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Abstract. Quasi-monochromatic gravity-wave-induced os-

cillations, monitored using the mesospheric OH airglow

emission over Kolhapur (16.8◦ N, 74.2◦ E), India, during Jan-

uary to April 2010 and January to December 2011, have

been characterized using the Krassovsky method. The noc-

turnal variability reveals prominent wave signatures with pe-

riods ranging from 5.2 to 10.8 h as the dominant nocturnal

wave with embedded short-period waves having wave peri-

ods of 1.5–4.4 h. The results show that the magnitude of the

Krassovsky parameter, viz. |η|, ranged from 2.1 to 10.2 h for

principal or long nocturnal waves (5.2–10.8 h observed pe-

riods), and from 1.5 to 5.4 h for the short waves (1.5–4.4 h

observed periods) during the years of 2010 and 2011, re-

spectively. The phase (i.e., 8) values of the Krassovsky pa-

rameters exhibited larger variability and varied from −8.1 to

−167◦. The deduced mean vertical wavelengths are found to

be approximately −60.2± 20 and −42.8± 35 km for long-

and short-period waves for the year 2010. Similarly, for 2011

the mean vertical wavelengths are found to be approximately

−77.6± 30 and −59.2± 30 km for long and short wave pe-

riods, respectively, indicating that the observations over Kol-

hapur were dominated by upward-propagating waves. We

use a full-wave model to simulate the response of OH emis-

sion to the wave motion and compare the results with ob-

served values.

1 Introduction

Airglow hydroxyl emissions (OH) have been widely used for

studying atmospheric temperature variation in the mesopause

region since the pioneering work of Meinel (1950) due to its

usefulness in deriving the rotational temperature (Greet et al.,

1998; Bittner et al., 2000). The collision frequency of OH

with the neutral atmosphere in the neighborhood of 90 km

altitude should be on the order of 104 s−1, and the lifetime

of the excited hydroxyl emission is around 3 to 10 ms (Mies,

1974). This ensures that the excited OH molecules in the ro-

tational energy levels are in a thermal equilibrium with the

atmospheric ambient gases (Sivjee and Hamwey, 1987; Taka-

hashi et al., 1998). Thus, it is normally assumed that the ro-

tational state of OH band is in a Maxwell–Boltzmann distri-

bution. The radiated light intensity provides a direct measure

of OH quantum state distribution in the mesopause. Meri-

wether (1975) arrived at an expression for the P1(2) and

P1 (5) rotational lines of OH (8-3) band by making use of

the vibration–rotation transition probabilities of Mies (1974).

Therefore, using two lines from a single band, we can esti-

mate the rotational temperature with the following equation

(Mies, 1974):

Tn,m =
Eν′
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)
−Eν′

(
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)

k ln
[
In
Im

A(J ′m,ν′→J
′′

m+1,ν
′′)

A(J ′n,ν′→J
′′

n+1,ν
′′)

2J ′m+1

2J ′n+1

] ,

Published by Copernicus Publications on behalf of the European Geosciences Union.



5612 R. N. Ghodpage et al.: Response of OH airglow emissions to mesospheric gravity waves

where Tn,m is the rotational temperature calculated from

two line intensities, In and Im, and from rotational levels J ′n
and J ′m in the upper vibrational level ν′ to J ′′n+1 and J ′′m+1

in the lower vibrational level ν′′. Eν (J ) is the energy of the

level (J , ν). A(J ′n, ν′→ J ′′n+1, ν′′) is the Einstein coefficient,

for the transition from J ′n, ν′ to J ′′m, ν′′. The intensity ratio be-

tween P1 (2) and P1 (5) lines of the OH(8-3) band was used

to obtain rotational temperature using the transition proba-

bilities as given by Mies (1974). Often the observed tempo-

ral variations in the mesospheric hydroxyl OH night airglow

intensities and rotational temperatures are caused by propa-

gating gravity waves from the lower to the upper atmosphere.

The interaction of these upward-propagating waves with

the ambient and other waves contributes to the dynami-

cal variability, which in turn is reflected in observed air-

glow intensity and temperature perturbations (Hines, 1997).

Krassovsky (1972) introduced a quantity “η” to character-

ize the wave-induced perturbations. This parameter, termed

“Krassovsky’s parameter”, is now defined as η = |η|e−i8,

where |η| indicates the ratio of the amplitude variation be-

tween the emission intensity and temperature perturbations

normalized to their time averages and 8 is the phase differ-

ence between the intensity wave and its temperature coun-

terpart (e.g., Walterscheid et al., 1987; Taylor et al., 1991).

