11-6761-2018, 2018
Short summary
Short summary
Aerosol particles from natural and anthropogenic sources are climate regulators as they can counteract or amplify the warming effect of greenhouse gases, but are difficult to observe due to their temporal and spatial variability. Satellite sensors can provide the needed global coverage but need validation. In this paper we explore the capability of the POLDER-3 advanced space-borne sensor to observe aerosols over the western Mediterranean region.
Karine Desboeufs, Elisabeth Bon Nguyen, Servanne Chevaillier, Sylvain Triquet, and François Dulac
Atmos. Chem. Phys., 18, 14477–14492, https://doi.org/10.5194/acp-18-14477-2018, https://doi.org/10.5194/acp-18-14477-2018, 2018
Short summary
Short summary
Atmospheric deposition is known to be a major source of nutrients for the marine biosphere in the Mediterranean Sea. The study of the origin of nutrients and trace metals in Corsica presented here shows that the dust events were the major sources of Si and Fe. Conversely, combustion sources predominated the inputs of N, P, and trace metals. This work showed the importance of considering background anthropogenic deposition for estimating the impact of atmospheric forcing on marine biota.
Mounir Chrit, Karine Sartelet, Jean Sciare, Jorge Pey, José B. Nicolas, Nicolas Marchand, Evelyn Freney, Karine Sellegri, Matthias Beekmann, and François Dulac
Atmos. Chem. Phys., 18, 9631–9659, https://doi.org/10.5194/acp-18-9631-2018, https://doi.org/10.5194/acp-18-9631-2018, 2018
Short summary
Short summary
Fine particulate matter (PM) in the atmosphere is of concern due to its effects on health, climate, ecosystems and biological cycles, and visibility.
These effects are especially important in the Mediterranean region. In this study, the air quality model Polyphemus is used to understand the
sources of inorganic and organic particles in the western Mediterranean and evaluate the uncertainties linked to the model parameters and hypotheses related to condensation/evaporation in the model.
Arineh Cholakian, Matthias Beekmann, Augustin Colette, Isabelle Coll, Guillaume Siour, Jean Sciare, Nicolas Marchand, Florian Couvidat, Jorge Pey, Valerie Gros, Stéphane Sauvage, Vincent Michoud, Karine Sellegri, Aurélie Colomb, Karine Sartelet, Helen Langley DeWitt, Miriam Elser, André S. H. Prévot, Sonke Szidat, and François Dulac
Atmos. Chem. Phys., 18, 7287–7312, https://doi.org/10.5194/acp-18-7287-2018, https://doi.org/10.5194/acp-18-7287-2018, 2018
Short summary
Short summary
In this work, four schemes for the simulation of organic aerosols in the western Mediterranean basin are added to the CHIMERE chemistry–transport model; the resulting simulations are then compared to measurements obtained from ChArMEx. It is concluded that the scheme taking into account the fragmentation and the formation of nonvolatile organic aerosols corresponds better to measurements; the major source of this aerosol in the western Mediterranean is found to be of biogenic origin.
Evelyn Freney, Karine Sellegri, Mounir Chrit, Kouji Adachi, Joel Brito, Antoine Waked, Agnès Borbon, Aurélie Colomb, Régis Dupuy, Jean-Marc Pichon, Laetitia Bouvier, Claire Delon, Corinne Jambert, Pierre Durand, Thierry Bourianne, Cécile Gaimoz, Sylvain Triquet, Anaïs Féron, Matthias Beekmann, François Dulac, and Karine Sartelet
Atmos. Chem. Phys., 18, 7041–7056, https://doi.org/10.5194/acp-18-7041-2018, https://doi.org/10.5194/acp-18-7041-2018, 2018
Short summary
Short summary
The focus of these experiments, within the ChArMEx project, were to better understand the chemical properties of ambient aerosols over the Mediterranean region. A series of airborne measurements were performed aboard the French research aircraft, the ATR42, during the summer period. Aerosol and gas-phase chemical mass spectrometry allowed us to understand the sources and formation of organic aerosols. Numerical models were incorporated into this study to help interpret our observations.
Vanessa Brocchi, Gisèle Krysztofiak, Valéry Catoire, Jonathan Guth, Virginie Marécal, Régina Zbinden, Laaziz El Amraoui, François Dulac, and Philippe Ricaud
Atmos. Chem. Phys., 18, 6887–6906, https://doi.org/10.5194/acp-18-6887-2018, https://doi.org/10.5194/acp-18-6887-2018, 2018
Short summary
Short summary
The Mediterranean Basin still suffers from a limited amount of in situ measurements for a good characterization of its environmental state. This study shows that intercontinental transport of very high CO concentrations can affect the upper Mediterranean Basin troposphere. By using modeling, 5- to 12-day eastward transport of biomass burning starting from North America and Siberia impacts the mid-troposphere of the Mediterranean Basin.
Camille Richon, Jean-Claude Dutay, François Dulac, Rong Wang, and Yves Balkanski
Biogeosciences, 15, 2499–2524, https://doi.org/10.5194/bg-15-2499-2018, https://doi.org/10.5194/bg-15-2499-2018, 2018
Short summary
Short summary
This work is part of the Mermex and ChArMEx projects of the MISTRALS program. It aims at studying the impacts of phosphorus deposition from contrasted sources on the biogeochemical cycles of the Mediterranean Sea.
The results show that combustion-related phosphorus deposition effects dominate P deposition over the northern Mediterranean, whereas dust-derived phosphorus deposition effects dominate in the southern part.
Yannick Kangah, Philippe Ricaud, Jean-Luc Attié, Naoko Saitoh, Jérôme Vidot, Pascal Brunel, and Samuel Quesada-Ruiz
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-21, https://doi.org/10.5194/amt-2018-21, 2018
Revised manuscript not accepted
Jean-Baptiste Renard, François Dulac, Pierre Durand, Quentin Bourgeois, Cyrielle Denjean, Damien Vignelles, Benoit Couté, Matthieu Jeannot, Nicolas Verdier, and Marc Mallet
Atmos. Chem. Phys., 18, 3677–3699, https://doi.org/10.5194/acp-18-3677-2018, https://doi.org/10.5194/acp-18-3677-2018, 2018
Short summary
Short summary
A campaign was performed in the summer of 2013 above the Mediterranean basin, including in situ counting balloon-borne aerosol measurements (LOAC), for the detection of mineral dust. Three modes in the dust particle volume size distributions were detected, at roughly 0.2, 4, and 30 mm. Particles larger than 40 mm were often observed. They were lifted several days before and their persistence after transport over long distances is in conflict with dust sedimentation calculations.
Yinghe Fu, Karine Desboeufs, Julie Vincent, Elisabeth Bon Nguyen, Benoit Laurent, Remi Losno, and François Dulac
Atmos. Meas. Tech., 10, 4389–4401, https://doi.org/10.5194/amt-10-4389-2017, https://doi.org/10.5194/amt-10-4389-2017, 2017
Uri Dayan, Philippe Ricaud, Régina Zbinden, and François Dulac
Atmos. Chem. Phys., 17, 13233–13263, https://doi.org/10.5194/acp-17-13233-2017, https://doi.org/10.5194/acp-17-13233-2017, 2017
Jovanna Arndt, Jean Sciare, Marc Mallet, Greg C. Roberts, Nicolas Marchand, Karine Sartelet, Karine Sellegri, François Dulac, Robert M. Healy, and John C. Wenger
Atmos. Chem. Phys., 17, 6975–7001, https://doi.org/10.5194/acp-17-6975-2017, https://doi.org/10.5194/acp-17-6975-2017, 2017
Short summary
Short summary
The chemical composition of individual PM2.5 particles was measured at a background site on Corsica in the Mediterranean to determine the contribution of different sources to background aerosol in the region. Most of the particles were from fossil fuel combustion and biomass burning, transported to the site from France, Italy and eastern Europe, and also accumulated other species en route. This work shows that largest impact on air quality in the Mediterranean is from anthropogenic emissions.
Philippe Ricaud, Eric Bazile, Massimo del Guasta, Christian Lanconelli, Paolo Grigioni, and Achraf Mahjoub
Atmos. Chem. Phys., 17, 5221–5237, https://doi.org/10.5194/acp-17-5221-2017, https://doi.org/10.5194/acp-17-5221-2017, 2017
Short summary
Short summary
The novelty of the paper is to combine a large set of measurements and meteorological models to study the genesis of thick cloud and diamond dust/ice fog (ice crystals) episodes above Dome C, Antarctica. The originality of the work is to attribute the presence of thick cloud and diamond dust/ice fog to advection and microphysical processes with oceanic and continental origin of air masses, respectively. Thick cloud episodes are reproduced by the models but not diamond dust/ice fog episode.
Rachid Abida, Jean-Luc Attié, Laaziz El Amraoui, Philippe Ricaud, William Lahoz, Henk Eskes, Arjo Segers, Lyana Curier, Johan de Haan, Jukka Kujanpää, Albert Oude Nijhuis, Johanna Tamminen, Renske Timmermans, and Pepijn Veefkind
Atmos. Chem. Phys., 17, 1081–1103, https://doi.org/10.5194/acp-17-1081-2017, https://doi.org/10.5194/acp-17-1081-2017, 2017
Short summary
Short summary
A detailed Observing System Simulation Experiment is performed to quantify the impact of future satellite instrument S-5P carbon monoxide (CO) on tropospheric analyses and forecasts. We focus on Europe for the period of northern summer 2003, when there was a severe heat wave episode. S-5P is able to capture the CO from forest fires that occurred in Portugal. Furthermore, our results provide evidence of S-5P CO benefits for monitoring processes contributing to atmospheric pollution.
François Gheusi, Pierre Durand, Nicolas Verdier, François Dulac, Jean-Luc Attié, Philippe Commun, Brice Barret, Claude Basdevant, Antoine Clenet, Solène Derrien, Alexis Doerenbecher, Laaziz El Amraoui, Alain Fontaine, Emeric Hache, Corinne Jambert, Elodie Jaumouillé, Yves Meyerfeld, Laurent Roblou, and Flore Tocquer
Atmos. Meas. Tech., 9, 5811–5832, https://doi.org/10.5194/amt-9-5811-2016, https://doi.org/10.5194/amt-9-5811-2016, 2016
Short summary
Short summary
Boundary-layer pressurised balloons allow for horizontal multi-day flights in the lower atmosphere, carrying light scientific payloads. Ozonesondes, usually used for balloon soundings have too short a lifetime for such flights. An adaptation is proposed, whereby conventional sondes are operated with short measurement phases alternating with longer periods of dormancy. The sondes were operated over the western Mediterranean, offering an original perspective on tropospheric ozone.
Bojan Sič, Laaziz El Amraoui, Andrea Piacentini, Virginie Marécal, Emanuele Emili, Daniel Cariolle, Michael Prather, and Jean-Luc Attié
Atmos. Meas. Tech., 9, 5535–5554, https://doi.org/10.5194/amt-9-5535-2016, https://doi.org/10.5194/amt-9-5535-2016, 2016
Michaël Sicard, Rubén Barragan, François Dulac, Lucas Alados-Arboledas, and Marc Mallet
Atmos. Chem. Phys., 16, 12177–12203, https://doi.org/10.5194/acp-16-12177-2016, https://doi.org/10.5194/acp-16-12177-2016, 2016
Short summary
Short summary
The seasonal variability of the aerosol optical, microphysical and radiative properties at three insular sites in the western Mediterranean Basin is presented. The main drivers of the observed annual cycles and NE–SW gradients are mineral dust outbreaks in summer and European continental aerosols in spring. The lack of NE–W gradients of some aerosol properties is attributed to a homogeneous spatial distribution of the fine particle load and absorption low values in the southwesternmost site.
Swagata Payra, Philippe Ricaud, Rachid Abida, Laaziz El Amraoui, Jean-Luc Attié, Emmanuel Rivière, Fabien Carminati, and Thomas von Clarmann
Atmos. Meas. Tech., 9, 4355–4373, https://doi.org/10.5194/amt-9-4355-2016, https://doi.org/10.5194/amt-9-4355-2016, 2016
Short summary
Short summary
The study deals with the budget of water vapour (H2O) at the tropical tropopause. The MOCAGE-VALENTINA assimilation tool has been used to assimilate Microwave Limb Sounder H2O space-borne measurements within the 316–5 hPa range from August 2011 to March 2013. Diagnostics are developed to assess the quality of the analyses depending on several parameters. Sensitivity studies show the improvement on the analyses when assimilating measurements of better quality, mainly over the convective areas.
Claudia Di Biagio, Paola Formenti, Lionel Doppler, Cécile Gaimoz, Noel Grand, Gerard Ancellet, Jean-Luc Attié, Silvia Bucci, Philippe Dubuisson, Federico Fierli, Marc Mallet, and François Ravetta
Atmos. Chem. Phys., 16, 10591–10607, https://doi.org/10.5194/acp-16-10591-2016, https://doi.org/10.5194/acp-16-10591-2016, 2016
Short summary
Short summary
Pollution aerosols strongly influence the composition of the Western Mediterranean, but at present little is known on their optical properties. Here, we report observations of pollution aerosols measured during the TRAQA airborne campaign in summer 2012. Data from this study indicate a large variability of the absorption for pollution particles. This variability strongly influences their direct radiative effect, with possible consequences on the hydrological cycle in this part of the basin.
