Articles | Volume 16, issue 9
Research article
04 May 2016
Research article |  | 04 May 2016

Response of OH airglow emissions to mesospheric gravity waves and comparisons with full-wave model simulation at a low-latitude Indian station

Rupesh N. Ghodpage, Michael P. Hickey, Alok K. Taori, Devendraa Siingh, and Parashram T. Patil

Related authors

Mesospheric gravity wave characteristics and identification of their sources around spring equinox over Indian low latitudes
M. Sivakandan, I. Paulino, A. Taori, and K. Niranjan
Atmos. Meas. Tech., 9, 93–102,,, 2016
Short summary
A novel approach for the extraction of cloud motion vectors using airglow imager measurements
S. Satheesh Kumar, T. Narayana Rao, and A. Taori
Atmos. Meas. Tech., 8, 3893–3901,,, 2015
An investigation of long-distance propagation of gravity waves under CAWSES India Phase II Programme
N. Parihar and A. Taori
Ann. Geophys., 33, 547–560,,, 2015
Short summary
Evidence for tropospheric wind shear excitation of high-phase-speed gravity waves reaching the mesosphere using the ray-tracing technique
M. Pramitha, M. Venkat Ratnam, A. Taori, B. V. Krishna Murthy, D. Pallamraju, and S. Vijaya Bhaskar Rao
Atmos. Chem. Phys., 15, 2709–2721,,, 2015
Short summary
The occurrence altitudes of middle atmospheric temperature inversions and mesopause over low-latitude Indian sector
M. Sivakandan, D. Kapasi, and A. Taori
Ann. Geophys., 32, 967–974,,, 2014

Related subject area

Subject: Dynamics | Research Activity: Remote Sensing | Altitude Range: Mesosphere | Science Focus: Physics (physical properties and processes)
Aura/MLS observes and SD-WACCM-X simulates the seasonality, quasi-biennial oscillation and El Niño–Southern Oscillation of the migrating diurnal tide driving upper mesospheric CO primarily through vertical advection
Cornelius Csar Jude H. Salinas, Dong L. Wu, Jae N. Lee, Loren C. Chang, Liying Qian, and Hanli Liu
Atmos. Chem. Phys., 23, 1705–1730,,, 2023
Short summary
Hydroxyl airglow observations for investigating atmospheric dynamics: results and challenges
Sabine Wüst, Michael Bittner, Patrick J. Espy, W. John R. French, and Frank J. Mulligan
Atmos. Chem. Phys., 23, 1599–1618,,, 2023
Short summary
Signatures of gravity wave-induced instabilities in balloon lidar soundings of polar mesospheric clouds
Natalie Kaifler, Bernd Kaifler, Markus Rapp, and David C. Fritts
Atmos. Chem. Phys., 23, 949–961,,, 2023
Short summary
Sources of concentric gravity waves generated by a moving mesoscale convective system in southern Brazil
Prosper K. Nyassor, Cristiano M. Wrasse, Igo Paulino, Eliah F. M. T. São Sabbas, José V. Bageston, Kleber P. Naccarato, Delano Gobbi, Cosme A. O. B. Figueiredo, Toyese T. Ayorinde, Hisao Takahashi, and Diego Barros
Atmos. Chem. Phys., 22, 15153–15177,,, 2022
Short summary
How do gravity waves triggered by a typhoon propagate from the troposphere to the upper atmosphere?
Qinzeng Li, Jiyao Xu, Hanli Liu, Xiao Liu, and Wei Yuan
Atmos. Chem. Phys., 22, 12077–12091,,, 2022
Short summary

Cited articles

Aushev, V. M., Lyahov, V. V., Lopez-Gonzalez, M. J., Shepherd, M. G., and Dryna, E. A.: Solar eclipse of the 29 March 2006: results of the optical measurements by MORTI over Almaty (43.03° N, 76.58° E), J. Atmos. Sol. Terr. Phys., 70, 1088–1101, 2008.
Bruce, G. H., Peaceman, D. W., Rachford Jr., H. H., and Rice, J. D.: Calculations of unsteady-state gas flow through porous media, Petrol. Trans. AIME, 198, 79–92, 1953.
Bittner, M., Offermann, D., and Graef, H. H.: Mesopause temperature variability above a midlatitude station in Europe, J. Geophys. Res., 105, 2045–2058, 2000.
Drob, D. P.: Ground-based optical detection of atmospheric waves in the upper mesosphere and lower thermosphere, Ph. D. Thesis, University of Michigan, Ann Arbor, MI, 1996.
Ghodpage, R. N., Singh, D., Singh, R. P., Mukherjee, G. K., Vohat, P., and Singh, A. K.: Tidal and gravity waves study from the airglow measurements at Kolhapur (India), J. Earth Syst. Sci., 121, 1511–1525, 2012.
Short summary
Gravity-wave-induced oscillations have been characterized over Kolhapur (16.8°N and 74.2°E), India, using the adiabatic variations in OH airglow intensity and temperature data. The results show that there exist large deviations from one investigation to the other. We also use a full-wave model to simulate the response of OH emission to the wave motion and compare the results with observed values. This report discusses the observed wave characteristics and cause of the noted difference.
Final-revised paper