Articles | Volume 16, issue 6
https://doi.org/10.5194/acp-16-3979-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-16-3979-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Overview of VOC emissions and chemistry from PTR-TOF-MS measurements during the SusKat-ABC campaign: high acetaldehyde, isoprene and isocyanic acid in wintertime air of the Kathmandu Valley
Chinmoy Sarkar
Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S. A. S. Nagar, Manauli PO, Punjab, 140306, India
Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S. A. S. Nagar, Manauli PO, Punjab, 140306, India
Vinod Kumar
Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S. A. S. Nagar, Manauli PO, Punjab, 140306, India
Maheswar Rupakheti
Institute for Advanced Sustainability Studies (IASS), Berliner Str. 130, 14467 Potsdam, Germany
Himalayan Sustainability Institute (HIMSI), Kathmandu, Nepal
Arnico Panday
International Centre for Integrated Mountain Development (ICIMOD), Khumaltar, Lalitpur, Nepal
Khadak S. Mahata
Institute for Advanced Sustainability Studies (IASS), Berliner Str. 130, 14467 Potsdam, Germany
Dipesh Rupakheti
Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
Bhogendra Kathayat
Himalayan Sustainability Institute (HIMSI), Kathmandu, Nepal
Mark G. Lawrence
Institute for Advanced Sustainability Studies (IASS), Berliner Str. 130, 14467 Potsdam, Germany
Related authors
Chinmoy Sarkar, Gracie Wong, Anne Mielnik, Sanjeevi Nagalingam, Nicole Jenna Gross, Alex B. Guenther, Taehyoung Lee, Taehyun Park, Jihee Ban, Seokwon Kang, Jin-Soo Park, Joonyoung Ahn, Danbi Kim, Hyunjae Kim, Jinsoo Choi, Beom-Keun Seo, Jong-Ho Kim, Jeong-Ho Kim, Soo Bog Park, and Saewung Kim
Atmos. Chem. Phys., 21, 11505–11518, https://doi.org/10.5194/acp-21-11505-2021, https://doi.org/10.5194/acp-21-11505-2021, 2021
Short summary
Short summary
We present experimental proofs illustrating the emission of an unexplored volatile organic compound, tentatively assigned as ketene, in an industrial facility in South Korea. The emission of such a compound has rarely been reported, but our experimental data show that the emission rate is substantial. It potentially has tremendous implications for regional air quality and public health, as it is highly reactive and toxic at the same time.
Archit Mehra, Jordan E. Krechmer, Andrew Lambe, Chinmoy Sarkar, Leah Williams, Farzaneh Khalaj, Alex Guenther, John Jayne, Hugh Coe, Douglas Worsnop, Celia Faiola, and Manjula Canagaratna
Atmos. Chem. Phys., 20, 10953–10965, https://doi.org/10.5194/acp-20-10953-2020, https://doi.org/10.5194/acp-20-10953-2020, 2020
Short summary
Short summary
Emissions of volatile organic compounds (VOCs) from plants are important for tropospheric ozone and secondary organic aerosol (SOA) formation. Real plant emissions are much more diverse than the few proxies widely used for studies of plant SOA. Here we present the first study of SOA from Californian sage plants and the oxygenated monoterpenes representing their major emissions. We identify SOA products and show the importance of the formation of highly oxygenated organic molecules and oligomers.
Chinmoy Sarkar, Alex B. Guenther, Jeong-Hoo Park, Roger Seco, Eliane Alves, Sarah Batalha, Raoni Santana, Saewung Kim, James Smith, Julio Tóta, and Oscar Vega
Atmos. Chem. Phys., 20, 7179–7191, https://doi.org/10.5194/acp-20-7179-2020, https://doi.org/10.5194/acp-20-7179-2020, 2020
Short summary
Short summary
Biogenic volatile organic compounds (BVOCs) are important components of the atmosphere due to their contribution to atmospheric chemistry and biogeochemical cycles. In this study, we report major BVOCs, e.g. isoprene and total monoterpene flux measurements with a proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) using the eddy covariance (EC) method at a primary rainforest in eastern Amazonia. We used the measured data to evaluate the MEGAN2.1 model for the emission site.
