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Abstract. We use a statistical model to investigate the ef-
fect of 2000–2050 climate change on fine particulate matter
(PM2.5) air quality across the contiguous United States. By
applying observed relationships of PM2.5 and meteorology
to the IPCC Coupled Model Intercomparision Project Phase
5 (CMIP5) archives, we bypass some of the uncertainties in-
herent in chemistry-climate models. Our approach uses both
the relationships between PM2.5 and local meteorology as
well as the synoptic circulation patterns, defined as the sin-
gular value decomposition (SVD) pattern of the spatial cor-
relations between PM2.5 and meteorological variables in the
surrounding region. Using an ensemble of 19 global climate
models (GCMs) under the RCP4.5 scenario, we project an
increase of 0.4–1.4 µg m−3 in annual mean PM2.5 in the east-
ern US and a decrease of 0.3–1.2 µg m−3 in the Intermoun-
tain West by the 2050s, assuming present-day anthropogenic
sources of PM2.5. Mean summertime PM2.5 increases as
much as 2–3 µg m−3 in the eastern United States due to faster
oxidation rates and greater mass of organic aerosols from
biogenic emissions. Mean wintertime PM2.5 decreases by
0.3–3 µg m−3 over most regions in the United States, likely
due to the volatilization of ammonium nitrate. Our approach
provides an efficient method to calculate the potential climate
penalty on air quality across a range of models and scenarios.
We find that current atmospheric chemistry models may un-
derestimate or even fail to capture the strongly positive sen-
sitivity of monthly mean PM2.5 to temperature in the eastern
United States in summer, and they may underestimate future
changes in PM2.5 in a warmer climate. In GEOS-Chem, the
underestimate in monthly mean PM2.5–temperature relation-
ship in the east in summer is likely caused by overly strong
negative sensitivity of monthly mean low cloud fraction to

temperature in the assimilated meteorology (∼−0.04 K−1)

compared to the weak sensitivity implied by satellite ob-
servations (±0.01 K−1). The strong negative dependence of
low cloud cover on temperature in turn causes the modeled
rates of sulfate aqueous oxidation to diminish too rapidly as
temperatures rise, leading to the underestimate of sulfate–
temperature slopes, especially in the south. Our work under-
scores the importance of evaluating the sensitivity of PM2.5
to its key controlling meteorological variables in climate-
chemistry models on multiple timescales before they are ap-
plied to project future air quality.

1 Introduction

Fine particulate matter with an aerodynamic diameter less
than 2.5 µm (PM2.5) is an important surface air pollutant of
public concern, particularly in industrialized regions. Expo-
sure to PM2.5 can result in respiratory and cardiovascular
disease, as well as premature mortality (e.g., Laden et al.,
2006; Pellucchi et al., 2009; Brook et al., 2010). In the United
States, recent reductions in anthropogenic emissions have de-
creased PM2.5 concentrations by 20 % from 2001 to 2010
(EPA, 2011; Hu et al., 2014), and this trend is very likely
to continue in the future due to increasingly stringent emis-
sion control (Val Martin et al., 2015). However, a changing
climate modifies local meteorological variables, synoptic cir-
culation, and natural emissions, and thus brings new chal-
lenges to projections of future PM2.5. PM2.5 is comprised of
a variety of individual components, including sulfate, nitrate,
ammonium, organic carbon (OC) and elemental carbon (EC).
The response of different PM2.5 components to meteorology
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is complex (Tai et al., 2010), and model projections of PM2.5
under the 21st century climate change have so far shown lit-
tle consistency (e.g., Racherla and Adams, 2006; Pye et al.,
2009; Val Martin et al., 2015; Day et al., 2015). In this study,
we develop a new statistical model to quantify the effect of
2000 to 2050 climate change on PM2.5 air quality across the
contiguous United States.

The response of PM2.5 to local meteorological variables
differs by component, region and time of year. Analyzing
observations from across the United States, Tai et al. (2010)
found that sulfate, OC and elemental carbon increase with
temperature everywhere due to faster oxidation rates, as well
as the association of warmer temperatures with stagnation,
reduced ventilation, and greater biogenic and fire emissions.
Tai et al. (2010) also determined that the correlation of ni-
trate with temperature is negative in the southeast but posi-
tive in California and the Great Plains due to the competing
effects of temperature on emissions and condensation. These
authors further found that higher relative humidity (RH) in-
creases both sulfate, by enhancing in-cloud SO2 oxidation, as
well as nitrate due to the RH dependence of ammonium ni-
trate formation. Conversely, higher RH decreases OC and EC
due to the association of moist air with reduced wildfires and
greater influx of clean marine air (Tai et al., 2010). The rela-
tionship of PM2.5 with clouds and precipitation is complex:
as cloud cover increases, aqueous-phase oxidation of SO2 in-
creases, but greater precipitation may also scavenge all PM2.5
components (Koch et al., 2003; Tai et al., 2010). These var-
ied and sometimes competing effects of meteorology on the
different components of PM2.5 make it challenging to predict
PM2.5 variability.

In addition to local meteorology, synoptic circulation pat-
terns also play an important role in affecting PM2.5 air qual-
ity. For example, Thishan Dharshana et al. (2010) found that
synoptic weather systems contribute 30 % of the PM2.5 daily
variability in the midwestern United States. Tai et al. (2012a)
found that 20–40 % of the observed PM2.5 daily variabil-
ity can be explained by cold frontal passages in the east-
ern United States and maritime inflow in the west. How-
ever, characterizing the effects of cold front passages and
other synoptic patterns on surface PM2.5 is challenging. In-
dices reflective of such patterns – e.g., the polar jet (Barnes
and Fiore, 2013), cyclone frequency (Mickley et al., 2004;
Leibensperger et al., 2008) and the extent of the Bermuda
High (Li et al., 2011; Shen et al., 2015) – may reflect only
a fraction of the total synoptic activity in some regions, and
the relationships between these patterns and PM2.5 are not
completely understood.