Jean-Baptiste Renard, François Dulac, Gwenaël Berthet, Thibaut Lurton, Damien Vignelles, Fabrice Jégou, Thierry Tonnelier, Matthieu Jeannot, Benoit Couté, Rony Akiki, Nicolas Verdier, Marc Mallet, François Gensdarmes, Patrick Charpentier, Samuel Mesmin, Vincent Duverger, Jean-Charles Dupont, Thierry Elias, Vincent Crenn, Jean Sciare, Paul Zieger, Matthew Salter, Tjarda Roberts, Jérôme Giacomoni, Matthieu Gobbi, Eric Hamonou, Haraldur Olafsson, Pavla Dagsson-Waldhauserova, Claude Camy-Peyret, Christophe Mazel, Thierry Décamps, Martin Piringer, Jérémy Surcin, and Daniel Daugeron
Atmos. Meas. Tech., 9, 3673–3686, https://doi.org/10.5194/amt-9-3673-2016, https://doi.org/10.5194/amt-9-3673-2016, 2016
Short summary
Short summary
We illustrate the first Light Optical Aerosol Counter (LOAC) airborne results obtained from an unmanned aerial vehicle (UAV) and a variety of scientific balloons: tethered balloons deployed in urban environments, pressurized balloons drifting in the lower troposphere over the western Mediterranean during the Chemistry-Aerosol Mediterranean Experiment (ChArMEx), and meteorological sounding balloons launched in the western Mediterranean region and in the south-west of France.
Julie Vincent, Benoit Laurent, Rémi Losno, Elisabeth Bon Nguyen, Pierre Roullet, Stéphane Sauvage, Servanne Chevaillier, Patrice Coddeville, Noura Ouboulmane, Alcide Giorgio di Sarra, Antonio Tovar-Sánchez, Damiano Sferlazzo, Ana Massanet, Sylvain Triquet, Rafael Morales Baquero, Michel Fornier, Cyril Coursier, Karine Desboeufs, François Dulac, and Gilles Bergametti
Atmos. Chem. Phys., 16, 8749–8766, https://doi.org/10.5194/acp-16-8749-2016, https://doi.org/10.5194/acp-16-8749-2016, 2016
Short summary
Short summary
To investigate dust deposition dynamics at the regional scale, five automatic deposition collectors named CARAGA have been deployed in the western Mediterranean basin (Lampedusa, Majorca, Corsica, Frioul and Le Casset) during 1 to 3 years depending on the station. Complementary observations provided by both satellite and air mass trajectories are used to identify the dust provenance areas and the transport pathways from the Sahara to the stations for the studied period.
Hélène Angot, Olivier Magand, Detlev Helmig, Philippe Ricaud, Boris Quennehen, Hubert Gallée, Massimo Del Guasta, Francesca Sprovieri, Nicola Pirrone, Joël Savarino, and Aurélien Dommergue
Atmos. Chem. Phys., 16, 8249–8264, https://doi.org/10.5194/acp-16-8249-2016, https://doi.org/10.5194/acp-16-8249-2016, 2016
Short summary
Short summary
While the Arctic has been extensively monitored, there is still much to be learned from the Antarctic continent regarding the processes that govern the budget of atmospheric mercury species. We report here the first year-round measurements of gaseous elemental mercury (Hg(0)) in the atmosphere and in snowpack interstitial air on the East Antarctic ice sheet. The striking reactivity observed on the Antarctic plateau most likely influences the cycle of atmospheric mercury on a continental scale.
María José Granados-Muñoz, Francisco Navas-Guzmán, Juan Luis Guerrero-Rascado, Juan Antonio Bravo-Aranda, Ioannis Binietoglou, Sergio Nepomuceno Pereira, Sara Basart, José María Baldasano, Livio Belegante, Anatoli Chaikovsky, Adolfo Comerón, Giuseppe D'Amico, Oleg Dubovik, Luka Ilic, Panos Kokkalis, Constantino Muñoz-Porcar, Slobodan Nickovic, Doina Nicolae, Francisco José Olmo, Alexander Papayannis, Gelsomina Pappalardo, Alejandro Rodríguez, Kerstin Schepanski, Michaël Sicard, Ana Vukovic, Ulla Wandinger, François Dulac, and Lucas Alados-Arboledas
Atmos. Chem. Phys., 16, 7043–7066, https://doi.org/10.5194/acp-16-7043-2016, https://doi.org/10.5194/acp-16-7043-2016, 2016
Short summary
Short summary
This study provides a detailed overview of the Mediterranean region regarding aerosol microphysical properties during the ChArMEx/EMEP campaign in July 2012. An in-depth analysis of the horizontal, vertical, and temporal dimensions is performed using LIRIC, proving the algorithm's ability in automated retrieval of microphysical property profiles within a network. A validation of four dust models is included, obtaining fair good agreement, especially for the vertical distribution of the aerosol.
Jean-Baptiste Renard, François Dulac, Gwenaël Berthet, Thibaut Lurton, Damien Vignelles, Fabrice Jégou, Thierry Tonnelier, Matthieu Jeannot, Benoit Couté, Rony Akiki, Nicolas Verdier, Marc Mallet, François Gensdarmes, Patrick Charpentier, Samuel Mesmin, Vincent Duverger, Jean-Charles Dupont, Thierry Elias, Vincent Crenn, Jean Sciare, Paul Zieger, Matthew Salter, Tjarda Roberts, Jérôme Giacomoni, Matthieu Gobbi, Eric Hamonou, Haraldur Olafsson, Pavla Dagsson-Waldhauserova, Claude Camy-Peyret, Christophe Mazel, Thierry Décamps, Martin Piringer, Jérémy Surcin, and Daniel Daugeron
Atmos. Meas. Tech., 9, 1721–1742, https://doi.org/10.5194/amt-9-1721-2016, https://doi.org/10.5194/amt-9-1721-2016, 2016
Short summary
Short summary
LOAC is a light aerosols counter for performing measurements at the surface and under all kinds of atmospheric balloons. LOAC performs observations at two scattering angles. The first one at 12° is insensitive to the refractive index of the particles; the second one at 60° is strongly sensitive to the refractive index. By combining the measurements, it is possible to retrieve the size distribution between 0.2 and 100 micrometeres and to estimate the nature of the dominant particles.
Gerard Ancellet, Jacques Pelon, Julien Totems, Patrick Chazette, Ariane Bazureau, Michaël Sicard, Tatiana Di Iorio, Francois Dulac, and Marc Mallet
Atmos. Chem. Phys., 16, 4725–4742, https://doi.org/10.5194/acp-16-4725-2016, https://doi.org/10.5194/acp-16-4725-2016, 2016
Short summary
Short summary
A multi-lidar analysis conducted in the Mediterranean basin compares the impact of the long-range transport of North American biomass burning aerosols with the role of frequently observed Saharan dust outbreaks. This paper provides a detailed analysis of the potential North American aerosol sources, their transport to Europe and the mixing of different aerosol sources, using simulations of a particle dispersion model and lidar measurements of the aerosol optical properties.
M. Mallet, F. Dulac, P. Formenti, P. Nabat, J. Sciare, G. Roberts, J. Pelon, G. Ancellet, D. Tanré, F. Parol, C. Denjean, G. Brogniez, A. di Sarra, L. Alados-Arboledas, J. Arndt, F. Auriol, L. Blarel, T. Bourrianne, P. Chazette, S. Chevaillier, M. Claeys, B. D'Anna, Y. Derimian, K. Desboeufs, T. Di Iorio, J.-F. Doussin, P. Durand, A. Féron, E. Freney, C. Gaimoz, P. Goloub, J. L. Gómez-Amo, M. J. Granados-Muñoz, N. Grand, E. Hamonou, I. Jankowiak, M. Jeannot, J.-F. Léon, M. Maillé, S. Mailler, D. Meloni, L. Menut, G. Momboisse, J. Nicolas, T. Podvin, V. Pont, G. Rea, J.-B. Renard, L. Roblou, K. Schepanski, A. Schwarzenboeck, K. Sellegri, M. Sicard, F. Solmon, S. Somot, B Torres, J. Totems, S. Triquet, N. Verdier, C. Verwaerde, F. Waquet, J. Wenger, and P. Zapf
Atmos. Chem. Phys., 16, 455–504, https://doi.org/10.5194/acp-16-455-2016, https://doi.org/10.5194/acp-16-455-2016, 2016
Short summary
Short summary
The aim of this article is to present an experimental campaign over the Mediterranean focused on aerosol-radiation measurements and modeling. Results indicate an important atmospheric loading associated with a moderate absorbing ability of mineral dust. Observations suggest a complex vertical structure and size distributions characterized by large aerosols within dust plumes. The radiative effect is highly variable, with negative forcing over the Mediterranean and positive over northern Africa.
A. M. Toihir, H. Bencherif, V. Sivakumar, L. El Amraoui, T. Portafaix, and N. Mbatha
Ann. Geophys., 33, 1135–1146, https://doi.org/10.5194/angeo-33-1135-2015, https://doi.org/10.5194/angeo-33-1135-2015, 2015
J.-F. Léon, P. Augustin, M. Mallet, T. Bourrianne, V. Pont, F. Dulac, M. Fourmentin, D. Lambert, and B. Sauvage
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-9507-2015, https://doi.org/10.5194/acpd-15-9507-2015, 2015
Preprint withdrawn
Short summary
Short summary
This paper presents the aerosol vertical distribution observed by lidar soundings in Corsica (western Mediterranean) between February 2012 and August 2013. A seasonal cycle is observed in the extinction coefficient profiles and aerosol optical thickness with minima in winter and maxima in spring-summer. Less than 10% of the daily observations show high AOD corresponding to the large-scale advection of desert dust from Northern Africa or pollution aerosols from Europe.
B. Sič, L. El Amraoui, V. Marécal, B. Josse, J. Arteta, J. Guth, M. Joly, and P. D. Hamer
Geosci. Model Dev., 8, 381–408, https://doi.org/10.5194/gmd-8-381-2015, https://doi.org/10.5194/gmd-8-381-2015, 2015
J.-B. Renard, F. Dulac, G. Berthet, T. Lurton, D. Vignelles, F. Jégou, T. Tonnelier, C. Thaury, M. Jeannot, B. Couté, R. Akiki, J.-L. Mineau, N. Verdier, M. Mallet, F. Gensdarmes, P. Charpentier, S. Mesmin, V. Duverger, J.-C. Dupont, T. Elias, V. Crenn, J. Sciare, J. Giacomoni, M. Gobbi, E. Hamonou, H. Olafsson, P. Dagsson-Waldhauserova, C. Camy-Peyret, C. Mazel, T. Décamps, M. Piringer, J. Surcin, and D. Daugeron
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-8-1203-2015, https://doi.org/10.5194/amtd-8-1203-2015, 2015
Revised manuscript not accepted
J.-B. Renard, F. Dulac, G. Berthet, T. Lurton, D. Vignelle, F. Jégou, T. Tonnelier, C. Thaury, M. Jeannot, B. Couté, R. Akiki, J.-L. Mineau, N. Verdier, M. Mallet, F. Gensdarmes, P. Charpentier, S. Mesmin, V. Duverger, J.-C. Dupont, T. Elias, V. Crenn, J. Sciare, J. Giacomoni, M. Gobbi, E. Hamonou, H. Olafsson, P. Dagsson-Waldhauserova, C. Camy-Peyret, C. Mazel, T. Décamps, M. Piringer, J. Surcin, and D. Daugeron
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-8-1261-2015, https://doi.org/10.5194/amtd-8-1261-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
We present exemples of measurements obtained by the new light optical aerosol counter LOAC. The measurement were conducted from different kinds of balloons in the troposphre and stratosphere.