Chinmoy Sarkar, Vinayak Sinha, Baerbel Sinha, Arnico K. Panday, Maheswar Rupakheti, and Mark G. Lawrence
Atmos. Chem. Phys., 17, 8129–8156, https://doi.org/10.5194/acp-17-8129-2017, https://doi.org/10.5194/acp-17-8129-2017, 2017
Short summary
Short summary
This study provides quantitative information regarding the source contributions of the major non-methane volatile organic compound sources in the Kathmandu Valley. Combining high-resolution in situ NMVOC data and model analyses, we show that REAS v2.1 and EDGAR v4.2 emission inventories underestimate the contribution of traffic and do not take the contribution of brick kilns into account. Furthermore, REAS v2.1 overestimates the contribution of residential biofuel use and industries.
Sachin Mishra, Vinayak Sinha, Haseeb Hakkim, Arpit Awasthi, Sachin D. Ghude, Vijay Kumar Soni, Narendra Nigam, Baerbel Sinha, and Madhavan N. Rajeevan
Atmos. Chem. Phys., 24, 13129–13150, https://doi.org/10.5194/acp-24-13129-2024, https://doi.org/10.5194/acp-24-13129-2024, 2024
Short summary
Short summary
We quantified 111 gases using mass spectrometry to understand how seasonal and emission changes lead from clean air in the monsoon season to extremely polluted air in the post-monsoon season in Delhi. Averaged total mass concentrations (260 µg m-3) were > 4 times in polluted periods, driven by biomass burning emissions and reduced atmospheric ventilation. Reactive gaseous nitrogen, chlorine, and sulfur compounds hitherto unreported from such a polluted environment were discovered.
Yuhang Zhang, Huan Yu, Isabelle De Smedt, Jintai Lin, Nicolas Theys, Michel Van Roozendael, Gaia Pinardi, Steven Compernolle, Ruijing Ni, Fangxuan Ren, Sijie Wang, Lulu Chen, Jos Van Geffen, Mengyao Liu, Alexander Cede, Alexis Merlaud, Martina Friedrich, Andreas Richter, Ankie Piters, Vinod Kumar, Vinayak Sinha, Thomas Wagner, Yongjoo Choi, Hisahiro Takashima, Yugo Kanaya, Hitoshi Irie, Robert Spurr, Wenfu Sun, and Lorenzo Fabris
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-182, https://doi.org/10.5194/amt-2024-182, 2024
Preprint under review for AMT
Short summary
Short summary
We developed an advanced POMINO algorithm for global retrieval of TROPOMI HCHO and NO2 VCDs with much improved consistency. Sensitivity tests demonstrate the complexity and non-linear interactions of auxiliary parameters in the AMF calculation. An improved agreement is found with measurements from a global ground-based instrument network. The POMINO retrieval provides a useful source of information for studies combining HCHO and NO2.
Arpit Awasthi, Baerbel Sinha, Haseeb Hakkim, Sachin Mishra, Varkrishna Mummidivarapu, Gurmanjot Singh, Sachin D. Ghude, Vijay Kumar Soni, Narendra Nigam, Vinayak Sinha, and Madhavan N. Rajeevan
Atmos. Chem. Phys., 24, 10279–10304, https://doi.org/10.5194/acp-24-10279-2024, https://doi.org/10.5194/acp-24-10279-2024, 2024
Short summary
Short summary
We use 111 volatile organic compounds (VOCs), PM10, and PM2.5 in a positive matrix factorization (PMF) model to resolve 11 pollution sources validated with chemical fingerprints. Crop residue burning and heating account for ~ 50 % of the PM, while traffic and industrial emissions dominate the gas-phase VOC burden and formation potential of secondary organic aerosols (> 60 %). Non-tailpipe emissions from compressed-natural-gas-fuelled commercial vehicles dominate the transport sector's PM burden.