Chemical transport models (CTMs) and chemistry-climate
models (CCMs) show no consistent sign of the future PM2.5
changes under a changing climate (e.g., Liao et al., 2006;
Racherla and Adams, 2006; Tagaris et al., 2007; Heald et al.,
2008; Avise et al., 2009; Pye et al., 2009). Reviewing ear-
lier studies, Jacob and Winner (2009) and Fiore et al. (2015)
concluded that most of the projected effects of 21st century

climate changes on PM2.5 concentrations are in the range
of ±0.1–1 µg m−3, with changes up to ±2 µg m−3 in certain
seasons or regions. More recently, Val Martin et al. (2015)
found that 2000–2050 climate change may decrease the an-
nual mean PM2.5 concentrations by 0–1 µg m−3 in the eastern
United States under the Representative Concentration path-
way (RCP) 4.5 scenario of climate change. Day et al. (2015)
determined that summer mean PM2.5 increases by 21 % in
the southeast but decreases 9 % in the Northeast from 2000
to 2050 under the more-greenhouse-gas-intensive A2 sce-
nario. In contrast, Gonzalez-Abraham et al. (2015) identified
a 10–30 % increase in summer mean PM2.5 across the eastern
United States by the 2050s. A key reason for these inconsis-
tencies is the large variation in the projections of future me-
teorology from climate models, regardless of scenario. Due
to their high computation expense, CTMs typically rely on
the meteorological fields from a single climate model. How-
ever, the dependence of PM2.5 on meteorological variables
such as temperature is also uncertain, especially over longer
timescales (e.g., interannual or decadal). To our knowledge,
the ability of models to reproduce the dependence of PM2.5
on major meteorological variables over such long timescales
has not yet been evaluated.

An alternative approach to projecting the effect of climate
change on PM2.5 air quality involves the use of statistical
models, in which the observed relationships of PM2.5 and
meteorology are applied to future climate projections from an
ensemble of models. Use of an ensemble provides a mean or
median response and uncertainty range and increases confi-
dence in the sign and magnitude of the response of a particu-
lar variable to climate change. For example, Tai et al. (2012b)
first analyzed 1999–2010 observations using principal com-
ponent analysis of eight different meteorological variables
and found that the interannual variability of PM2.5 is strongly
correlated with the average cyclone period T , defined as the
inverse of the median frequency of the dominant meteoro-
logical mode, in the contiguous United States. They then
projected 2000 to 2050 changes in PM2.5 by applying the
local PM2.5-to-period sensitivity (i.e., 1 (PM2.5)/1T ) to
the future changes in the average cyclone period T derived
from an ensemble of climate model simulations following
the A1B scenario. Results showed only a weak increase of
∼ 0.1 µg m−3 in annual mean PM2.5 in the eastern United
States, and a likely weak decrease in the Pacific Northwest.
However, Tai et al. (2012b) may have underestimated the
change in future PM2.5 because only the influence of synop-
tic patterns was considered and not the impact from local me-
teorology. More recently, Lecœur et al. (2014) developed a
statistical algorithm to estimate future PM2.5 concentrations
over Europe based on a weather-type representation. They
resampled future daily PM2.5 concentrations from a pool of
chemistry model simulations, based on the similarity deter-
mined by regression-estimated PM2.5 and large-scale circu-
lations. They found seasonal mean PM2.5 changes between
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−1.6 and +1.1 µg m−3 under the RCP4.5 scenario by the
2050s.

In this study, we revisit the conclusions of Tai et
al. (2012b). We develop a new method to characterize the
synoptic circulations using the singular value decomposition
(SVD) of the spatial correlations between PM2.5 and mete-
orological variables in the surrounding region. The method
takes into account the influence of both local meteorology
and the synoptic circulation patterns to investigate the effect
of 2000–2050 climate change PM2.5 air quality across the
contiguous United States. We also evaluate different CTMs
and CCMs in terms of the simulated dependence of seasonal
mean PM2.5 on temperature over 1 decade. In Sect. 2, we in-
troduce the data and models we use. In Sect. 3, the method
used to characterize the synoptic circulation patterns is de-
scribed. We discuss the projected 2000 to 2050 changes in
PM2.5 in Sect. 4. Section 5 evaluates the capability of differ-
ent dynamic models in simulating the dependence of PM2.5
on key meteorological variables.

2 Data sources and models

2.1 PM2.5 and meteorological data

Surface daily mean PM2.5 concentrations and speciation data
from 1999 to 2013 are taken from the US Environmen-
tal Protection Agency Air Quality System (EPA-AQS, http:
//www.epa.gov/ttn/airs/airsaqs/). We interpolate the site mea-
surements onto a 2.5◦× 2.5◦ latitude-by-longitude grid, us-
ing inverse distance weighting as in Tai et al. (2010). The
meteorological data used in this study for 1999–2013 consist
of temperature, relative humidity, and east–west and north–
south wind speed from the National Centers for Environmen-
tal Prediction (NCEP) Reanalysis 1, mapped in 2.5◦× 2.5◦

grid resolution (Kalnay et al., 1996). For precipitation, we
rely on the NOAA Climate Prediction Center (CPC) Uni-
fied Gauge-Based Analysis of Daily Precipitation product for
1999–2013 (Xie et al., 2007; Chen et al., 2008). These vari-
ables have been previously used to predict PM2.5 (e.g., Tai et
al., 2010, 2012a, b; Lecœur et al., 2014), and their variabil-
ity is closely linked to that of synoptic patterns (e.g., Shen et
al., 2015; Thishan Dharshana et al., 2010). These particular
variables have also been validated in CMIP5 models (e.g.,
Sheffield et al., 2013).

Satellite-observed cloud fractions for 2004–2012 are from
the Clouds and the Earth’s Radiant Energy System (CERES)
ISCCP-D2like products (CERES Science Team, Hamp-
ton, VA, USA; NASA Atmospheric Science Data Center,
accessed in October 2016 at http://doi.org/10.5067/Aqua/
CERES/ISCCP-D2LIKE-MERG00_L3.003A). This merged
product combines 3-hourly, daytime cloud properties from
Terra and Aqua on the Moderate Resolution Imaging Spec-
troradiometer (MODIS) and from the geostationary satellite
(GEO), mapped over 1◦× 1◦ grid resolution (Minnis et al.,

1995, 2011). The cloud optical depths are archived in three
wavelength bins (0–3.6, 3.5–23 and 23–380 µm) in both liq-
uid and ice phases. In this study, we focus on clouds in the
lower troposphere below 680 hPa, which have the greatest
implications for surface PM2.5 air quality.