It should also be mentioned that, apart from the pure dy-

namical processes, η can also be affected by various other

unknown parameters, such as the variation in local oxy-

gen photochemistry (Hickey et al., 1993) and height varia-

tion in the emission layer, which affects emission rates and

temperature directly (Liu and Swenson, 2003; Vargas et al.,

2007). Although above processes complicate the studies of

Krassovsky’s parameter, it offers an opportunity to study the

above aspects. Overall, once the physics and chemistry of

emissions are well understood, the η values would offer a

good tool to study the perturbations caused in a parameter

(temperature, brightness/intensity) by measuring one under

the assumption that gravity-wave-induced perturbations are

of adiabatic nature.

Utilizing the above, many investigators have carried out

observational as well as theoretical studies on the identifica-

tion and characterization of gravity wave and tidal signatures

with wave periodicities ranging from a few minutes to sev-

eral hours (e.g., Walterscheid et al., 1987; Hecht et al., 1987;

Hickey, 1988; Taylor et al., 1991; Takahashi et al., 1992;

Reisin and Scheer, 1996; Taori and Taylor, 2006; Guharay

et al., 2008; Ghodpage et al., 2012, 2013). However, obser-

vational studies of the magnitude and phase of η over a range

of wave periods for a given location and season are sparse.

Some of the notable observations of η for OH emission have

been performed by Viereck and Deehr (1989) in the wave pe-

riod range of ∼ 1–20 h and by Reisin and Scheer (1996) near

to the semidiurnal tidal fluctuations.

In the present work, we utilize the mesospheric OH emis-

sion intensity and temperature data obtained during January–

April 2010 and January–December 2011, when clear and

moonless nights allowed observations to exceed 5 h duration.

We deduce the Krassovsky parameters as a function of ob-

served wave period and also infer the vertical wavelengths

for the observed mesospheric waves. Further, we compare

our estimates with the earlier results reported by various in-

vestigators. We also employ a full-wave model to simulate

the effects of wave motions on the OH airglow. This model

has been used previously to compare observations and the-

ory of airglow fluctuations (e.g., Hickey et al., 1998; Hickey

and Yu, 2005). Here, the model is used to estimate the values

of the amplitudes and phases of Krassovsky’s ratio which are

compared to those derived from the observations, making the

present study unique as such model comparison over India

has not been done before.

2 Instrumentation and observations

The mesospheric OH observations are made using the

multispectral photometer from Kolhapur (16.8◦ N, 74.2◦ E)

(Ghodpage et al., 2013, 2014). We analyze the data from

January–April 2010 and January–December 2011, when

clear-sky conditions prevailed for several nights. For the year

2010, 13 of 45 nights of observation clearly showed wavelike

features, while 29 of 60 nights of data exhibited wavelike

variations in 2011.

2.1 The multispectral photometer

Regular observations of the night airglow emissions, OI

630.0, OI 557.7 nm, and OH Meinel (731 and 740 nm) band

have been carried out at the low-latitude station Kolha-

pur. We have operated multispectral photometer pointing to

the zenith over Kolhapur. The filters have a bandwidth of

1 nm and their temperature is controlled at 24 ◦C by a tem-

perature controller. The temperature coefficient of filter is

0.011 nm ◦C−1. At 24 ◦C the transmission efficiency of fil-

ters is 40–70 %. We kept the integration time for each filter

at 15 s, which results in repetition time of 90 s with an ac-

curacy of approximately± 0.5 % for line intensity. The pho-

tometer has f /2 optics with ∼ 10◦ full field of view. The

stepper motor rotation and sensing of the initial position are

performed by computer-controlled software. As the detector,

the EMI9658B photomultiplier tube is used. An amplifier

(high-gain transimpedance) is used to convert and amplify

the very weak photomultiplier output current (in the range

of nA) into corresponding voltage form. In the absence of

standard calibration source, we have used relative intensities

(arbitrary units). In order to study the wave features present

in the mesosphere–lower thermosphere region, we consider

clear-sky nights having more than 5 h of continuous OH band

data as mentioned in earlier reports (e.g., Taori et al., 2005).
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2.2 Full-wave model

The full-wave model is a linear, steady-state model that

solves the linearized Navier–Stokes equations on a high-

resolution vertical grid to describe the vertical propagation

of acoustic-gravity waves in a windy background atmosphere

including molecular viscosity and thermal conduction, ion

drag, Coriolis force, and the eddy diffusion of heat and mo-

mentum in the mesosphere. The model description, including

equations, boundary conditions, and method of solution, has

been described elsewhere (Hickey et al., 1997; Walterscheid

and Hickey, 2001; Schubert et al., 2003). The neutral per-

turbations are used as input to a linear, steady-state model

describing OH airglow fluctuations (Hickey and Yu, 2005).