A. T. J. de Laat, I. Aben, M. Deeter, P. Nédélec, H. Eskes, J.-L. Attié, P. Ricaud, R. Abida, L. El Amraoui, and J. Landgraf
Atmos. Meas. Tech., 7, 3783–3799, https://doi.org/10.5194/amt-7-3783-2014, https://doi.org/10.5194/amt-7-3783-2014, 2014
Y. Wang, K. N. Sartelet, M. Bocquet, P. Chazette, M. Sicard, G. D'Amico, J. F. Léon, L. Alados-Arboledas, A. Amodeo, P. Augustin, J. Bach, L. Belegante, I. Binietoglou, X. Bush, A. Comerón, H. Delbarre, D. García-Vízcaino, J. L. Guerrero-Rascado, M. Hervo, M. Iarlori, P. Kokkalis, D. Lange, F. Molero, N. Montoux, A. Muñoz, C. Muñoz, D. Nicolae, A. Papayannis, G. Pappalardo, J. Preissler, V. Rizi, F. Rocadenbosch, K. Sellegri, F. Wagner, and F. Dulac
Atmos. Chem. Phys., 14, 12031–12053, https://doi.org/10.5194/acp-14-12031-2014, https://doi.org/10.5194/acp-14-12031-2014, 2014
P. Ricaud, B. Sič, L. El Amraoui, J.-L. Attié, R. Zbinden, P. Huszar, S. Szopa, J. Parmentier, N. Jaidan, M. Michou, R. Abida, F. Carminati, D. Hauglustaine, T. August, J. Warner, R. Imasu, N. Saitoh, and V.-H. Peuch
Atmos. Chem. Phys., 14, 11427–11446, https://doi.org/10.5194/acp-14-11427-2014, https://doi.org/10.5194/acp-14-11427-2014, 2014
C. Guieu, C. Ridame, E. Pulido-Villena, M. Bressac, K. Desboeufs, and F. Dulac
Biogeosciences, 11, 5621–5635, https://doi.org/10.5194/bg-11-5621-2014, https://doi.org/10.5194/bg-11-5621-2014, 2014
L. El Amraoui, J.-L. Attié, P. Ricaud, W. A. Lahoz, A. Piacentini, V.-H. Peuch, J. X. Warner, R. Abida, J. Barré, and R. Zbinden
Atmos. Meas. Tech., 7, 3035–3057, https://doi.org/10.5194/amt-7-3035-2014, https://doi.org/10.5194/amt-7-3035-2014, 2014
C. Aghnatios, R. Losno, and F. Dulac
Biogeosciences, 11, 4627–4633, https://doi.org/10.5194/bg-11-4627-2014, https://doi.org/10.5194/bg-11-4627-2014, 2014
E. Hache, J.-L. Attié, C. Tourneur, P. Ricaud, L. Coret, W. A. Lahoz, L. El Amraoui, B. Josse, P. Hamer, J. Warner, X. Liu, K. Chance, M. Höpfner, R. Spurr, V. Natraj, S. Kulawik, A. Eldering, and J. Orphal
Atmos. Meas. Tech., 7, 2185–2201, https://doi.org/10.5194/amt-7-2185-2014, https://doi.org/10.5194/amt-7-2185-2014, 2014
F. Carminati, P. Ricaud, J.-P. Pommereau, E. Rivière, S. Khaykin, J.-L. Attié, and J. Warner
Atmos. Chem. Phys., 14, 6195–6211, https://doi.org/10.5194/acp-14-6195-2014, https://doi.org/10.5194/acp-14-6195-2014, 2014
C. Guieu, F. Dulac, C. Ridame, and P. Pondaven
Biogeosciences, 11, 425–442, https://doi.org/10.5194/bg-11-425-2014, https://doi.org/10.5194/bg-11-425-2014, 2014
E. Emili, B. Barret, S. Massart, E. Le Flochmoen, A. Piacentini, L. El Amraoui, O. Pannekoucke, and D. Cariolle
Atmos. Chem. Phys., 14, 177–198, https://doi.org/10.5194/acp-14-177-2014, https://doi.org/10.5194/acp-14-177-2014, 2014
J. X. Warner, R. Yang, Z. Wei, F. Carminati, A. Tangborn, Z. Sun, W. Lahoz, J.-L. Attié, L. El Amraoui, and B. Duncan
Atmos. Chem. Phys., 14, 103–114, https://doi.org/10.5194/acp-14-103-2014, https://doi.org/10.5194/acp-14-103-2014, 2014
R. M. Zbinden, V. Thouret, P. Ricaud, F. Carminati, J.-P. Cammas, and P. Nédélec
Atmos. Chem. Phys., 13, 12363–12388, https://doi.org/10.5194/acp-13-12363-2013, https://doi.org/10.5194/acp-13-12363-2013, 2013
J.-L. Baray, Y. Courcoux, P. Keckhut, T. Portafaix, P. Tulet, J.-P. Cammas, A. Hauchecorne, S. Godin Beekmann, M. De Mazière, C. Hermans, F. Desmet, K. Sellegri, A. Colomb, M. Ramonet, J. Sciare, C. Vuillemin, C. Hoareau, D. Dionisi, V. Duflot, H. Vérèmes, J. Porteneuve, F. Gabarrot, T. Gaudo, J.-M. Metzger, G. Payen, J. Leclair de Bellevue, C. Barthe, F. Posny, P. Ricaud, A. Abchiche, and R. Delmas
Atmos. Meas. Tech., 6, 2865–2877, https://doi.org/10.5194/amt-6-2865-2013, https://doi.org/10.5194/amt-6-2865-2013, 2013
P. Huszar, H. Teyssèdre, M. Michou, A. Voldoire, D. J. L. Olivié, D. Saint-Martin, D. Cariolle, S. Senesi, D. Salas Y Melia, A. Alias, F. Karcher, P. Ricaud, and T. Halenka
Atmos. Chem. Phys., 13, 10027–10048, https://doi.org/10.5194/acp-13-10027-2013, https://doi.org/10.5194/acp-13-10027-2013, 2013
M. Mallet, O. Dubovik, P. Nabat, F. Dulac, R. Kahn, J. Sciare, D. Paronis, and J. F. Léon
Atmos. Chem. Phys., 13, 9195–9210, https://doi.org/10.5194/acp-13-9195-2013, https://doi.org/10.5194/acp-13-9195-2013, 2013
P. Nabat, S. Somot, M. Mallet, I. Chiapello, J. J. Morcrette, F. Solmon, S. Szopa, F. Dulac, W. Collins, S. Ghan, L. W. Horowitz, J. F. Lamarque, Y. H. Lee, V. Naik, T. Nagashima, D. Shindell, and R. Skeie
Atmos. Meas. Tech., 6, 1287–1314, https://doi.org/10.5194/amt-6-1287-2013, https://doi.org/10.5194/amt-6-1287-2013, 2013
Related subject area
Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Natural emissions of VOC and NOx over Africa constrained by TROPOMI HCHO and NO2 data using the MAGRITTEv1.1 model
Anthropogenic emission controls reduce summertime ozone–temperature sensitivity in the United States
Investigating the response of China's surface ozone concentration to the future changes of multiple factors
Assessing the relative impacts of satellite ozone and its precursor observations to improve global tropospheric ozone analysis using multiple chemical reanalysis systems
Evaluating present-day and future impacts of agricultural ammonia emissions on atmospheric chemistry and climate
Air-pollution-satellite-based CO2 emission inversion: system evaluation, sensitivity analysis, and future research direction
Insights into ozone pollution control in urban areas by decoupling meteorological factors based on machine learning
Quantification of regional net CO2 flux errors in the Orbiting Carbon Observatory-2 (OCO-2) v10 model intercomparison project (MIP) ensemble using airborne measurements
Reactive nitrogen in and around the northeastern and mid-Atlantic US: sources, sinks, and connections with ozone
Preindustrial-to-present-day changes in atmospheric carbon monoxide: agreement and gaps between ice archives and global model reconstructions
Investigating processes influencing simulation of local Arctic wintertime anthropogenic pollution in Fairbanks, Alaska, during ALPACA-2022
Urban ozone formation and sensitivities to volatile chemical products, cooking emissions, and NOx upwind of and within two Los Angeles Basin cities
Causes of growing middle-to-upper tropospheric ozone over the northwest Pacific region
Impact of introducing electric vehicles on ground-level O3 and PM2.5 in the Greater Tokyo Area: yearly trends and the importance of changes in the urban heat island effect
A CO2–Δ14CO2 inversion setup for estimating European fossil CO2 emissions
Maximum ozone concentrations in the southwestern US and Texas: implications of the growing predominance of the background contribution
Derivation of atmospheric reaction mechanisms for volatile organic compounds by the SAPRC mechanism generation system (MechGen)
Seasonal, regional, and vertical characteristics of high-carbon-monoxide plumes along with their associated ozone anomalies, as seen by IAGOS between 2002 and 2019
The potential of drone observations to improve air quality predictions by 4D-Var
Process analysis of elevated concentrations of organic acids at Whiteface Mountain, New York
Ozone source attribution in polluted European areas during summer 2017 as simulated with MECO(n)
Surface ozone trend variability across the United States and the impact of heatwaves (1990–2023)
Opinion: Challenges and needs of tropospheric chemical mechanism development
Tracking daily NOx emissions from an urban agglomeration based on TROPOMI NO2 and a local ensemble transform Kalman filter
The atmospheric oxidizing capacity in China – Part 2: Sensitivity to emissions of primary pollutants
Role of chemical production and depositional losses on formaldehyde in the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMM)
Review of source analyses of ambient volatile organic compounds considering reactive losses: methods of reducing loss effects, impacts of losses, and sources
Interpreting summertime hourly variation of NO2 columns with implications for geostationary satellite applications
An investigation into atmospheric nitrous acid (HONO) processes in South Korea
Performance evaluation of UKESM1 for surface ozone across the pan-tropics
Constraining light dependency in modeled emissions through comparison to observed biogenic volatile organic compound (BVOC) concentrations in a southeastern US forest
A global re-analysis of regionally resolved emissions and atmospheric mole fractions of SF6 for the period 2005–2021
Monoterpene oxidation pathways initiated by acyl peroxy radical addition
Tropospheric ozone precursors: global and regional distributions, trends, and variability
Sensitivity of climate effects of hydrogen to leakage size, location, and chemical background
The contribution of transport emissions to ozone mixing ratios and methane lifetime in 2015 and 2050 in the Shared Socioeconomic Pathways (SSPs)
Local and transboundary contributions to nitrogen loadings across East Asia using CMAQ-ISAM and GEMS-informed emissions inventory during the winter-spring transition
Ether and ester formation from peroxy radical recombination: a qualitative reaction channel analysis
ACEIC: a comprehensive anthropogenic chlorine emission inventory for China
Impact of methane and other precursor emission reductions on surface ozone in Europe: scenario analysis using the European Monitoring and Evaluation Programme (EMEP) Meteorological Synthesizing Centre – West (MSC-W) model
Chemistry-climate feedback of atmospheric methane in a methane emission flux driven chemistry-climate model
Verifying national inventory-based combustion emissions of CO2 across the UK and mainland Europe using satellite observations of atmospheric CO and CO2
Revisiting the high tropospheric ozone over Southern Africa: overestimated biomass burning and underestimated anthropogenic emissions
Source contribution to ozone pollution during June 2021 in Arizona: Insights from WRF-Chem tagged O3 and CO
Enhanced understanding of atmospheric blocking modulation on ozone dynamics within a high-resolution Earth system model
Estimating the variability of NOx emissions from Wuhan with TROPOMI NO2 data during 2018 to 2023
An improved estimate of inorganic iodine emissions from the ocean using a coupled surface microlayer box model
Technical note: A comparative study of chemistry schemes for volcanic sulfur dioxide in Lagrangian transport simulations: a case study of the 2019 Raikoke eruption
Evaluating tropospheric nitrogen dioxide in UKCA using OMI satellite retrievals over South and East Asia
Impact of improved representation of volatile organic compound emissions and production of NOx reservoirs on modeled urban ozone production
Beata Opacka, Trissevgeni Stavrakou, Jean-François Müller, Isabelle De Smedt, Jos van Geffen, Eloise A. Marais, Rebekah P. Horner, Dylan B. Millet, Kelly C. Wells, and Alex B. Guenther
Atmos. Chem. Phys., 25, 2863–2894, https://doi.org/10.5194/acp-25-2863-2025, https://doi.org/10.5194/acp-25-2863-2025, 2025
Short summary
Short summary
Vegetation releases biogenic volatile organic compounds, while soils and lightning contribute to the natural emissions of nitrogen oxides into the atmosphere. These gases interact in complex ways. Using satellite data and models, we developed a new method to simultaneously optimize these natural emissions over Africa in 2019. Our approach resulted in an increase in natural emissions, supported by independent data indicating that current estimates are underestimated.
Shuai Li, Haolin Wang, and Xiao Lu
Atmos. Chem. Phys., 25, 2725–2743, https://doi.org/10.5194/acp-25-2725-2025, https://doi.org/10.5194/acp-25-2725-2025, 2025
Short summary
Short summary
Summertime ozone–temperature sensitivity has decreased by 50 % from 3.0 ppbv per K in 1990 to 1.5 ppb per K in 2021 in the US. GEOS-Chem simulations show that anthropogenic nitrogen oxide emission reduction is the dominant driver of ozone–temperature sensitivity decline by influencing both temperature direct and temperature indirect processes. Reduced ozone–temperature sensitivity has decreased ozone enhancement from low to high temperatures by an average of 6.8 ppbv across the US.
Jinya Yang, Yutong Wang, Lei Zhang, and Yu Zhao
Atmos. Chem. Phys., 25, 2649–2666, https://doi.org/10.5194/acp-25-2649-2025, https://doi.org/10.5194/acp-25-2649-2025, 2025
Short summary
Short summary
We develop a modeling framework to predict future ozone concentrations (till the 2060s) in China following an IPCC scenario. We evaluate the contributions of climatic, anthropogenic, and biogenic factors by season and region. We find persistent emission controls will alter the nonlinear response of ozone to its precursors and dominate the declining ozone level. The outcomes highlight the importance of human actions, even with a climate penalty on air quality.
