Articles | Volume 16, issue 9
https://doi.org/10.5194/acp-16-5611-2016
https://doi.org/10.5194/acp-16-5611-2016
Research article
 | 
04 May 2016
Research article |  | 04 May 2016

Response of OH airglow emissions to mesospheric gravity waves and comparisons with full-wave model simulation at a low-latitude Indian station

Rupesh N. Ghodpage, Michael P. Hickey, Alok K. Taori, Devendraa Siingh, and Parashram T. Patil

Related authors

Mesospheric gravity wave characteristics and identification of their sources around spring equinox over Indian low latitudes
M. Sivakandan, I. Paulino, A. Taori, and K. Niranjan
Atmos. Meas. Tech., 9, 93–102, https://doi.org/10.5194/amt-9-93-2016,https://doi.org/10.5194/amt-9-93-2016, 2016
Short summary
A novel approach for the extraction of cloud motion vectors using airglow imager measurements
S. Satheesh Kumar, T. Narayana Rao, and A. Taori
Atmos. Meas. Tech., 8, 3893–3901, https://doi.org/10.5194/amt-8-3893-2015,https://doi.org/10.5194/amt-8-3893-2015, 2015
An investigation of long-distance propagation of gravity waves under CAWSES India Phase II Programme
N. Parihar and A. Taori
Ann. Geophys., 33, 547–560, https://doi.org/10.5194/angeo-33-547-2015,https://doi.org/10.5194/angeo-33-547-2015, 2015
Short summary
Evidence for tropospheric wind shear excitation of high-phase-speed gravity waves reaching the mesosphere using the ray-tracing technique
M. Pramitha, M. Venkat Ratnam, A. Taori, B. V. Krishna Murthy, D. Pallamraju, and S. Vijaya Bhaskar Rao
Atmos. Chem. Phys., 15, 2709–2721, https://doi.org/10.5194/acp-15-2709-2015,https://doi.org/10.5194/acp-15-2709-2015, 2015
Short summary
The occurrence altitudes of middle atmospheric temperature inversions and mesopause over low-latitude Indian sector
M. Sivakandan, D. Kapasi, and A. Taori
Ann. Geophys., 32, 967–974, https://doi.org/10.5194/angeo-32-967-2014,https://doi.org/10.5194/angeo-32-967-2014, 2014

Related subject area

Subject: Dynamics | Research Activity: Remote Sensing | Altitude Range: Mesosphere | Science Focus: Physics (physical properties and processes)
Lidar measurements of noctilucent clouds at Río Grande, Tierra del Fuego, Argentina
Natalie Kaifler, Bernd Kaifler, Markus Rapp, Guiping Liu, Diego Janches, Gerd Baumgarten, and Jose-Luis Hormaechea
Atmos. Chem. Phys., 24, 14029–14044, https://doi.org/10.5194/acp-24-14029-2024,https://doi.org/10.5194/acp-24-14029-2024, 2024
Short summary
Upper-atmosphere responses to the 2022 Hunga Tonga–Hunga Ha′apai volcanic eruption via acoustic gravity waves and air–sea interaction
Qinzeng Li, Jiyao Xu, Aditya Riadi Gusman, Hanli Liu, Wei Yuan, Weijun Liu, Yajun Zhu, and Xiao Liu
Atmos. Chem. Phys., 24, 8343–8361, https://doi.org/10.5194/acp-24-8343-2024,https://doi.org/10.5194/acp-24-8343-2024, 2024
Short summary
Influences of sudden stratospheric warmings on the ionosphere above Okinawa
Klemens Hocke, Wenyue Wang, and Guanyi Ma
Atmos. Chem. Phys., 24, 5837–5846, https://doi.org/10.5194/acp-24-5837-2024,https://doi.org/10.5194/acp-24-5837-2024, 2024
Short summary
Gravity waves generated by the Hunga Tonga–Hunga Ha′apai volcanic eruption and their global propagation in the mesosphere/lower thermosphere observed by meteor radars and modeled with the High-Altitude general Mechanistic Circulation Model
Gunter Stober, Sharon L. Vadas, Erich Becker, Alan Liu, Alexander Kozlovsky, Diego Janches, Zishun Qiao, Witali Krochin, Guochun Shi, Wen Yi, Jie Zeng, Peter Brown, Denis Vida, Neil Hindley, Christoph Jacobi, Damian Murphy, Ricardo Buriti, Vania Andrioli, Paulo Batista, John Marino, Scott Palo, Denise Thorsen, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Kathrin Baumgarten, Johan Kero, Evgenia Belova, Nicholas Mitchell, Tracy Moffat-Griffin, and Na Li
Atmos. Chem. Phys., 24, 4851–4873, https://doi.org/10.5194/acp-24-4851-2024,https://doi.org/10.5194/acp-24-4851-2024, 2024
Short summary
Long-term studies of the summer wind in the mesosphere and lower thermosphere at middle and high latitudes over Europe
Juliana Jaen, Toralf Renkwitz, Huixin Liu, Christoph Jacobi, Robin Wing, Aleš Kuchař, Masaki Tsutsumi, Njål Gulbrandsen, and Jorge L. Chau
Atmos. Chem. Phys., 23, 14871–14887, https://doi.org/10.5194/acp-23-14871-2023,https://doi.org/10.5194/acp-23-14871-2023, 2023
Short summary

Cited articles

Aushev, V. M., Lyahov, V. V., Lopez-Gonzalez, M. J., Shepherd, M. G., and Dryna, E. A.: Solar eclipse of the 29 March 2006: results of the optical measurements by MORTI over Almaty (43.03° N, 76.58° E), J. Atmos. Sol. Terr. Phys., 70, 1088–1101, 2008.
Bruce, G. H., Peaceman, D. W., Rachford Jr., H. H., and Rice, J. D.: Calculations of unsteady-state gas flow through porous media, Petrol. Trans. AIME, 198, 79–92, 1953.
Bittner, M., Offermann, D., and Graef, H. H.: Mesopause temperature variability above a midlatitude station in Europe, J. Geophys. Res., 105, 2045–2058, 2000.
Drob, D. P.: Ground-based optical detection of atmospheric waves in the upper mesosphere and lower thermosphere, Ph. D. Thesis, University of Michigan, Ann Arbor, MI, 1996.
Ghodpage, R. N., Singh, D., Singh, R. P., Mukherjee, G. K., Vohat, P., and Singh, A. K.: Tidal and gravity waves study from the airglow measurements at Kolhapur (India), J. Earth Syst. Sci., 121, 1511–1525, 2012.
Download
Short summary
Gravity-wave-induced oscillations have been characterized over Kolhapur (16.8°N and 74.2°E), India, using the adiabatic variations in OH airglow intensity and temperature data. The results show that there exist large deviations from one investigation to the other. We also use a full-wave model to simulate the response of OH emission to the wave motion and compare the results with observed values. This report discusses the observed wave characteristics and cause of the noted difference.
Altmetrics
Final-revised paper
Preprint