The model solves the equations on a high-resolution verti-

cal grid subject to boundary conditions and generally allows

for the propagation in a height-varying atmosphere (non-

isothermal mean state temperature and height-varying mean

winds and diffusion). The linearized equations are numeri-

cally integrated from the lower to the upper boundary using

the tri-diagonal algorithm described by Bruce et al. (1958)

and Lindzen and Kuo (1969). The lower boundary is set

well below the region of interest and a sponge layer is im-

plemented to avoid effects of wave reflection in the airglow

response. In this study the lower boundary (the bottom of the

lower sponge layer) is placed at 250 km below z= 0 (i.e.,

−250 km). The wave forcing is through the addition of heat

in the energy equation. The heating is defined by a Gaussian

profile with a full width at half maximum of 0.125 km. It

is centered at an altitude of 10 km. A Rayleigh–Newtonian

sponge layer, in addition to natural absorption by viscos-

ity and heat conduction, prevents spurious reflection from

the upper boundary. At the upper boundary (here 300 km

altitude) a radiation condition is imposed using a disper-

sion equation that includes viscous and thermal dissipation

(Hickey and Cole, 1987). The mean state is defined using the

Mass Spectrometer Incoherent Scatter (MSIS) model (Hedin,

1991).

A set of linear perturbation equations for the minor species

involved in the OH emission chemistry is solved using the

approach described in Hickey (1988). This assumes that

these minor species have the same velocity and tempera-

ture perturbations as the major gas (which are deduced from

the full-wave model). A vertical integration of the volume

emission rates through the vertical extent of the OH layer

provides the brightness and brightness-weighted temperature

perturbations, from which Krassovsky’s ratio is determined.

The OH chemistry we use is the same as that used previ-

ously (Hickey et al., 1997) and is for the OH (8-3) emis-

sion. We also determine the vertical wavelength at the peak

of the OH emission layer evaluated from the phase variations

in the temperature perturbations determined by the full-wave

model.

2.3 Spaceborne measurements

The Sounding of the Atmosphere using Broadband Emis-

sion Radiometry (SABER) instrument, onboard the Ther-

mosphere Ionosphere Mesosphere Energetic and Dynamics

(TIMED) satellite, is a high-precision broadband radiome-

ter which measures limb radiance (orbital inclination at 74◦)

of the terrestrial atmosphere in 10 selected spectral bands

ranging from 1.27 to 15 µm. In the present study, we note

larger values of |η| occur during 2011 compared to 2010

for long/principal waves, which indicates a larger intensity

to temperature perturbation ratio over Kolhapur during the

passage of the waves during 2011. This could be due to

the differences in either the background atmosphere or the

dynamical processes. To identify the differences in the OH

emission layer in year 2010 and 2011, we scrutinize the OH

volume emission rate profile for Kolhapur region obtained

from SABER. The selected latitude–longitude grids are 10

to 20◦ N and 70 to 90◦ E, representing Kolhapur. The criteria

for the selection of SABER data are such that the SABER

pass should be during typical observation times (excluding

twilight time).

3 Results and discussion

To identify the wave structures in the data, we utilize the per-

turbation amplitudes normalized to their time-averaged val-

ues (hereafter referred to as mean values) in the intensity and

temperature data to calculate the Krassovsky ratio. To illus-

trate this, we show a typical example corresponding to the

data obtained on 26–27 January 2011 in Fig. 1. We plot the

intensity deviations from their mean values in Fig. 1a, while

the temperature deviations from their mean values are plot-

ted in Fig. 1b. We note that night airglow intensity variations

show a long-period wave with embedded short-period oscil-

latory features. On this night, the mean airglow intensity is

found to be ∼ 1.83 arbitrary units and the mean tempera-

ture value is∼ 195.75 K. To identify the nocturnal variability

plotted together with data as solid red lines are results of the

best-fit cosine model (e.g., Taori et al., 2005) described as

follows:

Y = Acos

[
π
(X−Xc)

T

]
, (1)

where A is the amplitude of the fitted wave of half-period T

with phase Xc and X is the time. The solid red lines in Fig. 1

show the results of the best-fit cosine model. We observed

the presence of ∼ 8.2± 1.1 and 8± 1.3 h waves with relative

amplitudes (normalized to their mean values and converted to

corresponding percent amplitude)∼ 3.60 and 25.64 %, in the

nocturnal temperature and intensity variability, respectively.

Given the uncertainties involved in the observations, we con-

sider these to be the same waves. Further, we compute the |η|

value for this wave to be 7.12± 1.2. To identify the shorter
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period features in the data we obtain residuals from the best-

fit model values. Figure 11c and d show the nocturnal vari-

ability of the residual intensity and temperature, respectively.

The best-fit model reveals the presence of ∼ 4.2± 0.2 and

3.0± 0.8 h wave in the temperature and intensity residuals,

respectively. Once again we treat these as the same wave

for the reason explained above. The best-fit analysis shows

the amplitudes of this wave to be ∼ 1.019 and 3.75 % arbi-

trary units in the temperature and intensity data, respectively.

