

Supplement of

Impact of mixing state and hygroscopicity on CCN activity of biomass burning aerosol in Amazonia

Madeleine Sánchez Gácita et al.

Correspondence to: Madeleine Sánchez Gácita (madeleine.sanchez@cptec.inpe.br)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

Table S1. 3 log-normal fits for Amazonian biomass burning number size distributions: CLAIRE, SMOCC and SAMBBA experiments. N_m , d_{g_m} and σ_m refer to the mode number concentration, geometric mean diameter and geometric standard deviation, respectively.

Experiment/mode	N _m	d_{a}	σ_{m}	Notes and references
-	(cm^{-3})	(nm)	m	
CLAIRE				Balbina, Brazil, LBA-CLAIRE
<u>Recent smoke</u>				2001, wet-to-dry transition period
Nucleation	302	14.0	1.31	2001 (Rissler et al., 2004).
Aitken	280	69.0	1.35	Recent smoke refers to an hours-old
Accumulation	529	148.0	1.43	biomass burning plume (dry crops
<u>Aged smoke</u>				residues), duration 3 days.
Nucleation	276	15.0	1.29	The aged smoke period (duration 4
Aitken	304	68.0	1.32	days) was considered to be
Accumulation	736	139.0	1.45	representative of 2.5-5 days aged
				smoke.
SMOCC				Rondônia, Brazil, LBA-SMOCC
Dry season ^(a)				2002 (Rissler et al., 2006).
Nucleation	1090	12.0	1.82	Data can be considered
Aitken	5213	92.0	1.63	representative of regional haze in
Accumulation	5214	190.0	1.53	the region and includes both fresh
Dry to wet period ^(a)				and aged BB aerosols.
Nucleation	841	12.0	1.89	Diurnal averages fits for the dry
Aitken	984	66.0	1.39	season and dry to wet transition
Accumulation	3708	131.0	1.69	periods are presented.
SAMBBA				Porto Velho, Brazil, SAMBBA
Nucleation	948	14.2	2.50	2012 (Brito et al., 2014).
Aitken	4071	98.1	1.78	Averages for the campaign,
Accumulation	1063	179.1	1.48	includes both fresh and aged BB
				aerosols.

Table S2. Effective hygroscopicity parameter $\kappa_{p,group}$ and aerosol fraction f (number fraction times frequency of occurrence) for hygroscopic groups with very low hygroscopicity (VLH, $\kappa_p < 0.1$) and low hygroscopicity (LH, $0.1 \le \kappa_p < 0.2$), and mode- and population effective $\kappa_{p_{eff}} = \sum \kappa_{p,group} AF_{group}$. Values are given for particles in the Aitken mode (30 nm $< d_{dry} < 100$ nm), accumulation mode (100 nm $\le d_{dry} < 300$ nm), and Aitken mode plus accumulation mode (30 nm $\le d_{dry} < 300$ nm) dry sizes ranges.