To project the 2000–2050 effect of climate change on
PM2.5 air quality, we use five meteorological variables – sur-
face temperature, relative humidity, precipitation, and east–
west and north–south wind speed – from an ensemble of 19
climate models participating in the Coupled Model Intercom-
parison Project Phase 5 (CMIP5) and following the RCP4.5
scenario (Taylor et al., 2012). RCP4.5 is an intermediate sce-
nario, in which the radiative forcing reaches 4.5 W m−2 by
2100, approximately 650 ppm CO2 concentration, and sta-
bilizes after that (Taylor et al., 2012). The CMIP5 data are
archived at a horizontal resolution of ∼ 200 km, and the de-
tails of these models can be found in Table S1.

To remove the effects of long-term trend, we subtract the
5-year moving average from monthly mean values in both
PM2.5 and meteorological data as in Tai et al. (2012b). The
choice of 5 years is arbitrary, but we find that this choice pro-
duces good correlations between surface PM2.5 and meteoro-
logical variables over the relatively short 15-year PM2.5 time
history of observations, thus allowing us to bypass the im-
pact of nonlinear emission changes. Throughout this study,
we use p<0.05 as the threshold for statistical significance.

2.2 Atmospheric chemistry models

We perform a 9-year simulation of PM2.5 in the GEOS-Chem
CTM (v9-02, http://geos-chem.org) with coupled gas-phase
and aerosol chemistry. The model has a horizontal resolution
of 2◦× 2.5◦ with 47 pressure levels extending from surface
to 0.01 hPa (∼ 38 in the troposphere), driven by GEOS-5-
assimilated meteorological data for 2004 to 2012 from the
NASA Global Modeling and Assimilation System (GMAO).
The aerosol thermodynamical partitioning of nitrate and am-
monium between gas and aerosol phases is calculated by the
ISORROPIA II model (Fountoukis and Nenes, 2007). The
scheme to produce sulfate via aqueous-phase oxidation of
SO2 uses liquid water content and cloud fraction from the
assimilated meteorology (Fisher et al., 2011). Formation of
secondary organic aerosol (SOA) follows Pye et al. (2010),
with many subsequent updates to the isoprene oxidation
mechanism (Paulot et al., 2009a, b; Rollins et al., 2009). Bio-
genic emissions are from the inventory of Guenther et al.
(2012). We follow Hudman et al. (2012) for emissions of ni-
trogen oxides (NOx) from soil and Murray et al. (2012) for
lightning NOx . US anthropogenic emissions of PM2.5 pre-
cursors are from the EPA 2005 National Emissions Inventory
(NEI05). We use monthly biomass burning emissions from
Global Fire Emission Database (GFED; van der Werf et al.,
2010).

GEOS-5 assimilates a large array of observations but
calculates cloud properties using a prognostic algorithm
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without assimilation. The algorithm considers both liq-
uid and ice phases of cloud condensate with two types
of cloud types, anvil and large-scale clouds (Reinecker et
al., 2008). The basic moist processes include a convective
scheme using the relaxed Arakawa–Schubert parameteriza-
tion (Moorthi and Suarez, 1992), a large-scale cloud conden-
sate scheme (Smith, 1990; Rotstayn, 1997) and cloud de-
struction schemes as described in Reinecker et al. (2008).
Column cloud fraction in the lower troposphere is calcu-
lated using a random overlap approximation (Stephens et al.,
2004). In Sect. 5, we validate the GEOS-5 cloud fraction in
the lower troposphere against CERES satellite observations.

Finally, we use modeled 1995–2010 PM2.5 surface con-
centrations and temperature data from the Atmospheric
Chemistry and Climate Model Intercomparison Project (AC-
CMIP). For this historical simulation, the ACCMIP mod-
els follow the same time-varying anthropogenic and biomass
burning emissions (Lamarque et al., 2010). Only four AC-
CMIP models provide archived total PM2.5 concentrations:
NCAR-CAM3.5, GFDL-AM3, MIROC-CHEM and GISS-
E2-R (Table S2). Here we use an updated simulation with the
GISS-ModelE2 model in its atmosphere-only mode, forced
using the ACCMIP emissions (Lamarque et al., 2010), ob-
served daily sea-surface temperatures, and sea ice from
Reynolds et al. (2007), and with winds nudged to the
Modern-Era Retrospective Analysis for Research and Ap-
plications (MERRA) meteorological reanalysis (Rienecker
et al., 2011). The rate constants for oxidation of SO2 and
dimethyl sulfide by OH have been updated to those rec-
ommended by Burkholder et al. (2015), consistent with
GFDL-AM3 and GEOS-Chem. All four ACCMIP mod-
els are CCMs. The horizontal resolution of these models
is ∼ 200 km; more details are described in Lamarque et
al. (2013).

3 Construction of synoptic circulation factors

PM2.5 variability is not only related to local meteorology
but also synoptic circulation. Previous studies have identi-
fied many synoptic patterns that are important for surface
air quality in different regions under certain seasons, such
as cyclone frequency (Mickley et al., 2004; Leibensperger et
al., 2008), the position of the polar jet wind in the Northeast
(Barnes and Fiore, 2013; Shen et al., 2015) and the extent
of the Bermuda High west edge in summer in the southeast
(Li et al., 2011; Shen et al., 2015). However, identification
and interpretation of the dominant synoptic patterns for each
region and each month would be time consuming and sub-
ject to some uncertainty. Instead, as a first step, we attempt
to find a more general way to characterize the major synoptic
patterns that modulate the PM2.5 variability.

Synoptic circulation plays a vital role in controlling PM2.5
air quality. The correlations of surface PM2.5 with me-
teorological variables in the surrounding regions may in

fact be stronger than those in the local regions. For exam-
ple, Fig. 1a shows the correlations between May–June–July
(MJJ) monthly mean PM2.5 concentrations in one 2.5◦× 2.5◦

grid box in Georgia in the southeastern United States with
MJJ surface air temperatures in grid boxes across a much
larger domain (32.5◦× 17.5◦) over the 1999–2013 time pe-
riod. Positive correlations extend across the whole south-
east, suggesting that PM2.5 air quality in Georgia is affected
by regional climate; the strongest correlations are located in
Mississippi, ∼ 500 km west of Georgia. The relationship of
PM2.5 in the Georgia grid box with relative humidity also
shows a regional signature, with negative correlations span-
ning the southeast to the Gulf of Mexico (Fig. 1b). Pre-
cipitation can scavenge particles, and we identify negative
correlations of the Georgia PM2.5 with regional precipita-
tion (Fig. 1c). The relationships of Georgia PM2.5 with east–
west wind speed are relatively weak, with negative correla-
tions in the Midwest and Gulf of Mexico (Fig. 1d). How-
ever, the relationships of PM2.5 in the Georgia grid box with
the north–south wind speed show a strong bimodal struc-
ture, with significant negative correlations stretching over the
eastern Atlantic and positive correlations in the south central
United States (Fig. 1e), suggesting anticyclonic circulation.
In contrast, the correlation of this variable with PM2.5 within
Georgia is close to zero, which means the local north–south
wind speed does not provide predictive capability for PM2.5
here. Taken together these results imply that PM2.5 variabil-
ity is partly controlled by regional-scale synoptic patterns,
and consideration of only local meteorology will not suffice
in predicting PM2.5.