Hence, the |η| value for short-period waves is estimated to

be 3.68± 0.9. In general we note that, in the worst case, the

maximum error in |η| values is < 25 %. The phase difference

between the intensity and temperature waves is obtained with

the help of best-fit parameters, which were also verified with

a cross-correlation analysis. The phase of the principal waves

(maxima) (period ∼ 8.2 h) was ∼ 24.88 h in the temperature

data and 24.4 h in the intensity data, which results in the

phase difference of ∼ 0.48 h, i.e., 8 values of −21.07± 12◦.

Similarly, for the shorter period (period∼ 4.2 h) the8 values

are estimated to be −114.3± 20◦.

We can also estimate the vertical wavelength with the help

of Krassovsky’s parameter following the approach elabo-

rated by Tarasick and Hines (1990).

λz=
2πγH

(γ − 1)|η| sin(ϕ)
, (2)

where γ = Cp/Cv = 1.4 is the ratio of specific heats and

H = 6 km is the scale height. This formula is valid for

zenith observations and for plane waves. It is not valid for

the evanescent waves. In Eq. (2), negative vertical wave-

length corresponds to downward phase propagation (i.e., up-

ward energy propagation), meaning that temperature oscilla-

tions precede the intensity oscillations in phase (e.g., Taka-

hashi et al., 1990). Using the above relation we find that

vertical wavelengths for the two cases discussed above are

∼−51.5± 15 and −39.3± 40 km for the long- and short-

period waves, respectively. Note that the long-period wave

estimates may be biased when the data length is comparable

to that of the wave period; therefore, in our study we have

considered only those waves whose periods are substantially

less than the length of the available data.

The above analysis was carried out on nighttime events

recorded during 2010 and 2011 when the prominent wave

features were visible. During the 2010 period, the princi-

pal nocturnal waves in the data show the wave periods vary

from 5.2 to 10.8 h with corresponding temperature ampli-

tudes ranging from 2 to 13.8 K. Similarly, for 2011, wave

periods vary between 5.2 and 8.4 h, with corresponding tem-

perature amplitudes lying between 1.1 and 15.7 K. However,

the intensity amplitudes of the principal waves vary from 7.9

to 49.9 % and 5 to 90 % for 2010 and 2011, respectively. We

note that the estimated |η| values were found to range from

2.1 to 10.5 for the principal wave. In the case of the short-

period waves, the periods ranged from 1.5 to 4.4 h (for 2010)

and 2.8 to 4.4 h (for 2011), with corresponding temperature

amplitudes ranging from 0.68 to 12.2 K and 0.4 to 14.2 K.

The corresponding intensity amplitudes fall in range between

∼ 1.54 and 46.8 % and 1.32 and 46.8 % for 2010 and 2011,

respectively. The phase (8) values also exhibit large variabil-

ity for long-period (short-period) waves range between −27

and−167◦ (−27 and− 150◦) for 2010 and−8.1 and−65.2◦

(−39.1 and −122.6◦) for 2011. For 2010 the deduced verti-

cal wavelengths are found to vary from −32.2 to −140 km

and −24 to −88 km for the long- and short-period waves,

respectively. Similarly, for 2011 the deduced vertical wave-

lengths are found to vary from −40 to −102 km and −26 to

−92.4 km for the long- and short-period waves, respectively.

In Fig. 2a we plot our results for |η| (hereafter η) with pink

half-filled squares indicating the estimates for the year 2010

and green half-filled squares for the year 2011. We plot 8

in Fig. 2b using the same symbols as used in Fig. 2a. For

a comparison, we also show the values of η and 8 reported

by other investigations (Viereck and Deehr, 1989; Takahashi

et al., 1992; Oznovich et al., 1995, 1997; Drob 1996; Reisin

and Scheer 1996; Taylor et al., 2001; Lopez-Gonzalez et al.,

2005). Also shown in the figure are the model estimates of

Schubert et al. (1991), Tarasick and Shepherd (1992a, b), and

Walterscheid and Schubert (1995). We also plot observed η

and 8 values against their observed period in Fig. 2a1 and

b1. In general, we note that the parameter η increases with

wave period. It is evident that the observed η and 8 val-

ues in our study show a large spread in their distribution as

compared to the model values. A similar spread in the dis-

tribution of observed values of η (Fig. 2a) from 1.03 to 7.85

has also been observed by other investigators (e.g., Takahashi

et al., 1992). It may be noted that the values of η for the

OH data in our study lie somewhere between the model es-

timates and the values observed by other investigators. Also

noteworthy in this figure is that our η values are closer to

the model values reported by Tarasick and Shepherd (1992a)

for the waves with horizontal wavelength of 500 km. The ob-

served phase “8” values, on the other hand, show signifi-

cantly larger deviations from this model for 2010, while for

2011 agreement seems to be better. We note that our mea-

surements of 8 matches somewhat with those reported by

Viereck and Deehr (1989), while large differences with other

published results can be easily noted. The variation in8 val-

ues with respect to the wave periodicity obtained in the year

2010 clearly shows that most of the time we observe values

to be higher than those obtained by different models.