Period	$\kappa_{p,VLH}/f$	$\kappa_{p,LH}/f$	$\kappa_{p_{e\!f\!f}}$	Notes and references
CLAIRE				
Recent smoke				Balbina, Brazil, LBA-CLAIRE
Aitken	0.026 / 0.24	0.128 / 0.76	0.103	wat to dry transition pariod 2001
Accumulation	0.052 / 0.15	0.182 / 0.85	0.163	wet-to-dry transition period 2001.
Aitken+Accumulation	0.039 / 0.19	0.155 / 0.81	0.133	κ values calculated from ε
Aged smoke				values reported by Dissler et al
Aitken	0.017 / 0.33	0.139 / 0.67	0.096	values reported by Kissier et al.
Accumulation	0.059 / 0.11	0.173 / 0.89	0.160	(2004), where ammonium
Aitken+Accumulation	0.038 / 0.22	0.156 / 0.78	0.128	hydrogen sulfate was used to
				represent the soluble fraction.
SMOCC				
<u>Afternoon Averages</u>				Rondônia, Brazil, LBA-SMOCC
Dry period				2002 during the dry season and
Aitken	0.051 / 0.90	0.146 / 0.10	0.061	2002, during the dry season and
Accumulation	0.068 / 0.81	0.154 / 0.19	0.084	dry to wet transition periods.
Aitken+Accumulation	0.059 / 0.85	0.150 / 0.15	0.072	Afternoon averages (1200-1600
Dry to wet period				Anteinoon avorages (1200-1000
Aitken	0.061 / 0.72	0.154 / 0.28	0.087	local time) were calculated from
Accumulation	0.064 / 0.5	0.172 / 0.5	0.119	κ (Vestin et al. 2007) and daily
Aitken+Accumulation	0.062 / 0.61	0.163 / 0.39	0.103	K_R (Vestin et al., 2007) and daily
<u>Diurnal averages</u>				averages were calculated from H-
Dry period				
Aitken	0.032 / 0.93	0.120 / 0.07	0.038	TDMA G_f data (Rissler et al.,
Accumulation	0.041 / 0.80	0.119 / 0.20	0.056	2006)
Aitken+Accumulation	0.037 / 0.86	0.119 / 0.14	0.048	2000).
Dry to wet period				
Aitken	0.038 / 0.87	0.131 / 0.13	0.050	
Accumulation	0.042 / 0.59	0.127 / 0.41	0.077	
Aitken+Accumulation	0.040 / 0.73	0.129 / 0.27	0.064	

Notes:

The aerosol soluble fraction, ε , and the hygroscopicity parameter by Rissler et al (2006), κ_R , for the biomass burning episode averages for CLAIRE (Rissler et al., 2004) and the afternoon averages for SMOCC (Vestin et al., 2007), respectively, were converted to the specific hygroscopicity parameter κ_p using the relations $\kappa_p \approx \kappa_{p_{salt}} \varepsilon \approx \kappa_{p_{salt}} \kappa_R \frac{M_{salt}}{v_{salt} \rho_{salt}}$, suggested by Gunthe et al. (2009), where the subscript *salt* refers to the reference salt used, $\kappa_{p_{salt}}$ is the hygroscopicity parameter determined for the salt and M, ρ and v are the molar mass, density and dissociation factor of the salt, respectively. Diurnal values of the effective hygroscopicity parameter were also calculated for the dry season and the dry-to-wet transition period of SMOCC from the diurnal averaged H-TDMA particle growth factor (G_f) data reported in Table 3 of Rissler et al. (2006) using the relation $\kappa_p = (G_f^3 - 1)(a_w^{-1} - 1)$.

Figure S1. Maximum supersaturation (top) and activated particle fraction N_d/N_a (bottom), as function of the initial relative humidity, for the MP_{5,1} (solid line, squares), MP_{1,5} (dashed line, circles), and HP_{5,5} (dotted line, triangles) size distributions and external mixing case *Ext2* with a population average κ_p =0.10. Values refer to updraft velocities W=0.1 m s⁻¹ (red), W=3 m s⁻¹ (green) and W=10 m s⁻¹ (blue).

Figure S2. Maximum supersaturation (top) and activated particle fraction N_d/N_a (bottom), as function of the initial relative humidity for the MP_{1,5} case study, external mixing case *Ext2* and population average $\kappa_p = 0.10$ with an additional coarse mode with size distribution parameters $d_{g_m} = 1.5 \ \mu\text{m}$, $\sigma_m = 1.5 \ \text{and} \ N_m$ =0.6 (cm⁻³) (dotted line, triangles), $N_m = 6 \ (\text{cm}^{-3})$ (dashed line, circles) and $N_m = 60 \ (\text{cm}^{-3})$ (solid line, squares). Values refer to updraft velocities W=0.1 m s⁻¹ (red), W=3 m s⁻¹ (green) and W=10 m s⁻¹ (blue).