Takashi Sekiya, Emanuele Emili, Kazuyuki Miyazaki, Antje Inness, Zhen Qu, R. Bradley Pierce, Dylan Jones, Helen Worden, William Y. Y. Cheng, Vincent Huijnen, and Gerbrand Koren
Atmos. Chem. Phys., 25, 2243–2268, https://doi.org/10.5194/acp-25-2243-2025, https://doi.org/10.5194/acp-25-2243-2025, 2025
Short summary
Short summary
Five global chemical reanalysis datasets were used to assess the relative impacts of assimilating satellite ozone and its precursor measurements on tropospheric ozone analyses for 2010. The multiple reanalysis system comparison allows an evaluation of the dependency of the impacts on different reanalysis systems. The results suggested the importance of satellite ozone and its precursor measurements for improving ozone analysis in the whole troposphere, with varying magnitudes among the systems.
Maureen Beaudor, Didier Hauglustaine, Juliette Lathière, Martin Van Damme, Lieven Clarisse, and Nicolas Vuichard
Atmos. Chem. Phys., 25, 2017–2046, https://doi.org/10.5194/acp-25-2017-2025, https://doi.org/10.5194/acp-25-2017-2025, 2025
Short summary
Short summary
Agriculture is the biggest ammonia (NH3) source, impacting air quality, climate, and ecosystems. Because of food demand, NH3 emissions are projected to rise by 2100. Using a global model, we analyzed the impact of present and future NH3 emissions generated from a land model. Our results show improved ammonia patterns compared to a reference inventory. Future scenarios predict up to 70 % increase in global NH3 burden, with significant changes in radiative forcing that can greatly elevate N2O.
Hui Li, Jiaxin Qiu, and Bo Zheng
Atmos. Chem. Phys., 25, 1949–1963, https://doi.org/10.5194/acp-25-1949-2025, https://doi.org/10.5194/acp-25-1949-2025, 2025
Short summary
Short summary
We conduct a sensitivity analysis with 31 tests on various factors including prior emissions, model resolution, satellite constraint, and other system configurations to assess the vulnerability of emission estimates across temporal, sectoral, and regional dimensions. This reveals the robustness of emissions estimated by this air-pollution-satellite-based CO2 emission inversion system, with relative change between tests and base inversion below 4.0 % for national annual NOx and CO2 emissions.
Yuqing Qiu, Xin Li, Wenxuan Chai, Yi Liu, Mengdi Song, Xudong Tian, Qiaoli Zou, Wenjun Lou, Wangyao Zhang, Juan Li, and Yuanhang Zhang
Atmos. Chem. Phys., 25, 1749–1763, https://doi.org/10.5194/acp-25-1749-2025, https://doi.org/10.5194/acp-25-1749-2025, 2025
Short summary
Short summary
The chemical reactions of ozone (O3) formation are related to meteorology and local emissions. Here, a random forest approach was used to eliminate the effects of meteorological factors (dispersion or transport) on O3 and its precursors. Variations in the sensitivity of O3 formation and the apportionment of emission sources were revealed after meteorological normalization. Our results suggest that meteorological variations should be considered when diagnosing O3 formation.
Jeongmin Yun, Junjie Liu, Brendan Byrne, Brad Weir, Lesley E. Ott, Kathryn McKain, Bianca C. Baier, Luciana V. Gatti, and Sebastien C. Biraud
Atmos. Chem. Phys., 25, 1725–1748, https://doi.org/10.5194/acp-25-1725-2025, https://doi.org/10.5194/acp-25-1725-2025, 2025
Short summary
Short summary
This study quantifies errors in regional net surface–atmosphere CO2 flux estimates from an inverse model ensemble using airborne CO2 measurements. Our results show that flux error estimates based on observations significantly exceed those computed from the ensemble spread of flux estimates in regions with high fossil fuel emissions. This finding suggests the presence of systematic biases in the inversion estimates, associated with errors in the fossil fuel emissions common to all models.
Min Huang, Gregory R. Carmichael, Kevin W. Bowman, Isabelle De Smedt, Andreas Colliander, Michael H. Cosh, Sujay V. Kumar, Alex B. Guenther, Scott J. Janz, Ryan M. Stauffer, Anne M. Thompson, Niko M. Fedkin, Robert J. Swap, John D. Bolten, and Alicia T. Joseph
Atmos. Chem. Phys., 25, 1449–1476, https://doi.org/10.5194/acp-25-1449-2025, https://doi.org/10.5194/acp-25-1449-2025, 2025
Short summary
Short summary
We use model simulations along with multiplatform, multidisciplinary observations and a range of analysis methods to estimate and understand the distributions, temporal changes, and impacts of reactive nitrogen and ozone over the most populous US region that has undergone significant environmental changes. Deposition, biogenic emissions, and extra-regional sources have been playing increasingly important roles in controlling pollutant budgets in this area as local anthropogenic emissions drop.
Xavier Faïn, Sophie Szopa, Vaishali Naïk, Patricia Martinerie, David M. Etheridge, Rachael H. Rhodes, Cathy M. Trudinger, Vasilii V. Petrenko, Kévin Fourteau, and Philip Place
Atmos. Chem. Phys., 25, 1105–1119, https://doi.org/10.5194/acp-25-1105-2025, https://doi.org/10.5194/acp-25-1105-2025, 2025
Short summary
Short summary
Carbon monoxide (CO) plays a crucial role in the atmosphere's oxidizing capacity. In this study, we analyse how historical (1850–2014) [CO] outputs from state-of-the-art global chemistry–climate models over Greenland and Antarctica are able to capture both absolute values and trends recorded in multi-site ice archives. A disparity in [CO] growth rates emerges in the Northern Hemisphere between models and observations from 1920–1975 CE, possibly linked to uncertainties in CO emission factors.
Natalie Brett, Kathy S. Law, Steve R. Arnold, Javier G. Fochesatto, Jean-Christophe Raut, Tatsuo Onishi, Robert Gilliam, Kathleen Fahey, Deanna Huff, George Pouliot, Brice Barret, Elsa Dieudonné, Roman Pohorsky, Julia Schmale, Andrea Baccarini, Slimane Bekki, Gianluca Pappaccogli, Federico Scoto, Stefano Decesari, Antonio Donateo, Meeta Cesler-Maloney, William Simpson, Patrice Medina, Barbara D'Anna, Brice Temime-Roussel, Joel Savarino, Sarah Albertin, Jingqiu Mao, Becky Alexander, Allison Moon, Peter F. DeCarlo, Vanessa Selimovic, Robert Yokelson, and Ellis S. Robinson
Atmos. Chem. Phys., 25, 1063–1104, https://doi.org/10.5194/acp-25-1063-2025, https://doi.org/10.5194/acp-25-1063-2025, 2025
Short summary
Short summary
Processes influencing dispersion of local anthropogenic pollution in Arctic wintertime are investigated with Lagrangian dispersion modelling. Simulated power plant plume rise that considers temperature inversion layers improves results compared to observations (interior Alaska). Modelled surface concentrations are improved by representation of vertical mixing and emission estimates. Large increases in diesel vehicle emissions at temperatures reaching −35°C are required to reproduce observed NOx.
Chelsea E. Stockwell, Matthew M. Coggon, Rebecca H. Schwantes, Colin Harkins, Bert Verreyken, Congmeng Lyu, Qindan Zhu, Lu Xu, Jessica B. Gilman, Aaron Lamplugh, Jeff Peischl, Michael A. Robinson, Patrick R. Veres, Meng Li, Andrew W. Rollins, Kristen Zuraski, Sunil Baidar, Shang Liu, Toshihiro Kuwayama, Steven S. Brown, Brian C. McDonald, and Carsten Warneke
Atmos. Chem. Phys., 25, 1121–1143, https://doi.org/10.5194/acp-25-1121-2025, https://doi.org/10.5194/acp-25-1121-2025, 2025
Short summary
Short summary
In urban areas, emissions from everyday products like paints, cleaners, and personal care products, along with non-traditional sources such as cooking, are increasingly important and impact air quality. This study uses a box model to evaluate how these emissions impact ozone in the Los Angeles Basin and quantifies the impact of gaseous cooking emissions. Accurate representation of these and other anthropogenic sources in inventories is crucial for informing effective air quality policies.
Xiaodan Ma, Jianping Huang, Michaela I. Hegglin, Patrick Jöckel, and Tianliang Zhao
Atmos. Chem. Phys., 25, 943–958, https://doi.org/10.5194/acp-25-943-2025, https://doi.org/10.5194/acp-25-943-2025, 2025
Short summary
Short summary
Our research explored changes in ozone levels in the northwest Pacific region over 30 years, revealing a significant increase in the middle-to-upper troposphere, especially during spring and summer. This rise is influenced by both stratospheric and tropospheric sources, which affect climate and air quality in East Asia. This work underscores the need for continued study to understand underlying mechanisms.
Hiroo Hata, Norifumi Mizushima, and Tomohiko Ihara
Atmos. Chem. Phys., 25, 1037–1061, https://doi.org/10.5194/acp-25-1037-2025, https://doi.org/10.5194/acp-25-1037-2025, 2025
Short summary
Short summary
The introduction of battery electric vehicles (BEVs) is expected to reduce the primary air pollutants from vehicular exhaust and evaporative emissions while reducing the anthropogenic heat produced by vehicles, ultimately mitigating the urban heat island (UHI) effect. This study revealed the impact of introducing BEVs on the decrease in the UHI effect and the impact of BEVs on the formation of tropospheric ozone and fine particulate matter in the Greater Tokyo Area of Japan.
Carlos Gómez-Ortiz, Guillaume Monteil, Sourish Basu, and Marko Scholze
Atmos. Chem. Phys., 25, 397–424, https://doi.org/10.5194/acp-25-397-2025, https://doi.org/10.5194/acp-25-397-2025, 2025
Short summary
Short summary
In this paper, we test new implementations of our inverse modeling tool to estimate the weekly and regional CO2 emissions from fossil fuels in Europe. We use synthetic atmospheric observations of CO2 and radiocarbon (14CO2) to trace emissions to their sources, while separating the natural and fossil CO2. Our tool accurately estimates fossil CO2 emissions in densely monitored regions like western/central Europe. This approach aids in developing strategies for reducing CO2 emissions.
David D. Parrish, Ian C. Faloona, and Richard G. Derwent
Atmos. Chem. Phys., 25, 263–289, https://doi.org/10.5194/acp-25-263-2025, https://doi.org/10.5194/acp-25-263-2025, 2025
Short summary
Short summary
Observation-based estimates of contributions to maximum ozone (O3) concentrations show that background O3 can exceed the air quality standard of 70 ppb in the southwestern US, precluding standard attainment. Over the past 4 decades, US anthropogenic O3 has decreased by a factor of ~ 6.3, while wildfire contributions have increased, so that the background now dominates maximum concentrations, even in Los Angeles, and the occurrence of maximum O3 has shifted from the eastern to the western US.
William P. L. Carter, Jia Jiang, John J. Orlando, and Kelley C. Barsanti
Atmos. Chem. Phys., 25, 199–242, https://doi.org/10.5194/acp-25-199-2025, https://doi.org/10.5194/acp-25-199-2025, 2025
Short summary
Short summary
This paper describes the scientific basis for gas-phase atmospheric chemical mechanisms derived using the SAPRC mechanism generation system, MechGen. It can derive mechanisms for most organic compounds with C, H, O, or N atoms, including initial reactions of organics with OH, O3, NO3, and O3P or by photolysis, as well as the reactions of the various types of intermediates that are formed. The paper includes a description of areas of uncertainty where additional research and updates are needed.
Thibaut Lebourgeois, Bastien Sauvage, Pawel Wolff, Béatrice Josse, Virginie Marécal, Yasmine Bennouna, Romain Blot, Damien Boulanger, Hannah Clark, Jean-Marc Cousin, Philippe Nedelec, and Valérie Thouret
Atmos. Chem. Phys., 24, 13975–14004, https://doi.org/10.5194/acp-24-13975-2024, https://doi.org/10.5194/acp-24-13975-2024, 2024
Short summary
Short summary
Our study examines intense-carbon-monoxide (CO) pollution events measured by commercial aircraft from the In-service Aircraft for a Global Observing System (IAGOS) research infrastructure. We combine these measurements with the SOFT-IO model to trace the origin of the observed CO. A comprehensive analysis of the geographical origin, source type, seasonal variation, and ozone levels of these pollution events is provided.
Hassnae Erraji, Philipp Franke, Astrid Lampert, Tobias Schuldt, Ralf Tillmann, Andreas Wahner, and Anne Caroline Lange
Atmos. Chem. Phys., 24, 13913–13934, https://doi.org/10.5194/acp-24-13913-2024, https://doi.org/10.5194/acp-24-13913-2024, 2024
Short summary
Short summary
Four-dimensional variational data assimilation allows for the simultaneous optimisation of initial values and emission rates by using trace-gas profiles from drone observations in a regional air quality model. Assimilated profiles positively impact the representation of air pollutants in the model by improving their vertical distribution and ground-level concentrations. This case study highlights the potential of drone data to enhance air quality analyses including local emission evaluation.