Chandrakala Bharali, Mary Barth, Rajesh Kumar, Sachin D. Ghude, Vinayak Sinha, and Baerbel Sinha
Atmos. Chem. Phys., 24, 6635–6662, https://doi.org/10.5194/acp-24-6635-2024, https://doi.org/10.5194/acp-24-6635-2024, 2024
Short summary
Short summary
This study examines the role of atmospheric aerosols in winter fog over the Indo-Gangetic Plains of India using WRF-Chem. The increase in RH with aerosol–radiation feedback (ARF) is found to be important for fog formation as it promotes the growth of aerosols in the polluted environment. Aqueous-phase chemistry in the fog increases PM2.5 concentration, further affecting ARF. ARF and aqueous-phase chemistry affect the fog intensity and the timing of fog formation by ~1–2 h.
Vishnu Thilakan, Dhanyalekshmi Pillai, Jithin Sukumaran, Christoph Gerbig, Haseeb Hakkim, Vinayak Sinha, Yukio Terao, Manish Naja, and Monish Vijay Deshpande
Atmos. Chem. Phys., 24, 5315–5335, https://doi.org/10.5194/acp-24-5315-2024, https://doi.org/10.5194/acp-24-5315-2024, 2024
Short summary
Short summary
This study investigates the usability of CO2 mixing ratio observations over India to infer regional carbon sources and sinks. We demonstrate that a high-resolution modelling system can represent the observed CO2 variations reasonably well by improving the transport and flux variations at a fine scale. Future carbon data assimilation systems can thus benefit from these recently available CO2 observations when fine-scale variations are adequately represented in the models.
Xiufeng Yin, Dipesh Rupakheti, Guoshuai Zhang, Jiali Luo, Shichang Kang, Benjamin de Foy, Junhua Yang, Zhenming Ji, Zhiyuan Cong, Maheswar Rupakheti, Ping Li, Yuling Hu, and Qianggong Zhang
Atmos. Chem. Phys., 23, 10137–10143, https://doi.org/10.5194/acp-23-10137-2023, https://doi.org/10.5194/acp-23-10137-2023, 2023
Short summary
Short summary
The monthly mean surface ozone concentrations peaked earlier in the south in April and May and later in the north in June and July over the Tibetan Plateau. The migration of monthly surface ozone peaks was coupled with the synchronous movement of tropopause folds and the westerly jet that created conditions conducive to stratospheric ozone intrusion. Stratospheric ozone intrusion significantly contributed to surface ozone across the Tibetan Plateau.
Daniele Visioni, Ben Kravitz, Alan Robock, Simone Tilmes, Jim Haywood, Olivier Boucher, Mark Lawrence, Peter Irvine, Ulrike Niemeier, Lili Xia, Gabriel Chiodo, Chris Lennard, Shingo Watanabe, John C. Moore, and Helene Muri
Atmos. Chem. Phys., 23, 5149–5176, https://doi.org/10.5194/acp-23-5149-2023, https://doi.org/10.5194/acp-23-5149-2023, 2023
Short summary
Short summary
Geoengineering indicates methods aiming to reduce the temperature of the planet by means of reflecting back a part of the incoming radiation before it reaches the surface or allowing more of the planetary radiation to escape into space. It aims to produce modelling experiments that are easy to reproduce and compare with different climate models, in order to understand the potential impacts of these techniques. Here we assess its past successes and failures and talk about its future.
Pooja V. Pawar, Sachin D. Ghude, Gaurav Govardhan, Prodip Acharja, Rachana Kulkarni, Rajesh Kumar, Baerbel Sinha, Vinayak Sinha, Chinmay Jena, Preeti Gunwani, Tapan Kumar Adhya, Eiko Nemitz, and Mark A. Sutton
Atmos. Chem. Phys., 23, 41–59, https://doi.org/10.5194/acp-23-41-2023, https://doi.org/10.5194/acp-23-41-2023, 2023
Short summary
Short summary
In this study, for the first time in South Asia we compare simulated ammonia, ammonium, and total ammonia using the WRF-Chem model and MARGA measurements during winter in the Indo-Gangetic Plain region. Since observations show HCl promotes the fraction of high chlorides in Delhi, we added HCl / Cl emissions to the model. We conducted three sensitivity experiments with changes in HCl emissions, and improvements are reported in accurately simulating ammonia, ammonium, and total ammonia.