We construct the synoptic circulation factors driving
PM2.5 across the eastern United States through the use of
SVDs of the spatial correlations between PM2.5 in each grid
box and meteorological variables in the surrounding region.
This SVD method effectively compresses the information
from several meteorological variables in a multidimensional
matrix into a set of scalars that represent the oscillation of the
PM2.5-related synoptic patterns. For each grid box, the pro-
cess proceeds as below. First, we calculate the correlations of
monthly mean PM2.5 in the grid box with five meteorological
variables (temperature, relative humidity, precipitation, and
north–south and west–east wind speed) within a ∼ 1000 km
radius of the grid box on a 2.5◦ × 2.5◦ horizontal grid. This
step yields a 13× 9× 5 (longitude× latitude× variable) ma-
trix that we call A. Second, we align the dimension of
longitude–latitude into one column and resize matrix A into
a 117× 5 two-dimensional matrix F. The SVDs of F can be
written as

F= ULVT , (1)

where L is a diagonal matrix with non-negative numbers
on the diagonal. Each column of V represents the variable
weights and each column of U represents the spatial weights
of the corresponding SVD mode. For example, Fig. 2a–
b shows the spatial and variable weights of the first SVD
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Correlation of PM2.5 with meteorology
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Figure 1. Example of observed correlations of monthly mean
PM2.5 in one grid box with surrounding meteorology in the south-
eastern United States from 1999–2013. Panels show correlations of
May–June–July monthly PM2.5 concentrations from EPA-AQS ob-
servations in the 2.5◦× 2.5◦ grid box centered at 82.5◦W, 32.5◦ N
(black circle), with different meteorological variables from NCEP
Reanalysis1, including (a) surface air temperature, (b) relative hu-
midity, (c) total precipitation, (d) east–west wind speed and (e)
north–south wind speed. Grid boxes with significant correlation
with p<0.05 level are stippled. All data are detrended by subtract-
ing the 5-year moving average from the monthly values.

(SVD1) mode for PM2.5 in the same grid box in Georgia as
in Fig. 1, where SVD1 explains 32 % of the total variance.
The spatial weights show a bimodal structure with negative
anomalies over the eastern Atlantic and positive anomalies
over the Great Plains and Midwest (Fig. 2a), in a pattern sim-
ilar to that in Fig. 1e. The corresponding variable weights
in Fig. 2b reveal the importance of the north–south wind
speed in this mode, suggesting that SVD1 is characterized
by dynamic, synoptic-scale meteorology. In the second SVD
(SVD2) mode, the spatial weights (Fig. 2c) show positive
anomalies in the southeastern United States, and this corre-
sponds to the positive temperature anomalies in Fig. 1a as
well as negative relative humidity and precipitation anoma-
lies in Fig. 1b–c. The meteorological composition of the
variable weights shows that temperature, relative humidity
and precipitation dominate (Fig. 2d), suggesting that SVD2
reflects a regional-scale thermal effect. The magnitudes of
SVD1 and SVD2 oscillate over time, contributing to PM2.5
variability in the Georgia grid box. We repeat this exercise
for each grid box across the United States.

The magnitude of each PM2.5-related mode in a new me-
teorological field can be calculated as follows. For each grid
box, we first construct a matrix M, consisting of the monthly
mean values of each meteorological variable across the sur-
rounding region. We scale the time series of each variable
in each grid box to achieve zero mean and unit standard de-
viation across the time frame. The magnitude of each SVD
mode for every month t is then calculated using the inverse
process of SVD, which can be written as

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

32 %

S
V

D
1

Spatial weight
(a)

●

Lo
ad

in
gs

−1.0

−0.5

0.0

0.5

1.0

T RH Precip EW NS

Variable weight
(b)

SVD1

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

31 %

S
V

D
2

(c)

●

Lo
ad

in
gs

−1.0

−0.5

0.0

0.5

1.0

T RH Precip EW NS

(d)

SVD2

Figure 2. (a, c) Spatial and (b, d) variable weights of the (a, b)
first and (c, d) second singular value decomposition (SVD) modes
describing the spatial correlations of May–June–July PM2.5 anoma-
lies in one grid box in the southeast from 1999 to 2013 and five dif-
ferent meteorological variables: temperature (T ), relative humidity
(RH), precipitation (precip), and east–west and north–south wind
speed (EW wind and NS wind). The explained variance by each
SVD mode is shown inset. See Sect. 3 for more details.

Sk = UTk MtVk, (2)

where Uk refers to the kth column in the spatial weights ma-
trix U, Vk to the kth column in the variable weights matrix
V and Sk is a scalar depicting the magnitude of the kth SVD
mode of the new meteorological field for that month. This in-
verse SVD transforms a large matrix into a few scalars, and
these scalars reflect the variability of synoptic patterns that
are closely related to PM2.5 air quality.

We first construct a multiple linear regression model to
correlate observed monthly mean 1999–2013 PM2.5 concen-
trations and five local meteorological variables (surface tem-
perature, relative humidity, precipitation, and east–west wind
and north–south wind) and the two most important synoptic
factors in each grid box, diagnosed using SVD. The model is
of the form

Y =
∑5

k=1
αkXk +

∑2
n=1

βnSn+ b, (3)

where Y is three continuous monthly mean PM2.5 concentra-
tions for 1999–2013 with a total number of 45 values in the
time series. For example, for July PM2.5, we train the model
using June, July and August values for each year over the 15
years. X is a scalar consisting of the five local meteorolog-
ical variables, S represents the two synoptic circulation fac-
tors constructed using SVD, α and β are the corresponding
coefficients, and b is the intercept. We test this model in two
steps. In the first step, we use only the local meteorological
variables – i.e., we set all βs to zeros. In the second step, we
use both local meteorology and synoptic patterns. In order
to avoid overfitting, we use leave-one-out cross validation to
determine the best variable combinations for each grid box.
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(a) Local meteorology
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(b) Local meteorology + synoptic factors

43%
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Figure 3. Cross-validated coefficients of determination (R2) be-
tween observed and predicted 1999–2013 monthly PM2.5 across
the United States, calculated with (a) local meteorological variables
and (b) both local meteorology and patterns of synoptic circulation.
Spatially averaged coefficients of determination are shown inset.

