Articles | Volume 17, issue 6
https://doi.org/10.5194/acp-17-4355-2017
https://doi.org/10.5194/acp-17-4355-2017
Research article
 | 
30 Mar 2017
Research article |  | 30 Mar 2017

Influence of 2000–2050 climate change on particulate matter in the United States: results from a new statistical model

Lu Shen, Loretta J. Mickley, and Lee T. Murray

Related authors

Continuous weekly monitoring of methane emissions from the Permian Basin by inversion of TROPOMI satellite observations
Daniel J. Varon, Daniel J. Jacob, Benjamin Hmiel, Ritesh Gautam, David R. Lyon, Mark Omara, Melissa Sulprizio, Lu Shen, Drew Pendergrass, Hannah Nesser, Zhen Qu, Zachary R. Barkley, Natasha L. Miles, Scott J. Richardson, Kenneth J. Davis, Sudhanshu Pandey, Xiao Lu, Alba Lorente, Tobias Borsdorff, Joannes D. Maasakkers, and Ilse Aben
Atmos. Chem. Phys., 23, 7503–7520, https://doi.org/10.5194/acp-23-7503-2023,https://doi.org/10.5194/acp-23-7503-2023, 2023
Short summary
High-resolution U.S. methane emissions inferred from an inversion of 2019 TROPOMI satellite data: contributions from individual states, urban areas, and landfills
Hannah Nesser, Daniel J. Jacob, Joannes D. Maasakkers, Alba Lorente, Zichong Chen, Xiao Lu, Lu Shen, Zhen Qu, Melissa P. Sulprizio, Margaux Winter, Shuang Ma, A. Anthony Bloom, John R. Worden, Robert N. Stavins, and Cynthia A. Randles
EGUsphere, https://doi.org/10.5194/egusphere-2023-946,https://doi.org/10.5194/egusphere-2023-946, 2023
Short summary
Satellite quantification of methane emissions and oil–gas methane intensities from individual countries in the Middle East and North Africa: implications for climate action
Zichong Chen, Daniel J. Jacob, Ritesh Gautam, Mark Omara, Robert N. Stavins, Robert C. Stowe, Hannah Nesser, Melissa P. Sulprizio, Alba Lorente, Daniel J. Varon, Xiao Lu, Lu Shen, Zhen Qu, Drew C. Pendergrass, and Sarah Hancock
Atmos. Chem. Phys., 23, 5945–5967, https://doi.org/10.5194/acp-23-5945-2023,https://doi.org/10.5194/acp-23-5945-2023, 2023
Short summary
Satellite quantification of oil and natural gas methane emissions in the US and Canada including contributions from individual basins
Lu Shen, Ritesh Gautam, Mark Omara, Daniel Zavala-Araiza, Joannes D. Maasakkers, Tia R. Scarpelli, Alba Lorente, David Lyon, Jianxiong Sheng, Daniel J. Varon, Hannah Nesser, Zhen Qu, Xiao Lu, Melissa P. Sulprizio, Steven P. Hamburg, and Daniel J. Jacob
Atmos. Chem. Phys., 22, 11203–11215, https://doi.org/10.5194/acp-22-11203-2022,https://doi.org/10.5194/acp-22-11203-2022, 2022
Short summary
Methane emissions from China: a high-resolution inversion of TROPOMI satellite observations
Zichong Chen, Daniel J. Jacob, Hannah Nesser, Melissa P. Sulprizio, Alba Lorente, Daniel J. Varon, Xiao Lu, Lu Shen, Zhen Qu, Elise Penn, and Xueying Yu
Atmos. Chem. Phys., 22, 10809–10826, https://doi.org/10.5194/acp-22-10809-2022,https://doi.org/10.5194/acp-22-10809-2022, 2022
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
The Emissions Model Intercomparison Project (Emissions-MIP): quantifying model sensitivity to emission characteristics
Hamza Ahsan, Hailong Wang, Jingbo Wu, Mingxuan Wu, Steven J. Smith, Susanne Bauer, Harrison Suchyta, Dirk Olivié, Gunnar Myhre, Hitoshi Matsui, Huisheng Bian, Jean-François Lamarque, Ken Carslaw, Larry Horowitz, Leighton Regayre, Mian Chin, Michael Schulz, Ragnhild Bieltvedt Skeie, Toshihiko Takemura, and Vaishali Naik
Atmos. Chem. Phys., 23, 14779–14799, https://doi.org/10.5194/acp-23-14779-2023,https://doi.org/10.5194/acp-23-14779-2023, 2023
Short summary
Dynamics-based estimates of decline trend with fine temporal variations in China's PM2.5 emissions
Zhen Peng, Lili Lei, Zhe-Min Tan, Meigen Zhang, Aijun Ding, and Xingxia Kou
Atmos. Chem. Phys., 23, 14505–14520, https://doi.org/10.5194/acp-23-14505-2023,https://doi.org/10.5194/acp-23-14505-2023, 2023
Short summary
Effects of simulated secondary organic aerosol water on PM1 levels and composition over the US
Stylianos Kakavas, Spyros N. Pandis, and Athanasios Nenes
Atmos. Chem. Phys., 23, 13555–13564, https://doi.org/10.5194/acp-23-13555-2023,https://doi.org/10.5194/acp-23-13555-2023, 2023
Short summary
Reactive organic carbon air emissions from mobile sources in the United States
Benjamin N. Murphy, Darrell Sonntag, Karl M. Seltzer, Havala O. T. Pye, Christine Allen, Evan Murray, Claudia Toro, Drew R. Gentner, Cheng Huang, Shantanu Jathar, Li Li, Andrew A. May, and Allen L. Robinson
Atmos. Chem. Phys., 23, 13469–13483, https://doi.org/10.5194/acp-23-13469-2023,https://doi.org/10.5194/acp-23-13469-2023, 2023
Short summary
Development and evaluation of processes affecting simulation of diel fine particulate matter variation in the GEOS-Chem model
Yanshun Li, Randall V. Martin, Chi Li, Brian L. Boys, Aaron van Donkelaar, Jun Meng, and Jeffrey R. Pierce
Atmos. Chem. Phys., 23, 12525–12543, https://doi.org/10.5194/acp-23-12525-2023,https://doi.org/10.5194/acp-23-12525-2023, 2023
Short summary

