Articles | Volume 17, issue 3
https://doi.org/10.5194/acp-17-2373-2017
https://doi.org/10.5194/acp-17-2373-2017
Research article
 | 
15 Feb 2017
Research article |  | 15 Feb 2017

Impact of mixing state and hygroscopicity on CCN activity of biomass burning aerosol in Amazonia

Madeleine Sánchez Gácita, Karla M. Longo, Julliana L. M. Freire, Saulo R. Freitas, and Scot T. Martin

Related authors

Quantifying the aerosol effect on droplet size distribution at cloud top
Lianet Hernández Pardo, Luiz Augusto Toledo Machado, Micael Amore Cecchini, and Madeleine Sánchez Gácita
Atmos. Chem. Phys., 19, 7839–7857, https://doi.org/10.5194/acp-19-7839-2019,https://doi.org/10.5194/acp-19-7839-2019, 2019
Short summary
The Brazilian developments on the Regional Atmospheric Modeling System (BRAMS 5.2): an integrated environmental model tuned for tropical areas
Saulo R. Freitas, Jairo Panetta, Karla M. Longo, Luiz F. Rodrigues, Demerval S. Moreira, Nilton E. Rosário, Pedro L. Silva Dias, Maria A. F. Silva Dias, Enio P. Souza, Edmilson D. Freitas, Marcos Longo, Ariane Frassoni, Alvaro L. Fazenda, Cláudio M. Santos e Silva, Cláudio A. B. Pavani, Denis Eiras, Daniela A. França, Daniel Massaru, Fernanda B. Silva, Fernando C. Santos, Gabriel Pereira, Gláuber Camponogara, Gonzalo A. Ferrada, Haroldo F. Campos Velho, Isilda Menezes, Julliana L. Freire, Marcelo F. Alonso, Madeleine S. Gácita, Maurício Zarzur, Rafael M. Fonseca, Rafael S. Lima, Ricardo A. Siqueira, Rodrigo Braz, Simone Tomita, Valter Oliveira, and Leila D. Martins
Geosci. Model Dev., 10, 189–222, https://doi.org/10.5194/gmd-10-189-2017,https://doi.org/10.5194/gmd-10-189-2017, 2017
Short summary
The Chemistry CATT-BRAMS model (CCATT-BRAMS 4.5): a regional atmospheric model system for integrated air quality and weather forecasting and research
K. M. Longo, S. R. Freitas, M. Pirre, V. Marécal, L. F. Rodrigues, J. Panetta, M. F. Alonso, N. E. Rosário, D. S. Moreira, M. S. Gácita, J. Arteta, R. Fonseca, R. Stockler, D. M. Katsurayama, A. Fazenda, and M. Bela
Geosci. Model Dev., 6, 1389–1405, https://doi.org/10.5194/gmd-6-1389-2013,https://doi.org/10.5194/gmd-6-1389-2013, 2013

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Machine-learning-assisted inference of the particle charge fraction and the ion-induced nucleation rates during new particle formation events
Pan Wang, Yue Zhao, Jiandong Wang, Veli-Matti Kerminen, Jingkun Jiang, and Chenxi Li
Atmos. Chem. Phys., 25, 7431–7446, https://doi.org/10.5194/acp-25-7431-2025,https://doi.org/10.5194/acp-25-7431-2025, 2025
Short summary
Modeling CMAQ dry deposition treatment over the western Pacific: a distinct characteristic of mineral dust and anthropogenic aerosols
Steven Soon-Kai Kong, Joshua S. Fu, Neng-Huei Lin, Guey-Rong Sheu, and Wei-Syun Huang
Atmos. Chem. Phys., 25, 7245–7268, https://doi.org/10.5194/acp-25-7245-2025,https://doi.org/10.5194/acp-25-7245-2025, 2025
Short summary
Impact of post-monsoon crop residue burning on PM2.5 over northern India: optimizing emissions using a high-density in situ surface observation network
Mizuo Kajino, Kentaro Ishijima, Joseph Ching, Kazuyo Yamaji, Rio Ishikawa, Tomoki Kajikawa, Tanbir Singh, Tomoki Nakayama, Yutaka Matsumi, Koyo Kojima, Taisei Machida, Takashi Maki, Prabir K. Patra, and Sachiko Hayashida
Atmos. Chem. Phys., 25, 7137–7160, https://doi.org/10.5194/acp-25-7137-2025,https://doi.org/10.5194/acp-25-7137-2025, 2025
Short summary
Modeling simulation of aerosol light absorption over the Beijing–Tianjin–Hebei region: the impact of mixing state and aging processes
Huiyun Du, Jie Li, Xueshun Chen, Gabriele Curci, Fangqun Yu, Yele Sun, Xu Dao, Song Guo, Zhe Wang, Wenyi Yang, Lianfang Wei, and Zifa Wang
Atmos. Chem. Phys., 25, 5665–5681, https://doi.org/10.5194/acp-25-5665-2025,https://doi.org/10.5194/acp-25-5665-2025, 2025
Short summary
An investigation of the impact of Canadian wildfires on US air quality using model, satellite, and ground measurements
Zhixin Xue, Nair Udaysankar, and Sundar A. Christopher
Atmos. Chem. Phys., 25, 5497–5517, https://doi.org/10.5194/acp-25-5497-2025,https://doi.org/10.5194/acp-25-5497-2025, 2025
Short summary

Cited articles

Abdul-Razzak, H. and Ghan, S.: A parameterization of aerosol activation: 2. Multiple aerosol types, J. Geophys. Res., 105, 6837–6844, 2000.
Abdul-Razzak, H. and Ghan, S. J.: A parameterization of aerosol activation: 3. Sectional representation, J. Geophys. Res, 107, 4026, https://doi.org/10.1029/2001JD000483, 2002.
Almeida, G. P., Brito, J., Morales, C. A., Andrade, M. F., and Artaxo, P.: Measured and modelled cloud condensation nuclei (CCN) concentration in São Paulo, Brazil: the importance of aerosol size-resolved chemical composition on CCN concentration prediction, Atmos. Chem. Phys., 14, 7559–7572, https://doi.org/10.5194/acp-14-7559-2014, 2014.
Andreae, M.: Biomass burning: its history, use, and distribution and its impact on environmental quality and global climate, MIT Press, 3–21, 1991.
Download
Short summary
This study uses an adiabatic cloud model to simulate the activation of smoke aerosol particles in the Amazon region as cloud condensation nuclei (CCN). The relative importance of variability in hygroscopicity, mixing state, and activation kinetics for the activated fraction and maximum supersaturation is assessed. Our findings on uncertainties and sensitivities provide guidance on appropriate simplifications that can be used for modeling of smoke aerosols within general circulation models.
Share
Altmetrics
Final-revised paper
Preprint