Each time we reserve one observation in the time series as the
test set and use the remaining ones as the training set, and we
repeat this process until all observations have been predicted.
Throughout this study, we predict monthly PM2.5 concentra-
tions using this regression model, but projected changes of
PM2.5 in the future climate will be displayed as seasonal and
annual means.

Figure 3a shows the cross-validated skills expressed in the
coefficients of determination (R2) between observed and pre-
dicted 1999–2013 monthly mean PM2.5 concentrations using
only local meteorology. We find thatR2 averages 34 % across
the United States, with the largest R2 located in the Midwest,
Northeast and northwest. This spatial pattern of R2 is consis-
tent with the pattern in Tai et al. (2010), who regressed daily
PM2.5 concentrations onto only local meteorological vari-
ables. By including synoptic circulation factors in the model,
the average R2 of the regression model increases over most
regions, with an average R2 across the United States of 43 %
and R2 values greater than 50 % over a broad region that in-
cludes the upper Midwest, Ohio, parts of the Northeast and
areas as far south as Tennessee (Fig. 3b). This result demon-
strates that inclusion of synoptic circulation factors can sig-
nificantly improve the regression model. We also find that
the cross-validated values of R2, calculated from both local
meteorology and patterns of synoptic circulation and aver-
aged across the United States, are 35 % in spring, 44 % in
summer, 42 % in autumn and 43 % in winter (Fig. S1 in the
Supplement). To check the multi-colinearity among predic-
tors in this model, we calculate the variance inflation factors
(VIFs) for all variables in each grid box and each month. Re-
sults in Fig. S2 show that about 98.9 % of the VIFs are less
than 5, well below the threshold of 10 that defines significant
multi-colinearity (Kutner et al., 2004).

4 Impact of 2000–2050 climate changes on PM2.5 from
statistical inference

To estimate the impacts of climate change on future PM2.5
concentrations from 2000–2019 to 2050–2069, we apply the
regression model including both local and synoptic meteorol-

ogy to the CMIP5 meteorological projections. We calculate
mean surface PM2.5 in both timeframes and then the resulting
change. We assume that anthropogenic emissions of PM2.5
sources remain at mean 1999–2013 levels during the 2050–
2059 timeframe. An ensemble of 19 CMIP5 models in the
RCP4.5 scenario is used here, and we calculate the PM2.5
change for each model separately. Computing the average
PM2.5 change across the ensemble improves confidence in
our predictions of the climate impact on PM2.5.

Future climate change by the 2050s leads to significant
warming across North America but has minimal effects on
precipitation and circulation patterns across the continent.
Figure S3 shows the seasonal changes in temperature, rel-
ative humidity, precipitation and surface wind field for June–
July–August (JJA) across the United States, averaged across
the CMIP5 ensemble. Mean temperature increases by 2–
2.5 K over much of the north in this timeframe, and 1.5–
2 K over the southeast. Relative humidity decreases by up
to 0.03 over most regions across the United States, but the
models show no consistent sign in the future change in pre-
cipitation in the summer. The flux of maritime air into the
southern United States increases due to increased land–ocean
thermal contrast. In winter (Fig. S4), mean temperature in-
creases by 3 K in the north, while relative humidity decreases
across the Intermountain West and the Northeast, similar to
the pattern in summer. Precipitation shows a slight increase
of 0.1 mm d−1 in the north, and the surface circulation pat-
tern shows little change over the United States (Fig. S4).

Figure 4a–d shows the response of the seasonal mean
PM2.5 concentrations to 2050s climate change across the
United States, shown as the average of all projections from
the CMIP5 models. PM2.5 increases by ∼ 2–3 µg m−3 in
summer in the eastern United States (Fig. 4b), likely due
to faster oxidation rates and more abundant organic aerosol
(OA) in the warmer climate of the 2050s (e.g., Tai et al.,
2010; Kelly et al., 2012; Gonzalez-Abraham et al., 2015).
This can be also inferred from the positive sensitivity of sul-
fate and OA to temperatures from observations, which will
be discussed in more detail in Sect. 5. We also find an in-
crease of ∼ 0.8–1.5 µg m−3 in the summer over the Inter-
mountain West, partly driven by enhanced biomass burning
in a warmer climate (e.g., Yue et al., 2013, 2015). In winter,
future PM2.5 decreases by 0.3–3 µg m−3 across much of the
United States (Fig. 4d), likely driven by greater volatilization
of ammonium nitrate at warmer temperatures (Dawson et al.,
2007, 2009). In spring and autumn, PM2.5 increases in the
eastern United States by ∼ 0.5 µg m−3. Annual mean PM2.5
increases as much as 1.4 µg m−3 in the eastern United States
but decreases by up to 1 µg m−3 in the Intermountain West
(Fig. 4e).

To evaluate the uncertainty of projected PM2.5 concentra-
tions, we analyze the range of these projections among the
19 CMIP5 models as well as the interannual time series of
regional projections from 2000 to 2069. Even though many
models have multiple simulations, when we calculate the ef-
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Effects of 2050s climate change on PM2.5 
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Figure 4. Effects of climate change from 2000–2019 to 2050–2069
on (a–d) seasonal and (e) annual mean PM2.5 concentrations, cal-
culated with observed relationships of PM2.5 and meteorology and
with meteorology projected by an ensemble of 19 CMIP5 models.
The panels show the mean change in surface PM2.5, averaged across
the projections. White areas refer to the regions with no PM2.5 ob-
servations or where fewer than 14 models yield the same sign of
change.

fects of climate change on PM2.5 concentrations, we only
use the simulated meteorology from the first ensemble run
for each model. In general, these models agree on the sign
of the change of PM2.5 across the east by the 2050s, but the
magnitude of the change varies among models (Fig. S5). To
more rigorously characterize this uncertainty, we calculate
the 90th and 10th percentile changes in PM2.5 concentrations
as calculated from the 19 CMIP5 models (Figs. S6–S7). In
the summertime, the 90th percentile changes of PM2.5 can
be greater than 3 µg m−3 across most of the eastern United
States (Fig. S6b), but the 10th percentile changes are only
0.5–1.5 µg m−3 (Fig. S7b). These discrepancies underscore
the importance of using an ensemble of climate models to
project future PM2.5 concentrations. Such an approach al-
lows us to identify robust results across models, quantify un-
certainty and diagnose model outliers. We also examine the
2000–2069 time series of projected PM2.5 concentrations as
annual, summertime and wintertime means, averaged over
eight different US regions (Figs. S8–S11). The spread in
PM2.5 trends is one measure of the uncertainty in our pro-
jections, arising in part from differences in model sensitivity
to changing greenhouse gases and in part from internal vari-
ability of the climate system (e.g., Deser et al., 2014). Av-
eraging results across the CMIP5 ensemble reveals a robust
response of PM2.5 to increasing greenhouse gases, at least in
some regions, giving us confidence in our approach.