Cited articles

Avise, J., Chen, J., Lamb, B., Wiedinmyer, C., Guenther, A., Salathé, E., and Mass, C.: Attribution of projected changes in summertime US ozone and PM2. 5 concentrations to global changes, Atmos. Chem. Phys., 9, 1111–1124, https://doi.org/10.5194/acp-9-1111-2009, 2009.
Barnes, E. A. and Fiore, A. M.: Surface ozone variability and the jet position: Implications for projecting future air quality, Geophys. Res. Lett., 40, 2839–2844, https://doi.org/10.1002/grl.50411, 2013.
Brook, R. D., Rajagopalan, S., Pope III, C. A., Brook, J. R., Bhatnagar, A., Diez-Roux, A. V., Holguin., F., Hong, Y., Luepker., R. V., Mittleman, M. A., Peters, A., Siscovick, D., Smith Jr., S. C., Whitsel, L., and Kaufman, J. D.: Particulate matter air pollution and cardiovascular disease – An update to the scientific statement from the American Heart Association, J. Am. Heart Assoc., 121, 2331–2378, 2010.
Burkholder, J. B., Sander, S. P., Abbatt, J. P. D., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., and Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies: Evaluation Number 18. Pasadena, CA: Jet Propulsion Laboratory, 2015.
Canagaratna, M. R., Jimenez, J. L., Kroll, J. H., Chen, Q., Kessler, S. H., Massoli, P., Hildebrandt Ruiz, L., Fortner, E., Williams, L. R., Wilson, K. R., Surratt, J. D., Donahue, N. M., Jayne, J. T., and Worsnop, D. R.: Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications, Atmos. Chem. Phys., 15, 253–272, https://doi.org/10.5194/acp-15-253-2015, 2015.
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
We introduce a new method to characterize the influence of atmospheric circulation on surface PM2.5 concentrations. Applying our statistical model to climate projections, we find a strong influence of 2000–2050 climate change on PM2.5 air quality in the United States. We find that current atmospheric chemistry models may underestimate the strong positive sensitivity of PM2.5 to temperature in the eastern United States in summer, and so may underestimate PM2.5 changes in a warmer climate.
Altmetrics
Final-revised paper
Preprint