Of the importance is that Reisin and Scheer (2001) found

η values of 3.47± 0.07 corresponding to the wave periods

between 1000 s and 3 h. Our observed values of η (arith-

metic mean, 4.4± 1 for the year 2010 and 5.7± 1.7 for 2011)

for OH measurements agree well with this report. In an-

other study based on long-term observations with a spectral

airglow temperature imager (SATI) from a mid-latitude sta-

tion, Lopez-Gonzalez et al. (2005) reported a mean value of

η of approximately ∼ 8.6 for the OH measurements with a

larger variability than our observations show. In another re-
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Figure 1. Nocturnal variability in the mesospheric OH emissions on 26–27 January 2011. The upper panels represent the mean deviations

in (a) intensity and (b) temperature data. Bottom panels represent (c) intensity and (d) temperature residuals. Solid red curves in each plot

show the result of the simple best-fit cosine model.

port, Guharay et al. (2008) found that, for wave periods rang-

ing from 6 to 13 h, values of η were between 1.7 and 5.4,

while the phase varied from −13 to − 90◦. Similarly, Au-

shev et al. (2008) reported amplitudes of the Krassovsky pa-

rameter for wave periods ranging from 2.2 to 4.7 h to vary

from 2.4 to 3.6, while the phase values were found to lie

within−63 and−121◦. It is noteworthy that our derived val-

ues broadly agree with Guharay et al. (2008, 2009), Reisin

and Scheer (2001, 2004), and Viereck and Deehr (1989),

while they are somewhat different from the values reported

by Lopez-Gonzalez et al. (2005), which may be due to the

fact that their observations corresponded to higher latitude

than ours. It also remains to be seen how that would be re-

flected in the Krassovsky parameters when mesopause alti-

tude itself changes from low to high latitudes.

The results of (η and 8) shown in Fig. 2 emphasize that

there are significant differences in the Krassovsky parame-

ters derived from one study to another. This we suspect to

be caused by the variations in the altitudinal profile of oxy-

gen and its effect on the η through the complex OH chem-

istry (Walterscheid et al., 1994). Another possibility over

low latitudes was discussed by Makhlouf et al. (1995), who

suggested that the quenching was caused by the perturbed

molecules during their transitions from several vibrational

levels. Winds also affect the OH response to gravity waves

and therefore they will also contribute to the spread of values

seen between the various observation studies (e.g., Sonne-

mann and Grygalashvyly, 2003).

Note that our observations as well as simulations show the

phase 8 for OH to be a negative value, indicating upward-

propagating waves (see Tarasick and Shepherd, 1992a, b).

In general we note that our 8 values, although they are on

some occasions closer to Viereck and Deehr (1989) obser-

vations, show deviations from other investigators and are

larger than the model values on most occasions. Differences

in theory and observation may be due to the horizontal wave-

length assumed in the model and/or the Prandtl number (ratio

of kinematic viscosity to thermal diffusivity) assumed. The

Prandtl number is important in theoretical calculations and

modeling, especially when in terms of dissipating waves ow-

ing to molecular viscosity and thermal diffusivity while they

propagate in the atmosphere (Hickey, 1988). An error in the

Prandtl number assumption will affect the derived wave pa-

rameters (λz, η, etc.), which may in turn result in mislead-

ing results. In this regard, Makhlouf et al. (1995) studied

the variations in the η values by modifying the model pro-

posed by Hines and using a photochemical dynamical model;

however, they were still unable to explain the appearance of

the negative phases appropriately. Hines and Tarasick (1987)

found a wide range of η variability, a result supported by

our measurements. Further, Hines and Tarasick (1997) sub-

sequently discussed the necessary correction for thin and

www.atmos-chem-phys.net/16/5611/2016/ Atmos. Chem. Phys., 16, 5611–5621, 2016
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Figure 2. (a) Distribution of Krassovsky parameter “η”, reported by investigators (list not exhaustive). The x axis shows the wave periodicity

and the y axis is for amplitude of Krassovsky parameters (η). The legends in the figure are as follows: (1) (for year 2010) and (2) (for

year 2011) – present study; (3) Schubert et al. 500 km; (4) Schubert et al. 1000 km; (5) Tarasick and Shepherd 500 km; (6) Tarasick and

Shepherd 1000 km; (7) Takahashi et al. (1992); (8) Oznovich et al. (1995); (9) Drob et al. (1996); (10) Reisin and Scheer (1996); (11)