We also compare our results to those from recent stud-
ies using chemistry-climate models. Among the seven re-
cent studies reviewed in Fiore et al. (2015), only two of
them projected a significant increase in PM2.5 concentra-
tions in summer over the eastern United States. Kelly et
al. (2012) estimated an increase of 0.5–1.0 µg m−3 in sum-
mertime PM2.5 over much of the east from 2000 to 2050,
mainly resulting from rapid increases in SOA from biogenic
emissions. Gonzalez-Abraham et al. (2015) found that the ef-

fect of 2000–2050 climate change alone without changes in
biogenic emissions can increase PM2.5 concentrations by up
to 1.0 µg m−3 in the eastern United States, a combined effect
of increasing sulfate and ammonium as well as decreasing
nitrate. Consideration of the changes in biogenic emissions
drives up this increase to 0.5–3 µg m−3.

To diagnose which meteorological variable plays the
greatest role in these PM2.5 changes, we perform a series
of tests with the regression model. For each test, we keep
one variable in the 2050–2069 calculation the same as for the
2000–2019 timeframe and calculate the resulting changes in
PM2.5. We find that the changes of PM2.5 almost vanish if we
hold surface temperatures for 2050–2069 at their 2000–2019
values (Fig. S12), suggesting that temperature drives most of
the PM2.5 changes in the future climate.

Our study shows much larger regional effects of 2000–
2050 climate change on annual mean PM2.5 compared to Tai
et al. (2012b). An increase of only ∼ 0.1 µg m−3 was pre-
dicted by Tai et al. (2012b) in the eastern United States, an
order of magnitude smaller than what we find. We trace the
reason for this discrepancy to the choice of predictors in the
two studies. Tai et al. (2012b) identified the dominant mete-
orological modes driving daily PM2.5 variability in 4◦× 5◦

grid cells across the United States and calculated the local
sensitivity of PM2.5 to synoptic period T for that mode. Us-
ing the simulated changes in T from a set of climate mod-
els, they then projected future PM2.5 in each grid cell. Tai et
al. (2012b) further found a strong correlation (r =−0.63) be-
tween T and the maximum eddy growth rate, a quantity that
reflects the meridional temperature gradient. This finding im-
plies that trends in T only represent the changes in the merid-
ional temperature gradient but do not take into account the
effects of homogeneous warming across the mid- and high
latitudes. Partly to remedy this bias, we have included both
local meteorology and synoptic circulation patterns in our re-
gression model, leading to a much higher response of PM2.5
to climate change.

One weakness of this study is that when estimating the
sensitivity of PM2.5 to meteorological variables, we do not
consider the impact of changing anthropogenic emissions on
this sensitivity. Figure S13 compares the slopes of monthly
mean PM2.5 and its components with temperature for two
time periods: 1999–2006 summers with high anthropogenic
emissions and 1997–2013 summers with low anthropogenic
emissions. Using the monthly data, we find that the changes
of sensitivity of PM2.5 to temperature vary across different
locations and species. As the anthropogenic emissions de-
crease, the slopes of PM2.5 and temperature decrease over
the Great Plains and Midwest, but increase slightly in the
southern Atlantic states. Sulfate exhibits decreased sensitiv-
ity across the eastern United States, and OA shows no sig-
nificant pattern of change. Reasons for such inconsistencies
may be related to the shorter time periods and therefore less-
robust sensitivity. In this study, we have thus chosen not to
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JJA slopes of PM2.5 and temperature
(a) obs (b) CAM3.5 (c) GFDL-AM3

(d) GISS (e) MIROC-CHEM (f) GEOS-Chem
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Figure 5. The slopes of detrended, monthly mean PM2.5 versus
temperature for summer months (June–July–August) in (a) observa-
tions and (b–f) different chemistry models. The timeframes shown
in the panel are as follows: (a) 2004–2012, (b) 2002–2009, (c)
2001–2010, (d) 1995–2005, (e) 2000–2010 and (f) 2004–2012. Re-
sults in panels (b–e) are taken from ACCMIP (Lamarque et al.,
2010) and use an updated GISS simulation (d) relative to their AC-
CMIP contributions (see text for more details). The dashed contour
line in some panels denotes a slope of +1 µg m−3 K−1. White ar-
eas indicate either missing data or grid boxes where the slope is not
significant at the 0.05 level.

investigate the influence of changing emissions on the sensi-
tivity of PM2.5 to climate change using this statistical model.

5 Evaluation of PM2.5 sensitivity to surface
temperature in chemistry models

A key question is why previous model studies show no con-
sistent sign in the change of future PM2.5 relative to the
present (Jacob and Winner, 2009). Such discrepancies no
doubt arise in part because of differences in model projec-
tions of future climate or in model speciation of PM2.5. In
this section we investigate whether differences in model rep-
resentation of the sensitivity of PM2.5 to meteorological vari-
ability may also contribute to uncertainty in projections of
future PM2.5. As we point out above, few or no models have
undergone evaluation of their capability in simulating this
sensitivity over relatively long timescales (e.g., the interan-
nual variability over a decade). Our tests with the regression
model show that temperature is the most important driver
of changing PM2.5 in a changing climate, making it the pri-
mary candidate for evaluation in these models. We focus on
summer (JJA) because our predictions point to an increase
in PM2.5 of 2–3 µg m−3 in the eastern United States by the
2050s at that time of year, values much greater than previous
predictions.