Mukesh Rai, Shichang Kang, Junhua Yang, Maheswar Rupakheti, Dipesh Rupakheti, Lekhendra Tripathee, Yuling Hu, and Xintong Chen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-199, https://doi.org/10.5194/acp-2022-199, 2022
Revised manuscript not accepted
Short summary
Short summary
Our study revealed distinctive seasonality with the maximum and minimum aerosol concentrations during the winter and summer seasons respectively. However, interestingly summer high (AOD > 0.8) was observed over South Asia. The highest aerosols are laden over South Asia and East China within 1–2 km, however, aerosol overshooting found up to 10 km due to the deep convection process. Whereas, integrated aerosol transport for OC during spring was found to be 5 times higher than the annual mean.
Shichang Kang, Yulan Zhang, Pengfei Chen, Junming Guo, Qianggong Zhang, Zhiyuan Cong, Susan Kaspari, Lekhendra Tripathee, Tanguang Gao, Hewen Niu, Xinyue Zhong, Xintong Chen, Zhaofu Hu, Xiaofei Li, Yang Li, Bigyan Neupane, Fangping Yan, Dipesh Rupakheti, Chaman Gul, Wei Zhang, Guangming Wu, Ling Yang, Zhaoqing Wang, and Chaoliu Li
Earth Syst. Sci. Data, 14, 683–707, https://doi.org/10.5194/essd-14-683-2022, https://doi.org/10.5194/essd-14-683-2022, 2022
Short summary
Short summary
The Tibetan Plateau is important to the Earth’s climate. However, systematically observed data here are scarce. To perform more integrated and in-depth investigations of the origins and distributions of atmospheric pollutants and their impacts on cryospheric change, systematic data of black carbon and organic carbon from the atmosphere, glaciers, snow cover, precipitation, and lake sediment cores over the plateau based on the Atmospheric Pollution and Cryospheric Change program are provided.
Christophe Lerot, François Hendrick, Michel Van Roozendael, Leonardo M. A. Alvarado, Andreas Richter, Isabelle De Smedt, Nicolas Theys, Jonas Vlietinck, Huan Yu, Jeroen Van Gent, Trissevgeni Stavrakou, Jean-François Müller, Pieter Valks, Diego Loyola, Hitoshi Irie, Vinod Kumar, Thomas Wagner, Stefan F. Schreier, Vinayak Sinha, Ting Wang, Pucai Wang, and Christian Retscher
Atmos. Meas. Tech., 14, 7775–7807, https://doi.org/10.5194/amt-14-7775-2021, https://doi.org/10.5194/amt-14-7775-2021, 2021
Short summary
Short summary
Global measurements of glyoxal tropospheric columns from the satellite instrument TROPOMI are presented. Such measurements can contribute to the estimation of atmospheric emissions of volatile organic compounds. This new glyoxal product has been fully characterized with a comprehensive error budget, with comparison with other satellite data sets as well as with validation based on independent ground-based remote sensing glyoxal observations.
Isabelle De Smedt, Gaia Pinardi, Corinne Vigouroux, Steven Compernolle, Alkis Bais, Nuria Benavent, Folkert Boersma, Ka-Lok Chan, Sebastian Donner, Kai-Uwe Eichmann, Pascal Hedelt, François Hendrick, Hitoshi Irie, Vinod Kumar, Jean-Christopher Lambert, Bavo Langerock, Christophe Lerot, Cheng Liu, Diego Loyola, Ankie Piters, Andreas Richter, Claudia Rivera Cárdenas, Fabian Romahn, Robert George Ryan, Vinayak Sinha, Nicolas Theys, Jonas Vlietinck, Thomas Wagner, Ting Wang, Huan Yu, and Michel Van Roozendael
Atmos. Chem. Phys., 21, 12561–12593, https://doi.org/10.5194/acp-21-12561-2021, https://doi.org/10.5194/acp-21-12561-2021, 2021
Short summary
Short summary
This paper assess the performances of the TROPOMI formaldehyde observations compared to its predecessor OMI at different spatial and temporal scales. We also use a global network of MAX-DOAS instruments to validate both satellite datasets for a large range of HCHO columns. The precision obtained with daily TROPOMI observations is comparable to monthly OMI observations. We present clear detection of weak HCHO column enhancements related to shipping emissions in the Indian Ocean.