Taylor et al. (2001); (12) Guharay et al. (2008); (13) Walterscheid and Schubert (1995); (14) Lopez-Gonzalez et al. (2005); (15) Oznovich et

al. (1997); and (16) Viereck and Deehr (1989). (a1) Observed values of η versus wave period over Kolhapur alone. (b) Distribution of phase

values of Krassovsky parameter “8”, reported by investigators (list not exhaustive) (1) (for year 2010) and (2) (for year 2011) – present

study; (3) Schubert et al. 500 km; (4) Schubert et al. 1000 km; (5) Tarasick and Shepherd 500 km; (6) Tarasick and Shepherd 1000 km; (7)

Viereck and Deehr (1989); (8) Oznovich et al. (1995); (9) Drob et al. (1996); (10) Reisin and Scheer (1996); (11) Taylor et al. (2001); (12)

Guharay et al. (2008); (13) Walterscheid and Schubert (1995); (14) Lopez-Gonzalez et al. (2005); (15) Oznovich et al. (1997); and (16)

Viereck and Deehr (1989). (b1) Observed values of 8 verses wave period over Kolhapur alone. (c) Deduced vertical wavelength (VW) for

both the short- and long-period wave as a function of wave periodicity compared to other published results.

thick layer approximations for the calculation of η from air-

glow emissions due to gravity wave interaction. They also

pointed out that OH emission intensity, which affects the de-

rived η values, does not depend on the oxygen profile and

other minor species, which contradicts the theory of Wal-

terscheid et al. (1994) and Schubert et al. (1991). The cal-

culated vertical wavelengths (VWs) for all the nights of the

observation are shown in Fig. 2c as pink half-filled squares

indicating the estimates for the year 2010 and green half-

filled squares for the year 2011. Large differences exist from

one night to another. The VW has a large variability rang-

ing from −41 to −102 km (2010) and −36.2 to −140 km

(2011) for long-period waves, and−26 to−92.4 km and−24

to −88 km for short-period waves of years 2010 and 2011,

respectively. In 2010 (and 2011), the mean VW values for

long- and short-period waves are calculated to be−60.2± 20

(−77.2 ± 40 km) and −42.8± 15 km (−59.2± 30 km), re-

spectively. Further, unlike the clear dependency on the wave

period noted in the Krassovsky parameters (η and8) no clear

trend is noted in the calculated VW. We also plot the values
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reported by Reisin and Scheer (1996) and Lopez-Gonzalez et

al. (2005) for a comparison. It is noteworthy that, for all days,

the VW values for the long-period wave are higher than those

of short-period waves. We also observed that VW values cal-

culated for the year 2011 are larger than year 2010 calcu-

lated values. We note that the values reported by Reisin and

Scheer (1996) are approximately −30 km with about 40 km

variability. Our values are in good agreement with them.

However, Lopez-Gonzalez et al. (2005) observed VW values

to be approximately −10 km deduced from their OH obser-

vations, which do not agree with our values. Further, Ghod-

page et al. (2012) analyzed the long-term nocturnal data of

2004–2007 and also observed that the VW lies between 28.6

and 163 km. Recently, Ghodpage et al. (2013) studied the si-

multaneous mesospheric gravity wave measurements in the

OH emission from Gadanki and Kolhapur, inferring mean

VW values varying from −26 to −60 km for the Kolhapur

observations. Takahashi et al. (1990) reported vertical wave-

lengths varying from 20 to 80 km, which is in agreement with

our values.

4 Comparison with the full-wave model results

Wave simulations were performed using the full-wave model

(FWM) for which the representative inputs were taken for

the duration of observations reported in Sect. 3. The observa-

tions were conducted over a period of approximately 1 month

spanning from 8 February to 13 March, and accordingly we

used the middle date of this observation period (25 February)

in the MSIS model to represent the mean state. The latitude

used was 16.8◦ N, and the local time was midnight. Because

the speed and direction of wave propagation were not deter-

mined from the observations, several simulations were per-

formed for each wave period in which the direction of propa-

gation (eastward, northward, and westward propagation) and

the phase speed (50, 100, and 150 m s−1) were varied. Note

that the mean winds (not shown) in these simulations were

derived from the Horizontal Wind Model (HWM) using the

same input parameters as used for the MSIS model. The de-

rived meridional winds (not shown) are far smaller than the

zonal winds for the conditions considered here, and so while

results for eastward and westward propagation differed quite

markedly, those for northward and southward propagation

did not. Hence we considered only a single direction (north-

ward) for meridional propagation.

We also performed a tidal simulation using an equivalent

gravity wave model (Lindzen, 1970; Richmond, 1975), as

implemented in an earlier study (Walterscheid and Hickey,

2001). The horizontal wavelength and the Coriolis param-

eter are adjusted to give maximal correspondence with a

given tidal mode. Here, we performed calculations for the

terdiurnal (3,3), (3,4), (3,5), and (3,6) modes using param-

eters provided by Richmond (1975). The simplifications in-

herent in this approach are discussed by Walterscheid and

Hickey (2001).