This section consists of two parts. First, we test the capa-
bility of four ACCMIP models and GEOS-Chem in capturing
the observed relationship between JJA monthly mean PM2.5
and temperature. We find that no model simulates this rela-

tionship well. Second, using GEOS-Chem as a test bed, we
investigate the reasons of this failure in this particular model.

Figure 5 shows the distributions of the slopes of monthly
PM2.5 and temperature over the United States in observations
and in different chemistry models for summer months in the
present day. All PM2.5 and temperature values have been de-
trended, as described above, so that the slopes reflect only the
PM2.5 response to the interannual variability in temperature.
For both the observations and the model results, the sensi-
tivities of PM2.5 to temperature shown here encapsulate the
response of PM2.5 to all variables associated with temper-
ature, including cloud cover, relative humidity and bound-
ary layer height. The observations display positive slopes
over the whole United States, with slopes in the east greater
than 1 µg m−3 K−1 (Fig. 5a). The positive slopes are driven
by faster oxidation rates and increased biogenic emissions,
as well as the stagnation frequently concurrent with higher
temperatures. The models, however, either underestimate the
positive slopes or even yield negative slopes in some regions,
with no consistent spatial patterns in these discrepancies. For
example, CAM3.5 shows significant positive slopes in Texas,
the Midwest and the Northeast (Fig. 5b). GFDL-AM3 dis-
plays a bimodal structure, with positive slopes in the North-
east but negative slopes in the south (Fig. 5c). The GISS-
ModelE2 shows slight positive slopes over parts of the east
(Fig. 5d). The slopes in MIROC-CHEM are nearly flat, indi-
cating little sensitivity of the monthly mean PM2.5 concentra-
tions to temperature variability (Fig. 5e). GEOS-Chem shows
positive slopes over much of the eastern United States, but
the magnitudes are much less than those observed (Fig. 5f).
In a more recent study, Westervelt et al. (2016) used a mul-
tivariate linear model to check the dependence of PM2.5 on
meteorology in the GFDL Coupled Model (CM3) and iden-
tified a positive PM2.5–temperature sensitivity in the east in
CM3 when all monthly data across the year were consid-
ered. For summer, however, Westervelt et al. (2016) found
a mix of positive and negative sensitivities across the 21st
century, depending on the scenario. Sulfate concentrations
declined strongly by the 2090s in all future model scenarios,
contrary to what our results imply. Our results suggest that
these chemistry models may underestimate the impact of fu-
ture climate change on US PM2.5 air quality.

Using GEOS-Chem, we further explore the sensitivity
of monthly mean PM2.5 to temperature in the summer-
time. We regress the simulated monthly mean concentra-
tions of key PM2.5 components – sulfate, ammonium, OA
and nitrate – onto temperature over the 2004–2012 sum-
mers. In the observations, the positive slopes in sulfate–
temperature and OA-temperature clearly drive the positive
PM2.5–temperature slopes (Fig. 6a, c and e). In GEOS-
Chem, the OA–temperature slopes match those in the ob-
servations (Fig. 6e–f), but the modeled sulfate–temperature
slopes exhibit negative values in the south (Fig. 6d), con-
trary to observations (Fig. 6c). For other PM2.5 species, the
slopes with temperature are relatively weak, with minimal
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Figure 6. The slopes of detrended (a–b) monthly mean PM2.5 and
(c–j) different PM2.5 components with surface air temperature for
2004–2012 summer months. The left column shows slopes from
AQS observations, and the right column shows results from GEOS-
Chem. Organic aerosol (OA) in (e) is inferred from the measured
organic carbon (OC) component using an OA /OC mass ratio of
1.8 (Canagaratna et al., 2015). Panels (a) and (b) are the same as
Fig. 5a and f. White areas indicate either missing data or grid boxes
where the slope is not significant at the 0.05 level.

contributions to the total PM2.5–temperature slopes in both
observations and GEOS-Chem (Fig. 6g–j). The observed
ammonium–temperature slopes are weakly positive over the
east, but are positive in the Northeast and negative in the
southeast in GEOS-Chem, in a spatial pattern similar to that
of modeled sulfate–temperature (Fig. 6g–h). The nitrate–
temperature slopes are negligible in AQS observations but
weakly negative over the east in GEOS-Chem (Fig. 6i–j). For
both ammonium and nitrate, GEOS-Chem underestimates
the dependence on temperature, indicating that the model
likely has difficulty in simulating the competition between
increased emission and faster evaporation at higher temper-
atures. In any event, Fig. 6 makes clear that the underesti-
mate of PM2.5–temperature slopes in GEOS-Chem is mainly
caused by the underestimate in sulfate–temperature slopes.

We next search for the reasons of the underestimate in
sulfate–temperature slopes in GEOS-Chem. Three impor-
tant pathways for sulfate oxidation chemistry exist: gas-
phase oxidation by OH and aqueous-phase oxidation by ei-
ther H2O2 or O3 (Jacob, 1999). Total sulfate production
rate is much greater in the eastern United States due to

Slopes of sulfate production rates with temperature
(a) V   ia  OH  (gas) (b) V    ia H2O2 (aqueous) (c) V   ia O3 (aqueous)
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Figure 7. Slopes of monthly mean sulfate production with surface
air temperature for 2004–2012 summer months, as calculated by
GEOS-Chem. The panels show slopes from three different produc-
tion pathways: (a) gas-phase oxidation by OH and aqueous-phase
oxidation by (b) H2O2 and (c) O3. See Sect. 5 for more details.
White areas indicate either missing data or grid boxes where the
slope is not significant at the 0.05 level.

abundant anthropogenic emissions there. The relative im-
portance of these three pathways varies by region: in sum-
mer, aqueous-phase oxidation by H2O2 is most important in
the east, while gas-phase oxidation by OH dominates in the
west. We calculate the monthly total sulfate production rates
(kg month−1 grid−1) in each pathway and then regress them
onto the monthly temperature in summer. As demonstrated
by Fig. 7a, as temperature increases, OH oxidation rates in
GEOS-Chem vary little. In contrast, modeled H2O2 oxida-
tion rates decrease rapidly with temperature in the south and
increase significantly in the Northeast (Fig. 7b), displaying
a similar spatial pattern as the sulfate–temperature slopes in
Fig. 6d. Modeled O3 oxidation rates also decrease with tem-
perature in the south (Fig. 7c), but with slopes much smaller
than those of the H2O2 oxidation rates. Given that atmo-
spheric SO2, H2O2 and O3 concentrations all increase with
temperature in GEOS-Chem (not shown), our results sug-
gest that the relationship of cloud fraction and temperature
may not be well parameterized in GEOS-5, the earth system
model that provides the meteorology driving GEOS-Chem.
In GEOS-5, cloud fraction is not assimilated from observa-
tions but is calculated online as a prognostic variable (Rie-
necker et al., 2008).