Christopher Lawrence, Mary Barth, John Orlando, Paul Casson, Richard Brandt, Daniel Kelting, Elizabeth Yerger, and Sara Lance
Atmos. Chem. Phys., 24, 13693–13713, https://doi.org/10.5194/acp-24-13693-2024, https://doi.org/10.5194/acp-24-13693-2024, 2024
Short summary
Short summary
This work uses chemical transport and box modeling to study the gas- and aqueous-phase production of organic acid concentrations measured in cloud water at the summit of Whiteface Mountain on 1 July 2018. Isoprene was the major source of formic, acetic, and oxalic acid. Gas-phase chemistry greatly underestimated formic and acetic acid, indicating missing sources, while cloud chemistry was a key source of oxalic acid. More studies of organic acids are required to better constrain their sources.
Markus Kilian, Volker Grewe, Patrick Jöckel, Astrid Kerkweg, Mariano Mertens, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 24, 13503–13523, https://doi.org/10.5194/acp-24-13503-2024, https://doi.org/10.5194/acp-24-13503-2024, 2024
Short summary
Short summary
Anthropogenic emissions are a major source of precursors of tropospheric ozone. As ozone formation is highly non-linear, we apply a global–regional chemistry–climate model with a source attribution method (tagging) to quantify the contribution of anthropogenic emissions to ozone. Our analysis shows that the contribution of European anthropogenic emissions largely increases during large ozone periods, indicating that emissions from these sectors drive ozone values.
Kai-Lan Chang, Brian C. McDonald, and Owen R. Cooper
EGUsphere, https://doi.org/10.5194/egusphere-2024-3674, https://doi.org/10.5194/egusphere-2024-3674, 2024
Short summary
Short summary
Exposure to high levels of ozone can be harmful to human health. This study shows consistent and robust evidence of decreasing ozone extremes across much of the United States over 1990–2023, previously attributed to ozone precursor emission controls. Nevertheless, we also show that the increasing heatwave frequencies are likely to contribute to additional ozone exceedances, slowing the progress of decreasing the frequency of ozone exceedances.
Barbara Ervens, Andrew Rickard, Bernard Aumont, William P. L. Carter, Max McGillen, Abdelwahid Mellouki, John Orlando, Bénédicte Picquet-Varrault, Paul Seakins, William R. Stockwell, Luc Vereecken, and Timothy J. Wallington
Atmos. Chem. Phys., 24, 13317–13339, https://doi.org/10.5194/acp-24-13317-2024, https://doi.org/10.5194/acp-24-13317-2024, 2024
Short summary
Short summary
Chemical mechanisms describe the chemical processes in atmospheric models that are used to describe the changes in the atmospheric composition. Therefore, accurate chemical mechanisms are necessary to predict the evolution of air pollution and climate change. The article describes all steps that are needed to build chemical mechanisms and discusses the advances and needs of experimental and theoretical research activities needed to build reliable chemical mechanisms.
Yawen Kong, Bo Zheng, and Yuxi Liu
EGUsphere, https://doi.org/10.5194/egusphere-2024-2996, https://doi.org/10.5194/egusphere-2024-2996, 2024
Short summary
Short summary
Current high-resolution satellite remote sensing technologies provide a unique opportunity to derive timely, high-resolution emission data. We developed an emission inversion system to assimilate satellite NO2 data to obtain daily, kilometer-scale NOx emission inventories. Our results enhance inventory accuracy, allowing us to capture the effects of pollution control policies on daily emissions (e.g., during COVID-19 lockdown) and improve fine-scale air quality modeling.
Jianing Dai, Guy P. Brasseur, Mihalis Vrekoussis, Maria Kanakidou, Kun Qu, Yijuan Zhang, Hongliang Zhang, and Tao Wang
Atmos. Chem. Phys., 24, 12943–12962, https://doi.org/10.5194/acp-24-12943-2024, https://doi.org/10.5194/acp-24-12943-2024, 2024
Short summary
Short summary
This paper employs a regional chemical transport model to quantify the sensitivity of air pollutants and photochemical parameters to specified emission reductions in China for representative winter and summer conditions. The study provides insights into further air quality control in China with reduced primary emissions.
T. Nash Skipper, Emma L. D'Ambro, Forwood C. Wiser, V. Faye McNeill, Rebecca H. Schwantes, Barron H. Henderson, Ivan R. Piletic, Colleen B. Baublitz, Jesse O. Bash, Andrew R. Whitehill, Lukas C. Valin, Asher P. Mouat, Jennifer Kaiser, Glenn M. Wolfe, Jason M. St. Clair, Thomas F. Hanisco, Alan Fried, Bryan K. Place, and Havala O.T. Pye
Atmos. Chem. Phys., 24, 12903–12924, https://doi.org/10.5194/acp-24-12903-2024, https://doi.org/10.5194/acp-24-12903-2024, 2024
Short summary
Short summary
We develop the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMM) version 2 to improve predictions of formaldehyde in ambient air compared to satellite-, aircraft-, and ground-based observations. With the updated chemistry, we estimate the cancer risk from inhalation exposure to ambient formaldehyde across the contiguous USA and predict that 40 % of this risk is controllable through reductions in anthropogenic emissions of nitrogen oxides and reactive organic carbon.
Baoshuang Liu, Yao Gu, Yutong Wu, Qili Dai, Shaojie Song, Yinchang Feng, and Philip K. Hopke
Atmos. Chem. Phys., 24, 12861–12879, https://doi.org/10.5194/acp-24-12861-2024, https://doi.org/10.5194/acp-24-12861-2024, 2024
Short summary
Short summary
Reactive loss of volatile organic compounds (VOCs) is a long-term issue yet to be resolved in VOC source analyses. We assess common methods of, and existing issues in, reducing losses, impacts of losses, and sources in current source analyses. We offer a potential supporting role for solving issues of VOC conversion. Source analyses of consumed VOCs that reacted to produce ozone and secondary organic aerosols can play an important role in the effective control of secondary pollution in air.
Deepangsu Chatterjee, Randall V. Martin, Chi Li, Dandan Zhang, Haihui Zhu, Daven K. Henze, James H. Crawford, Ronald C. Cohen, Lok N. Lamsal, and Alexander M. Cede
Atmos. Chem. Phys., 24, 12687–12706, https://doi.org/10.5194/acp-24-12687-2024, https://doi.org/10.5194/acp-24-12687-2024, 2024
Short summary
Short summary
We investigate the hourly variation of NO2 columns and surface concentrations by applying the GEOS-Chem model to interpret aircraft and ground-based measurements over the US and Pandora sun photometer measurements over the US, Europe, and Asia. Corrections to the Pandora columns and finer model resolution improve the modeled representation of the summertime hourly variation of total NO2 columns to explain the weaker hourly variation in NO2 columns than at the surface.
Kiyeon Kim, Kyung Man Han, Chul Han Song, Hyojun Lee, Ross Beardsley, Jinhyeok Yu, Greg Yarwood, Bonyoung Koo, Jasper Madalipay, Jung-Hun Woo, and Seogju Cho
Atmos. Chem. Phys., 24, 12575–12593, https://doi.org/10.5194/acp-24-12575-2024, https://doi.org/10.5194/acp-24-12575-2024, 2024
Short summary
Short summary
We incorporated each HONO process into the current CMAQ modeling framework to enhance the accuracy of HONO mixing ratio predictions. These results expand our understanding of HONO photochemistry and identify crucial sources of HONO that impact the total HONO budget in Seoul, South Korea. Through this investigation, we contribute to resolving discrepancies in understanding chemical transport models, with implications for better air quality management and environmental protection in the region.
Flossie Brown, Gerd Folberth, Stephen Sitch, Paulo Artaxo, Marijn Bauters, Pascal Boeckx, Alexander W. Cheesman, Matteo Detto, Ninong Komala, Luciana Rizzo, Nestor Rojas, Ines dos Santos Vieira, Steven Turnock, Hans Verbeeck, and Alfonso Zambrano
Atmos. Chem. Phys., 24, 12537–12555, https://doi.org/10.5194/acp-24-12537-2024, https://doi.org/10.5194/acp-24-12537-2024, 2024
Short summary
Short summary
Ozone is a pollutant that is detrimental to human and plant health. Ozone monitoring sites in the tropics are limited, so models are often used to understand ozone exposure. We use measurements from the tropics to evaluate ozone from the UK Earth system model, UKESM1. UKESM1 is able to capture the pattern of ozone in the tropics, except in southeast Asia, although it systematically overestimates it at all sites. This work highlights that UKESM1 can capture seasonal and hourly variability.
Namrata Shanmukh Panji, Deborah F. McGlynn, Laura E. R. Barry, Todd M. Scanlon, Manuel T. Lerdau, Sally E. Pusede, and Gabriel Isaacman-VanWertz
Atmos. Chem. Phys., 24, 12495–12507, https://doi.org/10.5194/acp-24-12495-2024, https://doi.org/10.5194/acp-24-12495-2024, 2024
Short summary
Short summary
Climate change will bring about changes in parameters that are currently used in global-scale models to calculate biogenic emissions. This study seeks to understand the factors driving these models by comparing long-term datasets of biogenic compounds to modeled emissions. We note that the light-dependent fractions currently used in models do not accurately represent regional observations. We provide evidence for the time-dependent variation in this parameter for future modifications to models.
Martin Vojta, Andreas Plach, Saurabh Annadate, Sunyoung Park, Gawon Lee, Pallav Purohit, Florian Lindl, Xin Lan, Jens Mühle, Rona L. Thompson, and Andreas Stohl
Atmos. Chem. Phys., 24, 12465–12493, https://doi.org/10.5194/acp-24-12465-2024, https://doi.org/10.5194/acp-24-12465-2024, 2024
Short summary
Short summary
We constrain the global emissions of the very potent greenhouse gas sulfur hexafluoride (SF6) between 2005 and 2021. We show that SF6 emissions are decreasing in the USA and in the EU, while they are substantially growing in China, leading overall to an increasing global emission trend. The national reports for the USA, EU, and China all underestimated their SF6 emissions. However, stringent mitigation measures can successfully reduce SF6 emissions, as can be seen in the EU emission trend.
Dominika Pasik, Thomas Golin Almeida, Emelda Ahongshangbam, Siddharth Iyer, and Nanna Myllys
EGUsphere, https://doi.org/10.5194/egusphere-2024-3464, https://doi.org/10.5194/egusphere-2024-3464, 2024
Short summary
Short summary
We used quantum chemistry methods to investigate the oxidation mechanisms of acyl peroxy radicals (APRs) with various monoterpenes. Our findings reveal unique oxidation pathways for different monoterpenes, leading to either chain-terminating products or highly reactive intermediates that can contribute to particle formation in the atmosphere. This research highlights APRs as potentially significant but underexplored atmospheric oxidants, which may influence future approaches to modeling climate.
Yasin Elshorbany, Jerald R. Ziemke, Sarah Strode, Hervé Petetin, Kazuyuki Miyazaki, Isabelle De Smedt, Kenneth Pickering, Rodrigo J. Seguel, Helen Worden, Tamara Emmerichs, Domenico Taraborrelli, Maria Cazorla, Suvarna Fadnavis, Rebecca R. Buchholz, Benjamin Gaubert, Néstor Y. Rojas, Thiago Nogueira, Thérèse Salameh, and Min Huang
Atmos. Chem. Phys., 24, 12225–12257, https://doi.org/10.5194/acp-24-12225-2024, https://doi.org/10.5194/acp-24-12225-2024, 2024
Short summary
Short summary
We investigated tropospheric ozone spatial variability and trends from 2005 to 2019 and related those to ozone precursors on global and regional scales. We also investigate the spatiotemporal characteristics of the ozone formation regime in relation to ozone chemical sources and sinks. Our analysis is based on remote sensing products of the tropospheric column of ozone and its precursors, nitrogen dioxide, formaldehyde, and total column CO, as well as ozonesonde data and model simulations.
Ragnhild Bieltvedt Skeie, Marit Sandstad, Srinath Krishnan, Gunnar Myhre, and Maria Sand
EGUsphere, https://doi.org/10.5194/egusphere-2024-3079, https://doi.org/10.5194/egusphere-2024-3079, 2024
Short summary
Short summary
Hydrogen leakages can alter the amount of climate gases in the atmosphere and hence have a climate impact. In this study we investigate, using an atmospheric chemistry model, how this indirect climate effect differs for different amounts of leakages, where the hydrogen leaks and if this effect changes in the future. The effect is largest for emissions far from areas where hydrogen is removed from the atmosphere by the soil, but these are not relevant locations for a future hydrogen economy.
Mariano Mertens, Sabine Brinkop, Phoebe Graf, Volker Grewe, Johannes Hendricks, Patrick Jöckel, Anna Lanteri, Sigrun Matthes, Vanessa S. Rieger, Mattia Righi, and Robin N. Thor
Atmos. Chem. Phys., 24, 12079–12106, https://doi.org/10.5194/acp-24-12079-2024, https://doi.org/10.5194/acp-24-12079-2024, 2024
Short summary
Short summary
We quantified the contributions of land transport, shipping, and aviation emissions to tropospheric ozone; its radiative forcing; and the reductions of the methane lifetime using chemistry-climate model simulations. The contributions were analysed for the conditions of 2015 and for three projections for the year 2050. The results highlight the challenges of mitigating ozone formed by emissions of the transport sector, caused by the non-linearitiy of the ozone chemistry and the long lifetime.