Comparisons between the full-wave model results for η,

8, and λz and the values inferred from the observations are

shown in Fig. 3a, b, and c, respectively. In Fig. 3a we com-

pare the observed values of η for 2010 and 2011. The ob-

served values of η are represented as pink and green lower

half-filled squares for 2010 and 2011, respectively. In Fig. 3a

we note that, at a few of the longer wave periods, the ob-

served values of η are in good agreement with the full-wave

model results. For short-period waves the values of η inferred

from the observations appear to be bounded by the model

values for waves with horizontal phase velocities of 50 and

100 m s−1, respectively. For example, for 3.6 h wave periods,

the average of the values of η inferred from the observations

is 3.7, while the full-wave model values lie between about 0.5

(for the 100 m s−1 wave) and 7 (for the 50 m s−1, eastward-

propagating wave). For the 8 h wave periods, the average of

the values of η inferred from the observations is 5.7, which is

bounded by the full-wave model estimates for waves having

a horizontal phase velocity of 50 m s−1 and different propa-

gation directions.

Overall, we note that the comparison between the observed

η values and the modeled values can be explained by grav-

ity waves whose horizontal phase velocities range from 50 to

100 m s−1. In this regard, an earlier investigation by Pragati

et al. (2010) observed gravity wave horizontal phase speeds

(for periods 5 to 17 min) varying between 10 and 48 m s−1.

The propagation directions were reported to be preferen-

tially towards the north. More recently, Taori et al. (2013)

studied mesospheric gravity wave activity in the OH and

OI 558 nm emissions from Gadanki. They observed that the

gravity waves were moving in the northwest direction. The

average phase velocity of the ripple-type waves was found

to be 23.5 m s−1. The other, band-type waves, with horizon-

tal scales of about 40 km, were found to be propagating from

south to north with an estimated phase speed of 90 m s−1.

The vertical wavelengths (λz) calculated using the ob-

served values of η and 8 differ significantly from the full-

wave model estimate for waves with phase velocities below

100 m s−1. More typically, a comparison between those val-

ues inferred from the observations and those derived from the

model tend to agree for phase velocities in the 100–150 m s−1

range. However, it should be noted that vertical wavelengths

inferred from the observations are based on the use of the in-

ferred Krassovsky’s ratio, η, in Eq. (2). Note that the errors

in the determination of the phase (8) of η may lead to sig-

nificant errors (proportional to cot8) in the determination of

λz, especially as 8 approaches ±180◦.

The differences noted in the observed and modeled es-

timates of Krassovsky ratio magnitudes η and phase (8)

may be associated with the limitation arising due to dynam-

ics as well as the measurements. In terms of measurements

limitation, the parameters achieved with the best-fit method

may have leaked contribution from other wave components,
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Table 1. Comparisons of deduced wave parameters in years 2010 and 2011 with the multivariate ENSO index (MEI) and OH altitudes.

The observed quantities are the mean for their representative wave periods. (Abbreviations under MEI are for 3-month periods, e.g., JFM –

January, February, and March.)

Year Mean η Mean (8) Mean (VW) OH altitude MEI

(± errors) (◦) (km) (km)

Long Short Long Short Long Short JFM FMA MAM SON OND

wave wave wave wave wave wave

period period period period period period

2010 4.4± 1 2.3± 0.9 90.6± 40 70.4± 45 60.2± 20 42.8± 15 82 to 85.1 km 1.1 0.8 0.5 −1.4 −1.3

during

Feb–Apr

2011 5.7± 1.7 2.7± 0.6 33.8± 40 64.4± 40 77.6± 40 59.2± 30 85.1 to 86 km −1.1 −0.8 −0.6 −0.9 −0.9

during

Feb–Apr

which may be dynamically varying within a wave period.

In terms of dynamics, that full-wave model uses climato-

logical density (both major gas and minor airglow-related

species) and wind profiles, which will introduce uncertain-

ties. This point has been previously elaborated by Walter-

scheid et al. (1994) with respect to the effect of a change in

the [8] profile on the OH response to wave motions.

It is interesting to note that the arithmetic mean values of

|η| for the years 2010 and 2011 were 4.4 and 5.7, respec-

tively. When we look at each |η| value from one wave pe-

riod range to other, the difference is found to be more than

30 %, which is well above the maximum errors in the esti-

mation. One may further argue that this difference may not

be significant. For this, we looked at the mode of the val-

ues for periods ranges 1–4, 4–6, 6–8, and 8–10 h. We found

that in each case in the year 2011 mode values are larger

than the year 2010. The differences noted in the magnitude

of the observed Krassovsky ratio η between 2010 and 2011

may be associated with variations in the height and shape

of the undisturbed OH emission profile. We use the SABER

data to investigate this aspect. To check whether there was

a difference in the OH emission layer structure, we selected

the nighttime OH emission profile for a grid encompassing

10 to 20◦ N and 70 to 90◦ E during the months of Febru-

ary, March, and April of the years 2010 and 2011. We have

selected the February to March period because the optical

airglow data used in this study were acquired primarily dur-

ing these months. The monthly mean values of OH emis-

sion rates are shown in Fig. 4. The solid curves correspond to

2010 data, while the dashed curves correspond to 2011 data.