As a check on our hypothesis, we compare the sensitiv-
ity of cloud fraction to temperature in GEOS-5 with that in
the ISCCP-D2like D2 product from CERES satellite obser-
vations. We focus on cloud fraction in the lower troposphere
(> 680 hPa), as surface sulfate PM2.5 is likely most respon-
sive to oxidation in this part of the atmosphere. Because
no reliable observations of nighttime cloud fraction exist,
we focus on daytime measurements. On average, increased
cloud fraction is associated with cooler surface air temper-
atures, but the relationship between cloud fraction and tem-
perature can also have a strong seasonal cycle and vary by
region (Groisman et al., 2000; Sun et al., 2000). Figure 8
shows the slopes of monthly mean cloud fraction (> 680 hPa)
and surface temperature in summer from 2004 to 2012 over
the southeast in daytime. The satellite observations yield
relatively weak slopes (±0.01 K−1), but GEOS-5 displays
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JJA daytime slopes of cloud fraction (> 680 hPa) and temperature 
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Figure 8. Daytime slopes of monthly mean cloud fractions in the
lower troposphere (> 680 hPa) versus surface air temperature over
land for June–July–August from 2004 to 2012 in (a) the merged
ISCCP-D2like products from CERES and (b) GEOS-5 meteorol-
ogy. White areas indicate that the slope is not significant at the 0.05
level.

strongly negative slopes (∼−0.04 K−1). This result suggests
that cloud fraction in GEOS-5 is too sensitive to temperature,
which in turn makes aqueous-phase oxidation rates decrease
too rapidly as temperature increases in the south and leads to
negative sulfate–temperature slopes.

With regard to the ACCMIP results, understanding the
failure of these models to capture the observed slopes of
monthly mean total PM2.5 and temperature is beyond the
scope of this paper. Key diagnostics, such as the production
rates of sulfate through different oxidation pathways, are not
available.

6 Discussion and conclusions

In this study, we use a statistical model to investigate the ef-
fect of 2000–2050 climate change on fine particulate matter
(PM2.5) air quality across the contiguous United States. To
our knowledge, this study represents the first time that the
influences of both local meteorology and synoptic circula-
tions are considered in projecting future changes in PM2.5
air quality. We have developed a new method to character-
ize PM2.5-related circulation patterns, using singular value
decomposition (SVD) of the spatial correlations between
PM2.5 and meteorological variables across the surrounding
region (∼ 1000 km). Our regression model uses both of these
synoptic-scale relationships and relationships of PM2.5 with
local meteorology. Use of SVD increases the explained vari-
ability in 1999–2013 monthly PM2.5 across the United States
from 34 %, when only local meteorology is considered, to
43 %.

To estimate the impacts of climate change on future PM2.5
concentrations from 2000–2019 to 2050–2069, we apply our
regression model to the CMIP5 future meteorological projec-
tions from an ensemble of 19 GCMs under the RCP4.5 sce-
nario. The average change in PM2.5 across models provides
a robust estimate of the climate impact on US PM2.5, and
the spread of projected changes allows us to determine the

statistical significance of the average. Assuming that anthro-
pogenic emissions remain at present-day levels, we project
an increase of ∼ 0.4–1.4 µg m−3 in annual mean PM2.5 in
the eastern US and a decrease of 0.3–1.2 µg m−3 in the In-
termountain West. Mean summer PM2.5 increases as much
as 2–3 µg m−3 in the eastern United States due to faster ox-
idation and greater biogenic emissions. Mean winter PM2.5
decreases by 0.3–3 µg m−3 over most regions in the United
States, probably due to the volatilization of ammonium ni-
trate.

Previous model simulations show no consistent sign of the
future PM2.5 changes under a warmer climate (Jacob and
Winner, 2009; Fiore et al., 2015), and the magnitudes of
these changes are much smaller than this study. We exam-
ine the ability of four different atmospheric chemistry mod-
els to simulate the observed relationship between PM2.5 and
temperature. Results show that these models underestimate
or even fail to capture the observed positive relationship be-
tween monthly mean PM2.5 and temperature in the eastern
United States in summer, implying that they may also un-
derestimate future changes in PM2.5 under a warmer climate
regime. By comparing with in situ observations, we find
that the discrepancies of monthly mean PM2.5–temperature
slopes in GEOS-Chem are mainly caused by the underes-
timate of sulfate–temperature slopes, which in turn appears
related to deficiencies in the parameterization of cloud pro-
cesses in GEOS-5, the earth system model that provides
assimilated meteorology for GEOS-Chem. The 2004–2012
slopes of monthly mean cloud fraction (> 680 hPa) and sur-
face temperature are relatively weak (±0.01 K−1) in satellite
observations but strongly negative (∼−0.04 K−1) in GEOS-
5 over the southeast in daytime. This result suggests that
cloud fraction, a prognostic variable in GEOS-5, is too sensi-
tive to temperature and that the rate of aqueous-phase H2O2
oxidation in GEOS-Chem decreases too rapidly with increas-
ing temperature. This hypothesis would explain the negative
sulfate–temperature slopes in GEOS-Chem in the south, in
contrast to the positive slopes in observations. Other chem-
istry models may have similar problems in cloud fraction or
other variables important to PM2.5 production or loss.

CTMs and CCMs are frequently applied to predict future
air quality. Our work underscores the importance of eval-
uating the skill of such models to simulate long-term rela-
tionships between PM2.5 and temperature and perhaps other
variables. Without such evaluations, the credibility of future
model projections of PM2.5 is not clear. Drawbacks of this
study include its assumption of constant anthropogenic emis-
sions and its dependence on a relative short history (∼ 15
years) of PM2.5 observations. We also do not explicitly con-
sider the role of interannual variability in the climate sys-
tem and how that might influence our results (Deser et al.,
2013). Within these limitations, this study provides an up-to-
date, observationally based prediction of future PM2.5 with
relevance for air quality management. It also demonstrates
the utility of a computationally efficient model whose pro-
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jections of the climate penalty on air quality can be readily
compared to those from more traditional dynamic models.
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