Jincheol Park, Yunsoo Choi, and Sagun Kayastha
EGUsphere, https://doi.org/10.5194/egusphere-2024-3312, https://doi.org/10.5194/egusphere-2024-3312, 2024
Short summary
Short summary
We investigated NOx emissions’ contributions to nitrogen loadings across five regions of East Asia during the 2022 winter-spring transition through chemical transport modeling informed by satellite data. As seasons progress, local contributions within each region to its NOy budget decreased from 32 %–43 % to 23 %–30 %, while transboundary contributions increased from 16 %–33 % to 27 %–37 %, driven by a shift in synoptic settings that allowed pollutants to spread more broadly across the regions.
Lauri Franzon, Marie Camredon, Richard Valorso, Bernard Aumont, and Theo Kurtén
Atmos. Chem. Phys., 24, 11679–11699, https://doi.org/10.5194/acp-24-11679-2024, https://doi.org/10.5194/acp-24-11679-2024, 2024
Short summary
Short summary
In this article we investigate the formation of large, sticky molecules from various organic compounds entering the atmosphere as primary emissions and the degree to which these processes may contribute to organic aerosol particle mass. More specifically, we qualitatively investigate a recently discovered chemical reaction channel for one of the most important short-lived radical compounds, peroxy radicals, and discover which of these reactions are most atmospherically important.
Siting Li, Yiming Liu, Yuqi Zhu, Yinbao Jin, Yingying Hong, Ao Shen, Yifei Xu, Haofan Wang, Haichao Wang, Xiao Lu, Shaojia Fan, and Qi Fan
Atmos. Chem. Phys., 24, 11521–11544, https://doi.org/10.5194/acp-24-11521-2024, https://doi.org/10.5194/acp-24-11521-2024, 2024
Short summary
Short summary
This study establishes an inventory of anthropogenic chlorine emissions in China in 2019 with expanded species (HCl, Cl-, Cl2, HOCl) and sources (41 specific sources). The inventory is validated by a modeling study against the observations. This study enhances the understanding of anthropogenic chlorine emissions in the atmosphere, identifies key sources, and provides scientific support for pollution control and climate change.
Willem E. van Caspel, Zbigniew Klimont, Chris Heyes, and Hilde Fagerli
Atmos. Chem. Phys., 24, 11545–11563, https://doi.org/10.5194/acp-24-11545-2024, https://doi.org/10.5194/acp-24-11545-2024, 2024
Short summary
Short summary
Methane in the atmosphere contributes to the production of ozone gas – an air pollutant and greenhouse gas. Our results highlight that simultaneous reductions in methane emissions help avoid offsetting the air pollution benefits already achieved by the already-approved precursor emission reductions by 2050 in the European Monitoring and Evaluation Programme region, while also playing an important role in bringing air pollution further down towards World Health Organization guideline limits.
Laura Stecher, Franziska Winterstein, Patrick Jöckel, Michael Ponater, Mariano Mertens, and Martin Dameris
EGUsphere, https://doi.org/10.5194/egusphere-2024-2938, https://doi.org/10.5194/egusphere-2024-2938, 2024
Short summary
Short summary
Methane, the second most important anthropogenic greenhouse gas, is chemically decomposed in the atmosphere. The chemical sink of atmospheric methane is not constant, but depends on the temperature and on the abundance of its reaction partners. In this study, we use a global chemistry-climate model to assess the feedback of atmospheric methane induced by changes of the chemical sink in a warming climate, and its implications for the chemical composition and the surface air temperature change.
Tia R. Scarpelli, Paul I. Palmer, Mark Lunt, Ingrid Super, and Arjan Droste
Atmos. Chem. Phys., 24, 10773–10791, https://doi.org/10.5194/acp-24-10773-2024, https://doi.org/10.5194/acp-24-10773-2024, 2024
Short summary
Short summary
Under the Paris Agreement, countries must track their anthropogenic greenhouse gas emissions. This study describes a method to determine self-consistent estimates for combustion emissions and natural fluxes of CO2 from atmospheric data. We report consistent estimates inferred using this approach from satellite data and ground-based data over Europe, suggesting that satellite data can be used to determine national anthropogenic CO2 emissions for countries where ground-based CO2 data are absent.
Yufen Wang, Ke Li, Xi Chen, Zhenjiang Yang, Minglong Tang, Pascoal M. D. Campos, Yang Yang, Xu Yue, and Hong Liao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2576, https://doi.org/10.5194/egusphere-2024-2576, 2024
Short summary
Short summary
The impact of biomass burning and anthropogenic emissions on high tropospheric ozone was not well studied in Southern Africa. We combined the model simulation with recent observations at the surface and from space to quantify tropospheric ozone and its main drivers in Southern Africa. Our work focuses on the impact of emissions from different sources at different spatial scales, contributing to a comprehensive understanding of air pollution drivers and their uncertainties in Southern Africa.
Yafang Guo, Mohammad Amin Mirrezaei, Armin Sorooshian, and Avelino F. Arellano
EGUsphere, https://doi.org/10.5194/egusphere-2024-2617, https://doi.org/10.5194/egusphere-2024-2617, 2024
Short summary
Short summary
We assess the contributions of fire and anthropogenic emissions to O3 levels in Phoenix Arizona during a period of intense heat and drought conditions. We find that fire exacerbates O3 pollution and that interactions between weather, climate, and air chemistry are important to consider. This has implications to activities related to formulating emission reduction strategies in areas that are currently under-studied yet becoming relevant due to reports of increasing global aridity.
Wenbin Kou, Yang Gao, Dan Tong, Xiaojie Guo, Xiadong An, Wenyu Liu, Mengshi Cui, Xiuwen Guo, Shaoqing Zhang, Huiwang Gao, and Lixin Wu
EGUsphere, https://doi.org/10.5194/egusphere-2024-2500, https://doi.org/10.5194/egusphere-2024-2500, 2024
Short summary
Short summary
Unlike traditional numerical studies, we apply a high-resolution Earth system model, improving simulations of ozone and large-scale circulations such as atmospheric blocking. In addition to local heatwave effects, we quantify the impact of atmospheric blocking on downstream ozone concentrations, which is closely associated with the blocking position. We identify three major pathways of Rossby wave propagation, stressing the critical role of large-scale circulation play in regional air quality.
Qianqian Zhang, K. Folkert Boersma, Chiel van der Laan, Alba Mols, Bin Zhao, Shengyue Li, and Yuepeng Pan
EGUsphere, https://doi.org/10.5194/egusphere-2024-2641, https://doi.org/10.5194/egusphere-2024-2641, 2024
Short summary
Short summary
Accurate NOx emission estimates are required to better understand air pollution. This study investigates and demonstrates the ability of the superposition column model in combination with TROPOMI tropospheric NO2 column data to estimate city-scale NOx emissions and lifetimes and their variabilities. The results of this work nevertheless confirm the strength of the superposition column model in estimating urban NOx emissions with reasonable accuracy.
Ryan J. Pound, Lucy V. Brown, Mat J. Evans, and Lucy J. Carpenter
Atmos. Chem. Phys., 24, 9899–9921, https://doi.org/10.5194/acp-24-9899-2024, https://doi.org/10.5194/acp-24-9899-2024, 2024
Short summary
Short summary
Iodine-mediated loss of ozone to the ocean surface and the subsequent emission of iodine species has a large effect on the troposphere. Here we combine recent experimental insights to develop a box model of the process, which we then parameterize and incorporate into the GEOS-Chem transport model. We find that these new insights have a small impact on the total emission of iodine but significantly change its distribution.
Mingzhao Liu, Lars Hoffmann, Jens-Uwe Grooß, Zhongyin Cai, Sabine Grießbach, and Yi Heng
EGUsphere, https://doi.org/10.5194/egusphere-2024-2596, https://doi.org/10.5194/egusphere-2024-2596, 2024
Short summary
Short summary
We studied the transport and chemical decomposition of volcanic SO2, focusing on the 2019 Raikoke event. By comparing two different chemistry modeling schemes, we found that including complex chemical reactions leads to a more accurate prediction of how long SO2 stays in the atmosphere. This research helps improve our understanding of volcanic pollution and its impact on air quality and climate, providing better tools for scientists to track and predict the movement of these pollutants.
Alok K. Pandey, David S. Stevenson, Alcide Zhao, Richard J. Pope, Ryan Hossaini, Krishan Kumar, and Marytn P. Chipperfield
EGUsphere, https://doi.org/10.5194/egusphere-2024-2686, https://doi.org/10.5194/egusphere-2024-2686, 2024
Short summary
Short summary
Nitrogen dioxide is an air pollutant largely controlled by human activity that affects ozone, methane and aerosols. Satellite instruments can quantify column NO2, and by carefully matching the time and location of measurements, enable evaluation of model simulations. NO2 over SE Asia is assessed, showing that the model captures many features of the measurements, but also important differences that suggest model deficiencies in representing several aspects of the atmospheric chemistry of NO2.
Katherine R. Travis, Benjamin A. Nault, James H. Crawford, Kelvin H. Bates, Donald R. Blake, Ronald C. Cohen, Alan Fried, Samuel R. Hall, L. Gregory Huey, Young Ro Lee, Simone Meinardi, Kyung-Eun Min, Isobel J. Simpson, and Kirk Ullman
Atmos. Chem. Phys., 24, 9555–9572, https://doi.org/10.5194/acp-24-9555-2024, https://doi.org/10.5194/acp-24-9555-2024, 2024
Short summary
Short summary
Human activities result in the emission of volatile organic compounds (VOCs) that contribute to air pollution. Detailed VOC measurements were taken during a field study in South Korea. When compared to VOC inventories, large discrepancies showed underestimates from chemical products, liquefied petroleum gas, and long-range transport. Improved emissions and chemistry of these VOCs better described urban pollution. The new chemical scheme is relevant to urban areas and other VOC sources.
Cited articles
Akritidis, D., Zanis, P., Pytharoulis, I., and Karacostas, T.: Near-surface
ozone trends over Europe in RegCM3/CAMx simulations for the time period
1996–2006, Atmos. Environ., 97, 6–18,
https://doi.org/10.1016/j.atmosenv.2014.08.002, 2014. a
Atmospheric Chemistry and Climate Model Intercomparison Project: National
Centre for Atmospheric Research, Shindell, D.,
Zeng, G., Lamarque, J. F., Szopa, S., Nagashima, T., Naik, V., Eyring, V., and Collins, W.:
The model data outputs from the Atmospheric Chemistry & Climate Model
Intercomparison Project (ACCMIP), NCAS British Atmospheric Data Centre,
available at:
http://catalogue.ceda.ac.uk/uuid/ded523bf23d59910e5d73f1703a2d540 (last
access: 22 June 2018), 2011. a
Beekmann, M. and Vautard, R.: A modelling study of photochemical regimes over
Europe: robustness and variability, Atmos. Chem. Phys., 10, 10067–10084,
https://doi.org/10.5194/acp-10-10067-2010, 2010. a, b
Bell, M. L., McDermott, A., Zeger, S. L., Samet, J. M., and Dominici, F.:
Ozone
and short-term mortality in 95 US urban communities, 1987–2000, Jama, 292,
2372–2378, https://doi.org/10.1001/jama.292.19.2372, 2004. a
Benjamini, Y. and Hochberg, Y.: Controlling the false discovery rate: a
practical and powerful approach to multiple testing, J. R.
Stat. Soc. B Met., 57, 289–300, 1995. a
Brook, R. D., Brook, J. R., Urch, B., Vincent, R., Rajagopalan, S., and
Silverman, F.: Inhalation of fine particulate air pollution and ozone causes
acute arterial vasoconstriction in healthy adults, Circulation, 105,
1534–1536, https://doi.org/10.1161/01.CIR.0000013838.94747.64, 2002. a
Butchart, N. and Scaife, A. A.: Removal of chlorofluorocarbons by increased
mass exchange between the stratosphere and troposphere in a changing climate,
Nature, 410, 799–802, https://doi.org/10.1038/35071047,
2001. a
Butchart, N., Scaife, A., Bourqui, M., De Grandpré, J., Hare, S.,
Kettleborough, J., Langematz, U., Manzini, E., Sassi, F., Shibata, K.,
Shindell, D., and Sigmond, M.: Simulations of anthropogenic change in the strength of the
Brewer–Dobson circulation, Clim. Dynam., 27, 727–741,
https://doi.org/10.1007/s00382-006-0162-4, 2006. a
Butler, T. M., Stock, Z. S., Russo, M. R., Denier van der Gon, H. A. C., and
Lawrence, M. G.: Megacity ozone air quality under four alternative future
scenarios, Atmos. Chem. Phys., 12, 4413–4428,
https://doi.org/10.5194/acp-12-4413-2012, 2012. a
Cionni, I., Eyring, V., Lamarque, J. F., Randel, W. J., Stevenson, D. S., Wu,
F., Bodeker, G. E., Shepherd, T. G., Shindell, D. T., and Waugh, D. W.: Ozone
database in support of CMIP5 simulations: results and corresponding radiative
forcing, Atmos. Chem. Phys., 11, 11267–11292,
https://doi.org/10.5194/acp-11-11267-2011, 2011. a
Coleman, L., Varghese, S., Tripathi, O., Jennings, S., and O'Dowd, C.:
Regional-scale ozone deposition to North-East Atlantic waters, Adv.