We note that the peaks of OH emission layer during February,

March and April of 2010 occurred at 84.2, 82.8, and 85.1 km

altitude, respectively, while the corresponding peaks for 2011

were found to occur at 85.8, 85.6, and 85.2 km altitude. This

suggests that the peak of the emission layer occurred at a

somewhat lower altitude in 2010 compared to 2011. Also,

the emission rates during February and March were found to

be higher in 2010. It is important to note that, in an earlier

study, Ghodpage et al. (2013) compared the Krassovsky ra-

tios at two different latitudes, Gadanki (13.5◦ N, 79.2◦ E) and

Kolhapur (16.8◦ N, 74.2◦ E), and noted a lower OH emission

layer peak over Kolhapur as well as larger estimated η values

over Kolhapur. In the present case, instead of the location,

it is the difference in the measurement year where the peak

emission altitudes of the OH emission layer are somewhat

different. As the peak emission layer arises due to the chemi-

cal reactions involving odd oxygen, it is proposed that chem-

ical composition was different from 2010 to 2011. Therefore,

modified OH emission rates may be responsible for the ob-

served differences in the Krassovsky parameters. A further

question that arises here is why the peaks should be different

from one year to the other. As these months are pre-monsoon,

when a large-scale oscillation, namely El Niño–Southern Os-

cillation (ENSO), sweeps through the South Asian continent,

we looked at ENSO strength based on the multivariate ENSO

index (MEI). This index is shown in Table 1, where it is note-

worthy that the MEI for 2010 (January to May) is of op-

posite sign to that for the corresponding months in 2011.

We postulate that these large-scale processes have a pro-

found impact on the observed wave energetics and dynamics

at mesospheric altitudes. Large-scale processes induced the

wave oscillations associated with ENSO. ENSO generates a

spectrum of waves which are of planetary scales. These are

expected to generate a secular variation in temperature and

density structure throughout the atmosphere. A difference in

ENSO suggests that these forcings are different in the two

years (2010 and 2011). At present, we do not know through

which process ENSO may have implications in the observed

wave characteristics. However, we believe that further inves-

tigation is required in order to confirm whether or not any

such associations really do exist.
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Figure 3. (a) Comparison with η calculated by observation of both

years and full-wave model simulation with their respective wave

period. Pink and green lower half-filled squares show the year 2010

and 2011 η observations: (1) and (2) – present study η; (3) FWM

simulation of η for 50 m s−1 horizontal phase velocity; (4) FWM

simulation of η for 100 m s−1 horizontal phase velocity; and (5)

FWM simulation of η for 150 m s−1 horizontal phase velocity).

(b) Similar to (a) but for phase values for both the short- and long-

period wave. (c) Similar to (a) but for deduced vertical wavelength

(VW).

5 Conclusions

We report the Krassovsky parameters for the observed grav-

ity waves from Kolhapur (16.8◦ N, 74.2◦ E) and their com-

parison with the full-wave model.

1. The observed values of Krassovsky parameters in our

study show a large spread in their distribution as com-

Figure 4. The monthly (February, March, and April) mean OH

emission rate profiles from SABER for the years 2010 (solid lines)

and 2011 (dashed lines).

pared to the model values (shown in Fig. 2a). A similar

spread in the distribution has also been reported by other

investigators. We have also observed that the magnitude

of η values is larger in the year 2011 than 2010.

2. The values of η for the OH data in our study lie be-

tween the model estimates and the values reported in

other published results. However, the phase values are

more than the model values on most occasions. We note

that our 8 measurements match with those reported by

Viereck and Deehr (1989), while they show large differ-

ences with the values in other reports.

3. Observed vertical wavelength (VW) values broadly

agree with the range reported by other investigators and

are found to vary from −26 to −140 km. We also noted

that VW values calculated for the year 2011 are larger

than year 2010 calculated values. Most of the waves are

propagating upward.

4. Comparisons of observed η and 8 values agree fairly

well with the full-wave model results for waves with

50 and 100 m s−1 horizontal phase velocities. Verti-

cal wavelengths tend to agree for waves with 100 and

150 m s−1 horizontal phase velocities, except for the

longest period waves for which vertical wavelength can-

not be reliably inferred from the observations.

Data availability

The database used in the present study are limited in terms

of the length (time and duration) and locations. Based
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on the above conclusions we emphasize that more rigor-

ous studies using coordinated observations and modeling

are required to uncover the physics occurring in the upper

mesosphere. These database are available upon request to:

alok.taori@gmail.com.
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