Articles | Volume 18, issue 23
https://doi.org/10.5194/acp-18-17325-2018
https://doi.org/10.5194/acp-18-17325-2018
Research article
 | 
06 Dec 2018
Research article |  | 06 Dec 2018

CALIPSO (IIR–CALIOP) retrievals of cirrus cloud ice-particle concentrations

David L. Mitchell, Anne Garnier, Jacques Pelon, and Ehsan Erfani

Related authors

Advances in CALIPSO (IIR) cirrus cloud property retrievals – Part 1: Methods and testing
David L. Mitchell, Anne Emilie Garnier, and Sarah Woods
EGUsphere, https://doi.org/10.5194/egusphere-2024-3790,https://doi.org/10.5194/egusphere-2024-3790, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Advances in CALIPSO (IIR) cirrus cloud property retrievals – Part 2: Global estimates of the fraction of cirrus clouds affected by homogeneous ice nucleation
David L. Mitchell and Anne Garnier
EGUsphere, https://doi.org/10.5194/egusphere-2024-3814,https://doi.org/10.5194/egusphere-2024-3814, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Version 4 CALIPSO Imaging Infrared Radiometer ice and liquid water cloud microphysical properties – Part I: The retrieval algorithms
Anne Garnier, Jacques Pelon, Nicolas Pascal, Mark A. Vaughan, Philippe Dubuisson, Ping Yang, and David L. Mitchell
Atmos. Meas. Tech., 14, 3253–3276, https://doi.org/10.5194/amt-14-3253-2021,https://doi.org/10.5194/amt-14-3253-2021, 2021
Short summary
Version 4 CALIPSO Imaging Infrared Radiometer ice and liquid water cloud microphysical properties – Part II: Results over oceans
Anne Garnier, Jacques Pelon, Nicolas Pascal, Mark A. Vaughan, Philippe Dubuisson, Ping Yang, and David L. Mitchell
Atmos. Meas. Tech., 14, 3277–3299, https://doi.org/10.5194/amt-14-3277-2021,https://doi.org/10.5194/amt-14-3277-2021, 2021
Short summary
An Estimate of Global, Regional and Seasonal Cirrus Cloud Radiative Effects Contributed by Homogeneous Ice Nucleation
David L. Mitchell, John Mejia, Anne Garnier, Yuta Tomii, Martina Krämer, and Farnaz Hosseinpour
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-846,https://doi.org/10.5194/acp-2020-846, 2020
Publication in ACP not foreseen
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Technical note: Applicability of physics-based and machine-learning-based algorithms of a geostationary satellite in retrieving the diurnal cycle of cloud base height
Mengyuan Wang, Min Min, Jun Li, Han Lin, Yongen Liang, Binlong Chen, Zhigang Yao, Na Xu, and Miao Zhang
Atmos. Chem. Phys., 24, 14239–14256, https://doi.org/10.5194/acp-24-14239-2024,https://doi.org/10.5194/acp-24-14239-2024, 2024
Short summary
Observing convective activities in complex convective organizations and their contributions to precipitation and anvil cloud amounts
Zhenquan Wang and Jian Yuan
Atmos. Chem. Phys., 24, 13811–13831, https://doi.org/10.5194/acp-24-13811-2024,https://doi.org/10.5194/acp-24-13811-2024, 2024
Short summary
Weak liquid water path response in ship tracks
Anna Tippett, Edward Gryspeerdt, Peter Manshausen, Philip Stier, and Tristan W. P. Smith
Atmos. Chem. Phys., 24, 13269–13283, https://doi.org/10.5194/acp-24-13269-2024,https://doi.org/10.5194/acp-24-13269-2024, 2024
Short summary
Air mass history linked to the development of Arctic mixed-phase clouds
Rebecca J. Murray-Watson and Edward Gryspeerdt
Atmos. Chem. Phys., 24, 11115–11132, https://doi.org/10.5194/acp-24-11115-2024,https://doi.org/10.5194/acp-24-11115-2024, 2024
Short summary
Post-Return Stroke VHF Electromagnetic Activity in North-Western Mediterranean Cloud-to-Ground Lightning Flashes
Andrea Kolínská, Ivana Kolmašová, Eric Defer, Ondřej Santolík, and Stéphane Pédeboy
EGUsphere, https://doi.org/10.5194/egusphere-2024-2489,https://doi.org/10.5194/egusphere-2024-2489, 2024
Short summary

Cited articles

Ackerman, S. A., Smith, W. L., Collard, A. D., Ma, X. L., Revercomb, H. E., and Knuteson, R. O.: Cirrus cloud properties derived from high spectral resolution infrared spectrometry during FIRE II, Part II: Aircraft HIS results, J. Atmos. Sci., 52, 4246–4263, 1995. 
Baker, B. A. and Lawson, R. P.: Improvement in determination of ice water content from two-dimensional particle imagery, Part I: Image-to-mass relationships, J. Appl. Meteorol. Climatol., 45, 1282–1290, 2006a. 
Baker, B. A. and Lawson, R. P.: In Situ Observations of the Microphysical Properties of Wave, Cirrus, and Anvil Clouds, Part I: Wave Clouds, J. Atmos. Sci., 63, 3160–3185, 2006b. 
Barahona, D. and Nenes, A.: Parameterization of cirrus cloud formation in large-scale models: Homogeneous nucleation, J. Geophys. Res., 113, D11211, https://doi.org/10.1029/2007JD009355, 2008. 
Barnes, E. A. and Screen, J. A.: The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it? WIREs, Clim. Change, 6, 277–286, https://doi.org/10.1002/wcc.337, 2015. 
Download
Short summary
To realistically model a changing climate, global measurements of cirrus cloud ice-particle number concentration (N) and size (De) are needed, through which one may infer the general mechanism of ice formation. A satellite remote sensing method was developed to measure N and De. It was found that N was highest and De lowest at high latitudes. In the Arctic, cirrus clouds occurred much more often during winter, which may have an impact on mid-latitude winter weather.
Altmetrics
Final-revised paper
Preprint