Meteorol., 2010, 243701, https://doi.org/10.1155/2010/243701, 2010. a
Colette, A., Granier, C., Hodnebrog, Ø., Jakobs, H., Maurizi, A., Nyiri,
A., Rao, S., Amann, M., Bessagnet, B., D'Angiola, A., Gauss, M., Heyes, C.,
Klimont, Z., Meleux, F., Memmesheimer, M., Mieville, A., Rouïl, L.,
Russo, F., Schucht, S., Simpson, D., Stordal, F., Tampieri, F., and Vrac, M.:
Future air quality in Europe: a multi-model assessment of projected exposure
to ozone, Atmos. Chem. Phys., 12, 10613–10630,
https://doi.org/10.5194/acp-12-10613-2012, 2012. a
Collins, W., Derwent, R., Garnier, B., Johnson, C., Sanderson, M., and
Stevenson, D.: Effect of stratosphere-troposphere exchange on the future
tropospheric ozone trend, J. Geophys. Res.-Atmos., 108, 8528,
https://doi.org/10.1029/2002jd002617, 2003. a, b
Danielsen, E. F.: Stratospheric-tropospheric exchange based on radioactivity,
ozone and potential vorticity, J. Atmos. Sci., 25,
502–518, https://doi.org/10.1175/1520-0469(1968)025<0502:stebor>2.0.co;2, 1968. a
Derwent, R., Jenkin, M., Saunders, S., Pilling, M., Simmonds, P., Passant,
N.,
Dollard, G., Dumitrean, P., and Kent, A.: Photochemical ozone formation in
north west Europe and its control, Atmos. Environ., 37, 1983–1991,
https://doi.org/10.1016/s1352-2310(03)00031-1, 2003. a
Doherty, R., Wild, O., Shindell, D., Zeng, G., MacKenzie, I., Collins, W.,
Fiore, A. M., Stevenson, D., Dentener, F., Schultz, M., Hess, P., Derwent, R. G., and Keating, T. J.: Impacts of
climate change on surface ozone and intercontinental ozone pollution: A
multi-model study, J. Geophys. Res.-Atmos., 118,
3744–3763, https://doi.org/10.1002/jgrd.50266, 2013. a
Evans, M. J. and Sofen, E. D.: Gridded Global Surface Ozone Metrics data
(1971–2015) for Atmospheric Chemistry Model Evaluation –version 2.7, Centre
for Environmental Data Analysis, 2 February 2016,
https://doi.org/10.5285/897a3958-5bfc-4311-9bb0-01134bf6aefa,
2016. a
Finzi, G., Silibello, C., and Volta, M.: Evaluation of urban pollution
abatement strategies by a photochemical dispersion model, Int.
J. Environ. Pollut., 14, 616–624,
https://doi.org/10.1504/ijep.2000.000586, 2000. a
Fiore, A. M., West, J. J., Horowitz, L. W., Naik, V., and Schwarzkopf, M. D.:
Characterizing the tropospheric ozone response to methane emission controls
and the benefits to climate and air quality, J. Geophys. Res.-Atmos., 113, D08307, https://doi.org/10.1029/2007jd009162,
2008. a
Fiore, A. M., Dentener, F., Wild, O., Cuvelier, C., Schultz, M., Hess, P.,
Textor, C., Schulz, M., Doherty, R., Horowitz, L.,
MacKenzie, I. A., Sanderson, M. G., Shindell, D. T., Stevenson, D. S., Szopa,
S., Van Dingenen, R., Zeng, G., Atherton, C., Bergmann, D., Bey, I.
Carmichael, G., Collins, W. J., Duncan, B. N.,
Faluvegi, G., Folberth, G., Gauss, M., Gong, S., Hauglustaine, D.,
Holloway, T. Isaksen, I. S. A., Jacob, D. J., Jonson, J. E., Kaminski,
J. W. Keating, T. J., Lupu, A., Marmer, E., Montanaro, V., Park, R. J.,
Pitari, G., Pringle, K. J.,
Pyle, A., Schroeder, S., Vivanco, M. G., Wind, P., Wojcik, G.,
Wu, S., and Zuber, A.: Multimodel
estimates of intercontinental source-receptor relationships for ozone
pollution, J. Geophys. Res.-Atmos., 114, D04301,
https://doi.org/10.1029/2008jd010816, 2009. a
Forkel, R. and Knoche, R.: Nested regional climate–chemistry simulations for
central Europe, C. R. Geosci., 339, 734–746,
https://doi.org/10.1016/j.crte.2007.09.018, 2007. a
Fuhrer, J. and Booker, F.: Ecological issues related to ozone: agricultural
issues, Environ. Int., 29, 141–154,
https://doi.org/10.1016/s0160-4120(02)00157-5, 2003. a
Fujino, J., Nair, R., Kainuma, M., Masui, T., and Matsuoka, Y.: Multi-gas
mitigation analysis on stabilization scenarios using AIM global model,
Energ. J., 27, 343–353,
https://doi.org/10.5547/issn0195-6574-ej-volsi2006-nosi3-17, 2006. a
Ganzeveld, L., Helmig, D., Fairall, C., Hare, J., and Pozzer, A.:
Atmosphere-ocean ozone exchange: A global modeling study of biogeochemical,
atmospheric, and waterside turbulence dependencies, Global Biogeochem.
Cy., 23, GB4021, https://doi.org/10.1029/2008gb003301, 2009. a
Gerasopoulos, E., Kouvarakis, G., Vrekoussis, M., Kanakidou, M., and
Mihalopoulos, N.: Ozone variability in the marine boundary layer of the
eastern Mediterranean based on 7-year observations, J. Geophys.
Res.-Atmos., 110, D15309, https://doi.org/10.1029/2005JD005991,
2005. a
Giorgi, F.: Climate change hot-spots, Geophys. Res. Lett., 33, L08707,
https://doi.org/10.1029/2006gl025734, 2006. a
Goldberg, D. L., Vinciguerra, T. P., Anderson, D. C., Hembeck, L., Canty,
T. P., Ehrman, S. H., Martins, D. K., Stauffer, R. M., Thompson, A. M.,
Salawitch, R. J., and Dickerson, R.: CAMx ozone source attribution in the eastern United
States using guidance from observations during DISCOVER-AQ Maryland,
Geophys. Res. Lett., 43, 2249–2258, https://doi.org/10.1002/2015gl067332,
2016. a
Hedegaard, G. B., Brandt, J., Christensen, J. H., Frohn, L. M., Geels, C.,
Hansen, K. M., and Stendel, M.: Impacts of climate change on air pollution
levels in the Northern Hemisphere with special focus on Europe and the
Arctic, Atmos. Chem. Phys., 8, 3337–3367,
https://doi.org/10.5194/acp-8-3337-2008, 2008. a
Hedegaard, G. B., Christensen, J. H., and Brandt, J.: The relative importance
of impacts from climate change vs. emissions change on air pollution levels
in the 21st century, Atmos. Chem. Phys., 13, 3569–3585,
https://doi.org/10.5194/acp-13-3569-2013, 2013. a
Hijioka, Y., matsuoka, Y., nishimoto, H., Masui, T., and Kainuma, M.: Global
GHG emission scenarios under GHG concentration stabilization targets, Journal
of Global Environment Engineering, 13, 97–108, 2008. a
Hu, L., Jacob, D. J., Liu, X., Zhang, Y., Zhang, L., Kim, P. S., Sulprizio,
M. P., and Yantosca, R. M.: Global budget of tropospheric ozone: evaluating
recent model advances with satellite (OMI), aircraft (IAGOS), and ozonesonde
observations, Atmos. Environ., 167, 323–334,
https://doi.org/10.1016/j.atmosenv.2017.08.036, 2017. a
Iglesias-Suarez, F., Young, P. J., and Wild, O.: Stratospheric ozone change and related climate impacts over 1850–2100 as modelled by the ACCMIP ensemble, Atmos. Chem. Phys., 16, 343–363, https://doi.org/10.5194/acp-16-343-2016, 2016. a
Im, U., Markakis, K., Poupkou, A., Melas, D., Unal, A., Gerasopoulos, E.,
Daskalakis, N., Kindap, T., and Kanakidou, M.: The impact of temperature
changes on summer time ozone and its precursors in the Eastern Mediterranean,
Atmos. Chem. Phys., 11, 3847–3864, https://doi.org/10.5194/acp-11-3847-2011,
2011. a
Jacob, D. J.: Heterogeneous chemistry and tropospheric ozone, Atmos.
Environ., 34, 2131–2159, https://doi.org/10.1016/s1352-2310(99)00462-8, 2000. a
Jacob, D. J. and Winner, D. A.: Effect of climate change on air quality,
Atmos. Environ., 43, 51–63, https://doi.org/10.1016/j.atmosenv.2008.09.051,
2009. a, b, c, d
Katragkou, E., Zanis, P., Kioutsioukis, I., Tegoulias, I., Melas, D.,
Krüger, B., and Coppola, E.: Future climate change impacts on summer
surface ozone from regional climate-air quality simulations over Europe,
J. Geophys. Res.-Atmos., 116, D22307,
https://doi.org/10.1029/2011jd015899, 2011. a
Kawase, H., Nagashima, T., Sudo, K., and Nozawa, T.: Future changes in
tropospheric ozone under Representative Concentration Pathways (RCPs),
Geophys. Res. Lett., 38, L05801, https://doi.org/10.1029/2010gl046402, 2011. a, b
Lacressonnière, G., Peuch, V.-H., Arteta, J., Josse, B., Joly, M.,
Marécal, V., Saint Martin, D., Déqué, M., and Watson, L.: How realistic
are air quality hindcasts driven by forcings from climate model simulations?,
Geosci. Model Dev., 5, 1565–1587, https://doi.org/10.5194/gmd-5-1565-2012,
2012. a
Lacressonnière, G., Peuch, V.-H., Vautard, R., Arteta, J., Déqué,
M., Joly, M., Josse, B., Marécal, V., and Saint-Martin, D.: European air
quality in the 2030s and 2050s: Impacts of global and regional emission
trends and of climate change, Atmos. Environ., 92, 348–358,
https://doi.org/10.1016/j.atmosenv.2014.04.033, 2014. a, b, c
Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D., Liousse, C., Mieville, A., Owen,
B., Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E., Van Aardenne, J., Cooper, O. R., Kainuma, M., Mahowald, N.,
McConnell, J. R., Naik, V., Riahi, K., and van Vuuren, D. P.: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application,
Atmos. Chem. Phys., 10, 7017–7039, https://doi.org/10.5194/acp-10-7017-2010, 2010. a, b
Lamarque, J.-F., Shindell, D. T., Josse, B., Young, P. J., Cionni, I.,
Eyring, V., Bergmann, D., Cameron-Smith, P., Collins, W. J., Doherty, R.,
Dalsoren, S., Faluvegi, G., Folberth, G., Ghan, S. J., Horowitz, L. W., Lee,
Y. H., MacKenzie, I. A., Nagashima, T., Naik, V., Plummer, D., Righi, M.,
Rumbold, S. T., Schulz, M., Skeie, R. B., Stevenson, D. S., Strode, S., Sudo,
K., Szopa, S., Voulgarakis, A., and Zeng, G.: The Atmospheric Chemistry and
Climate Model Intercomparison Project (ACCMIP): overview and description of
models, simulations and climate diagnostics, Geosci. Model Dev., 6, 179–206,
https://doi.org/10.5194/gmd-6-179-2013, 2013. a, b, c, d, e
Langner, J., Engardt, M., Baklanov, A., Christensen, J. H., Gauss, M., Geels,
C., Hedegaard, G. B., Nuterman, R., Simpson, D., Soares, J., Sofiev, M.,
Wind, P., and Zakey, A.: A multi-model study of impacts of climate change on
surface ozone in Europe, Atmos. Chem. Phys., 12, 10423–10440,
https://doi.org/10.5194/acp-12-10423-2012, 2012. a, b
Lei, H., Wuebbles, D. J., and Liang, X.-Z.: Projected risk of high ozone
episodes in 2050, Atmos. Environ., 59, 567–577,
https://doi.org/10.1016/j.atmosenv.2012.05.051, 2012. a
Lelieveld, J. and Dentener, F. J.: What controls tropospheric ozone?, J.
Geophys. Res.-Atmos., 105, 3531–3551,
https://doi.org/10.1029/1999jd901011,
2000. a
Lelieveld, J., Berresheim, H., Borrmann, S., Crutzen, P., Dentener, F.,
Fischer, H., Feichter, J., Flatau, P., Heland, J., Holzinger, R.,
Korrmann, R., Lawrence, M. G., Levin, Z., Markowicz, K. M., Mihalopoulos, N.,
Minikin, A., Ramanathan, V., de Reus, M., Roelofs, G. J., Scheeren, H. A.,
Sciare, J., Schlager, H., Schultz, M., Siegmund, P., Steil, B., Stephanou, E.
