Articles | Volume 18, issue 14
https://doi.org/10.5194/acp-18-10557-2018
https://doi.org/10.5194/acp-18-10557-2018
Research article
 | 
24 Jul 2018
Research article |  | 24 Jul 2018

Multi-year monitoring of atmospheric total gaseous mercury at a remote high-altitude site (Nam Co, 4730 m a.s.l.) in the inland Tibetan Plateau region

Xiufeng Yin, Shichang Kang, Benjamin de Foy, Yaoming Ma, Yindong Tong, Wei Zhang, Xuejun Wang, Guoshuai Zhang, and Qianggong Zhang

Related authors

Aerosol–meteorology feedback diminishes the transboundary transport of black carbon into the Tibetan Plateau
Yuling Hu, Haipeng Yu, Shichang Kang, Junhua Yang, Mukesh Rai, Xiufeng Yin, Xintong Chen, and Pengfei Chen
Atmos. Chem. Phys., 24, 85–107, https://doi.org/10.5194/acp-24-85-2024,https://doi.org/10.5194/acp-24-85-2024, 2024
Short summary
Surface ozone over the Tibetan Plateau controlled by stratospheric intrusion
Xiufeng Yin, Dipesh Rupakheti, Guoshuai Zhang, Jiali Luo, Shichang Kang, Benjamin de Foy, Junhua Yang, Zhenming Ji, Zhiyuan Cong, Maheswar Rupakheti, Ping Li, Yuling Hu, and Qianggong Zhang
Atmos. Chem. Phys., 23, 10137–10143, https://doi.org/10.5194/acp-23-10137-2023,https://doi.org/10.5194/acp-23-10137-2023, 2023
Short summary
Surface ozone at Nam Co in the inland Tibetan Plateau: variation, synthesis comparison and regional representativeness
Xiufeng Yin, Shichang Kang, Benjamin de Foy, Zhiyuan Cong, Jiali Luo, Lang Zhang, Yaoming Ma, Guoshuai Zhang, Dipesh Rupakheti, and Qianggong Zhang
Atmos. Chem. Phys., 17, 11293–11311, https://doi.org/10.5194/acp-17-11293-2017,https://doi.org/10.5194/acp-17-11293-2017, 2017
Short summary

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Mechanistic insights into chloroacetic acid production from atmospheric multiphase volatile organic compound–chlorine chemistry
Mingxue Li, Men Xia, Chunshui Lin, Yifan Jiang, Weihang Sun, Yurun Wang, Yingnan Zhang, Maoxia He, and Tao Wang
Atmos. Chem. Phys., 25, 3753–3764, https://doi.org/10.5194/acp-25-3753-2025,https://doi.org/10.5194/acp-25-3753-2025, 2025
Short summary
Accurate elucidation of oxidation under heavy ozone pollution: a full suite of radical measurements in the chemically complex atmosphere
Renzhi Hu, Guoxian Zhang, Haotian Cai, Jingyi Guo, Keding Lu, Xin Li, Shengrong Lou, Zhaofeng Tan, Changjin Hu, Pinhua Xie, and Wenqing Liu
Atmos. Chem. Phys., 25, 3011–3028, https://doi.org/10.5194/acp-25-3011-2025,https://doi.org/10.5194/acp-25-3011-2025, 2025
Short summary
Emissions of intermediate-volatility and semi-volatile organic compounds (I/SVOCs) from different cumulative-mileage diesel vehicles at various ambient temperatures
Shuwen Guo, Xuan Zheng, Xiao He, Lewei Zeng, Liqiang He, Xian Wu, Yifei Dai, Zihao Huang, Ting Chen, Shupei Xiao, Yan You, Sheng Xiang, Shaojun Zhang, Jingkun Jiang, and Ye Wu
Atmos. Chem. Phys., 25, 2695–2705, https://doi.org/10.5194/acp-25-2695-2025,https://doi.org/10.5194/acp-25-2695-2025, 2025
Short summary
Characterization of nitrous acid and its potential effects on secondary pollution in the warm season in Beijing urban areas
Junling Li, Chaofan Lian, Mingyuan Liu, Hao Zhang, Yongxin Yan, Yufei Song, Chun Chen, Jiaqi Wang, Haijie Zhang, Yanqin Ren, Yucong Guo, Weigang Wang, Yisheng Xu, Hong Li, Jian Gao, and Maofa Ge
Atmos. Chem. Phys., 25, 2551–2568, https://doi.org/10.5194/acp-25-2551-2025,https://doi.org/10.5194/acp-25-2551-2025, 2025
Short summary
Vertical changes in volatile organic compounds (VOCs) and impacts on photochemical ozone formation
Xiao-Bing Li, Bin Yuan, Yibo Huangfu, Suxia Yang, Xin Song, Jipeng Qi, Xianjun He, Sihang Wang, Yubin Chen, Qing Yang, Yongxin Song, Yuwen Peng, Guiqian Tang, Jian Gao, Dasa Gu, and Min Shao
Atmos. Chem. Phys., 25, 2459–2472, https://doi.org/10.5194/acp-25-2459-2025,https://doi.org/10.5194/acp-25-2459-2025, 2025
Short summary

Cited articles

AMAP/UNEP: Technical Background Report for the Global Mercury Assessment 2013, Arctic Monitoring and Assessment Programme, 2013. 
Ashbaugh, L. L., Malm, W. C., and Sadeh, W. Z.: A residence time probability analysis of sulfur concentrations at Grand Canyon National Park, Atmos. Environ., 19, 1263–1270, 1985. 
Bottenheim, J., Gallant, A. G., and Brice, K. A.: Measurements of NOy species and O3 at 82 N latitude, Geophys. Res. Lett., 13, 113–116, 1986. 
Brioude, J., Arnold, D., Stohl, A., Cassiani, M., Morton, D., Seibert, P., Angevine, W., Evan, S., Dingwell, A., Fast, J. D., Easter, R. C., Pisso, I., Burkhart, J., and Wotawa, G.: The Lagrangian particle dispersion model FLEXPART-WRF version 3.1, Geosci. Model Dev., 6, 1889–1904, https://doi.org/10.5194/gmd-6-1889-2013, 2013. 
Burger Chakraborty, L., Qureshi, A., Vadenbo, C., and Hellweg, S.: Anthropogenic mercury flows in India and impacts of emission controls, Environ. Sci. Technol., 47, 8105–8113, 2013. 
Download
Short summary
Total gaseous mercury concentrations were measured at Nam Co Station on the inland Tibetan Plateau for ~ 3 years. The mean concentration of TGM during the entire monitoring period was 1.33 ± 0.24 ngm-3, ranking it the lowest in China and indicating the pristine atmospheric environment of the inland Tibetan Plateau. Variation of TGM at Nam Co was affected by regional surface reemission, vertical mixing and long-range transported atmospheric mercury, which was associated with the Indian monsoon.
Share
Altmetrics
Final-revised paper
Preprint