G., Stier, P., Traub, M., Warneke, C., Williams, J., and Zierei, H.:
Global air pollution crossroads over the Mediterranean, Science, 298,
794–799, https://doi.org/10.1126/science.1075457, 2002. a
Lin, J.-T., Youn, D., Liang, X.-Z., and Wuebbles, D. J.: Global model
simulation of summertime US ozone diurnal cycle and its sensitivity to PBL
mixing, spatial resolution, and emissions, Atmos. Environ., 42,
8470–8483, https://doi.org/10.1016/j.atmosenv.2008.08.012, 2008. a
Lippmann, M.: Health effects of ozone a critical review, Japca, 39, 672–695,
https://doi.org/10.1080/08940630.1989.10466554, 1989. a
Martilli, A., Neftel, A., Favaro, G., Kirchner, F., Sillman, S., and
Clappier,
A.: Simulation of the ozone formation in the northern part of the Po Valley,
J. Geophys. Res.-Atmos., 107, 8195,
https://doi.org/10.1029/2001jd000534, 2002. a
Meleux, F., Solmon, F., and Giorgi, F.: Increase in summer European ozone
amounts due to climate change, Atmos. Environ., 41, 7577–7587,
https://doi.org/10.1016/j.atmosenv.2007.05.048, 2007. a, b, c
Millán, M., Salvador, R., Mantilla, E., and Artnano, B.: Meteorology and
photochemical air pollution in southern Europe: experimental results from EC
research projects, Atmos. Environ., 30, 1909–1924,
https://doi.org/10.1016/1352-2310(95)00220-0, 1996. a
Millán, M., Salvador, R., Mantilla, E., and Kallos, G.: Photooxidant
dynamics in the Mediterranean basin in summer: results from European research
projects, J. Geophys. Res.-Atmos., 102, 8811–8823,
https://doi.org/10.1029/96jd03610, 1997. a
Monks, P. S., Archibald, A. T., Colette, A., Cooper, O., Coyle, M., Derwent,
R., Fowler, D., Granier, C., Law, K. S., Mills, G. E., Stevenson, D. S.,
Tarasova, O., Thouret, V., von Schneidemesser, E., Sommariva, R., Wild, O.,
and Williams, M. L.: Tropospheric ozone and its precursors from the urban to
the global scale from air quality to short-lived climate forcer, Atmos. Chem.
Phys., 15, 8889–8973, https://doi.org/10.5194/acp-15-8889-2015, 2015. a
Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K.,
Van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T.,
Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi,
K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., and
Wilbanks, T. J.,:
The next generation of scenarios for climate change research and assessment,
Nature, 463, 747–756, https://doi.org/10.1038/nature08823, 2010. a, b
Riahi, K., Grübler, A., and Nakicenovic, N.: Scenarios of long-term
socio-economic and environmental development under climate stabilization,
Technol. Forecast. Soc., 74, 887–935,
https://doi.org/10.1016/j.techfore.2006.05.026, 2007. a
Safieddine, S., Boynard, A., Coheur, P.-F., Hurtmans, D., Pfister, G.,
Quennehen, B., Thomas, J. L., Raut, J.-C., Law, K. S., Klimont, Z.,
Hadji-Lazaro, J., George, M., and Clerbaux, C.: Summertime tropospheric ozone
assessment over the Mediterranean region using the thermal infrared
IASI/MetOp sounder and the WRF-Chem model, Atmos. Chem. Phys., 14,
10119–10131, https://doi.org/10.5194/acp-14-10119-2014, 2014. a
Sandermann Jr., H.: Ozone and plant health, Annu. Rev. Phytopathol.,
34, 347–366, https://doi.org/10.1146/annurev.phyto.34.1.347, 1996. a
Schicker, I., Radanovics, S., and Seibert, P.: Origin and transport of Mediterranean moisture and air, Atmos. Chem. Phys., 10, 5089–5105, https://doi.org/10.5194/acp-10-5089-2010, 2010. a
Schnell, J. L., Prather, M. J., Josse, B., Naik, V., Horowitz, L. W.,
Cameron-Smith, P., Bergmann, D., Zeng, G., Plummer, D. A., Sudo, K.,
Nagashima, T., Shindell, D. T., Faluvegi, G., and Strode, S. A.: Use of North
American and European air quality networks to evaluate global
chemistry–climate modeling of surface ozone, Atmos. Chem. Phys., 15,
10581–10596, https://doi.org/10.5194/acp-15-10581-2015, 2015. a
Silibello, C., Calori, G., Brusasca, G., Catenacci, G., and Finzi, G.:
Application of a photochemical grid model to Milan metropolitan area,
Atmos. Environ., 32, 2025–2038, 1998. a
Sillman, S.: The use of NOy, H2O2, and HNO3 as
indicators for ozone-NOx-hydrocarbon sensitivity in urban locations, J.
Geophys. Res.-Atmos., 100, 14175–14188, https://doi.org/10.1029/94jd02953, 1995. a
Smith, S. J. and Wigley, T.: Multi-gas forcing stabilization with Minicam,
Energ. J., 27, 373–391,
https://doi.org/10.5547/issn0195-6574-ej-volsi2006-nosi3-19, 2006. a
Sofen, E. D., Bowdalo, D., Evans, M. J., Apadula, F., Bonasoni, P., Cupeiro,
M., Ellul, R., Galbally, I. E., Girgzdiene, R., Luppo, S., Mimouni, M.,
Nahas, A. C., Saliba, M., and Tørseth, K.: Gridded global surface ozone
metrics for atmospheric chemistry model evaluation, Earth Syst. Sci. Data, 8,
41–59, https://doi.org/10.5194/essd-8-41-2016, 2016. a, b, c, d, e
Spivakovsky, C., Logan, J., Montzka, S., Balkanski, Y., Foreman-Fowler, M.,
Jones, D., Horowitz, L., Fusco, A., Brenninkmeijer, C., Prather, M., Wofsy, S. C., and McElroy, M. B.:
Three-dimensional climatological distribution of tropospheric OH: Update and
evaluation, J. Geophys. Res., 105, 8931–8980, https://doi.org/10.1029/1999jd901006,
2000. a
Sudo, K., Takahashi, M., and Akimoto, H.: Future changes in
stratosphere-troposphere exchange and their impacts on future tropospheric
ozone simulations, Geophys. Res. Lett., 30, 2256,
https://doi.org/10.1029/2003gl018526, 2003. a
Taylor, K. E.: Summarizing multiple aspects of model performance in a single
diagram, J. Geophys. Res.-Atmos., 106, 7183–7192,
https://doi.org/10.1029/2000jd900719, 2001. a
Travis, K. R., Jacob, D. J., Fisher, J. A., Kim, P. S., Marais, E. A., Zhu,
L., Yu, K., Miller, C. C., Yantosca, R. M., Sulprizio, M. P., Thompson, A.
M., Wennberg, P. O., Crounse, J. D., St. Clair, J. M., Cohen, R. C.,
Laughner, J. L., Dibb, J. E., Hall, S. R., Ullmann, K., Wolfe, G. M.,
Pollack, I. B., Peischl, J., Neuman, J. A., and Zhou, X.: Why do models
overestimate surface ozone in the Southeast United States?, Atmos. Chem.
Phys., 16, 13561–13577, https://doi.org/10.5194/acp-16-13561-2016, 2016. a, b
Tukey, J. W.: Exploratory data analysis, vol. 2, Reading, Mass., 1977. a
Van Vuuren, D., Eickhout, B., Lucas, P. L., and Den Elzen, M.: Long-term
multi-gas scenarios to stabilise radiative forcing–exploring costs and
benefits within an integrated assessment framework, Energ. J.,
27, 201–233, https://doi.org/10.5547/issn0195-6574-ej-volsi2006-nosi3-10,
2006. a
Van Vuuren, D., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard,
K.,
Hurtt, G., Kram, T., Krey, V., Lamarque, J., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J.,
and Rose, S. K.: The representative
concentration pathways: an overview, Climatic
Change, 109, 5–31, https://doi.org/10.1007/s10584-011-0148-z,
2011. a, b, c, d
Van Vuuren, D. P., Den Elzen, M. G., Lucas, P. L., Eickhout, B., Strengers,
B. J., Van Ruijven, B., Wonink, S., and van Houdt, R.: Stabilizing greenhouse
gas concentrations at low levels: an assessment of reduction strategies and
costs, Climatic Change, 81, 119–159, https://doi.org/10.1007/s10584-006-9172-9, 2007. a
Vautard, R., Builtjes, P., Thunis, P., Cuvelier, C., Bedogni, M., Bessagnet,
B., Honore, C., Moussiopoulos, N., Pirovano, G., Schaap, M., Sterni, R., Tarrason, L., and Windj, P.,:
Evaluation and intercomparison of Ozone and PM10 simulations by several
chemistry transport models over four European cities within the CityDelta
project, Atmos. Environ., 41, 173–188,
https://doi.org/10.1016/j.atmosenv.2006.07.039, 2007. a
West, J. J., Fiore, A. M., Naik, V., Horowitz, L. W., Schwarzkopf, M. D., and
Mauzerall, D. L.: Ozone air quality and radiative forcing consequences of
changes in ozone precursor emissions, Geophys. Res. Lett., 34, L06806,
https://doi.org/10.1029/2006gl029173, 2007. a, b
Wild, O., Fiore, A. M., Shindell, D. T., Doherty, R. M., Collins, W. J.,
Dentener, F. J., Schultz, M. G., Gong, S., MacKenzie, I. A., Zeng, G., Hess,
P., Duncan, B. N., Bergmann, D. J., Szopa, S., Jonson, J. E., Keating, T. J.,
and Zuber, A.: Modelling future changes in surface ozone: a parameterized
approach, Atmos. Chem. Phys., 12, 2037–2054,
https://doi.org/10.5194/acp-12-2037-2012, 2012. a, b, c
Wilks, D.: On “field significance” and the false discovery rate, J.
Appl. Meteorol. Clim., 45, 1181–1189, 2006. a
Wise, M., Calvin, K., Thomson, A., Clarke, L., Bond-Lamberty, B., Sands, R.,
Smith, S. J., Janetos, A., and Edmonds, J.: Implications of limiting
CO2
concentrations for land use and energy, Science, 324, 1183–1186, https://doi.org/10.1126/science.1168475, 2009. a
Young, P. J., Archibald, A. T., Bowman, K. W., Lamarque, J.-F., Naik, V.,
Stevenson, D. S., Tilmes, S., Voulgarakis, A., Wild, O., Bergmann, D.,
Cameron-Smith, P., Cionni, I., Collins, W. J., Dalsøren, S. B., Doherty,
R. M., Eyring, V., Faluvegi, G., Horowitz, L. W., Josse, B., Lee, Y. H.,
MacKenzie, I. A., Nagashima, T., Plummer, D. A., Righi, M., Rumbold, S. T.,
Skeie, R. B., Shindell, D. T., Strode, S. A., Sudo, K., Szopa, S., and Zeng,
G.: Pre-industrial to end 21st century projections of tropospheric ozone from
the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP),
Atmos. Chem. Phys., 13, 2063–2090, https://doi.org/10.5194/acp-13-2063-2013, 2013.
a, b, c, d, e, f, g, h, i, j, k, l
Yu, S., Eder, B., Dennis, R., Chu, S.-H., and Schwartz, S. E.: New unbiased
symmetric metrics for evaluation of air quality models, Atmos. Sci.
Lett., 7, 26–34, https://doi.org/10.1002/asl.125, 2006. a
Zeng, G., Pyle, J. A., and Young, P. J.: Impact of climate change on tropospheric ozone and its global budgets, Atmos. Chem. Phys., 8, 369–387, https://doi.org/10.5194/acp-8-369-2008, 2008. a
Zeng, G., Morgenstern, O., Braesicke, P., and Pyle, J.: Impact of
stratospheric
ozone recovery on tropospheric ozone and its budget, Geophys. Res.
Lett., 37, L09805, https://doi.org/10.1029/2010gl042812, 2010. a
Zeng, T., Wang, Y., Chance, K., Browell, E. V., Ridley, B. A., and Atlas,
E. L.: Widespread persistent near-surface ozone depletion at northern high
latitudes in spring, Geophys. Res. Lett., 30, 2298,
https://doi.org/10.1029/2003gl018587, 2003. a
Short summary
The Mediterranean Basin, surrounded by three continents with diverse pollution sources, is particularly sensitive to climate change due to its location and diversity of ecosystems. In this work, we investigate the future change of surface ozone from 2000 to 2100 over this region using a set of atmospheric model outputs and ground-based observations. We also highlight how the future climate change and the increase of methane concentrations can offset the benefit of the pollution reduction policy.
The Mediterranean Basin, surrounded by three continents with diverse pollution sources, is...
Altmetrics
Final-revised paper
Preprint