Chinmoy Sarkar, Gracie Wong, Anne Mielnik, Sanjeevi Nagalingam, Nicole Jenna Gross, Alex B. Guenther, Taehyoung Lee, Taehyun Park, Jihee Ban, Seokwon Kang, Jin-Soo Park, Joonyoung Ahn, Danbi Kim, Hyunjae Kim, Jinsoo Choi, Beom-Keun Seo, Jong-Ho Kim, Jeong-Ho Kim, Soo Bog Park, and Saewung Kim
Atmos. Chem. Phys., 21, 11505–11518, https://doi.org/10.5194/acp-21-11505-2021, https://doi.org/10.5194/acp-21-11505-2021, 2021
Short summary
Short summary
We present experimental proofs illustrating the emission of an unexplored volatile organic compound, tentatively assigned as ketene, in an industrial facility in South Korea. The emission of such a compound has rarely been reported, but our experimental data show that the emission rate is substantial. It potentially has tremendous implications for regional air quality and public health, as it is highly reactive and toxic at the same time.
Wenjie Wang, Jipeng Qi, Jun Zhou, Bin Yuan, Yuwen Peng, Sihang Wang, Suxia Yang, Jonathan Williams, Vinayak Sinha, and Min Shao
Atmos. Meas. Tech., 14, 2285–2298, https://doi.org/10.5194/amt-14-2285-2021, https://doi.org/10.5194/amt-14-2285-2021, 2021
Short summary
Short summary
We designed a new reactor for measurements of OH reactivity (i.e., OH radical loss frequency) based on the comparative reactivity method under
high-NOx conditions, such as in cities. We performed a series of laboratory tests to evaluate the new reactor. The new reactor was used in the field and performed well in measuring OH reactivity in air influenced by upwind cities.
Vinod Kumar, Steffen Beirle, Steffen Dörner, Abhishek Kumar Mishra, Sebastian Donner, Yang Wang, Vinayak Sinha, and Thomas Wagner
Atmos. Chem. Phys., 20, 14183–14235, https://doi.org/10.5194/acp-20-14183-2020, https://doi.org/10.5194/acp-20-14183-2020, 2020
Short summary
Short summary
We present the first long-term MAX-DOAS measurements of aerosols, nitrogen dioxide and formaldehyde tropospheric columns, vertical distributions, and temporal variation from Mohali in the Indo-Gangetic Plain. We investigate the effect of various emission sources and meteorological conditions on the measured pollutants and how they control ozone formation. These measurements are also used to validate the corresponding satellite observations and are also compared against in situ observations.
Ashish Kumar, Vinayak Sinha, Muhammed Shabin, Haseeb Hakkim, Bernard Bonsang, and Valerie Gros
Atmos. Chem. Phys., 20, 12133–12152, https://doi.org/10.5194/acp-20-12133-2020, https://doi.org/10.5194/acp-20-12133-2020, 2020
Short summary
Short summary
Source apportionment studies require information on the chemical fingerprints of pollution sources to correctly quantify source contributions to ambient composition. These chemical fingerprints vary from region to region, depending on fuel composition and combustion conditions, and are poorly constrained over developing regions such as South Asia. This work characterises the chemical fingerprints of urban and agricultural sources using 49 non-methane hydrocarbons and their environmental impacts.
Archit Mehra, Jordan E. Krechmer, Andrew Lambe, Chinmoy Sarkar, Leah Williams, Farzaneh Khalaj, Alex Guenther, John Jayne, Hugh Coe, Douglas Worsnop, Celia Faiola, and Manjula Canagaratna
Atmos. Chem. Phys., 20, 10953–10965, https://doi.org/10.5194/acp-20-10953-2020, https://doi.org/10.5194/acp-20-10953-2020, 2020
Short summary
Short summary
Emissions of volatile organic compounds (VOCs) from plants are important for tropospheric ozone and secondary organic aerosol (SOA) formation. Real plant emissions are much more diverse than the few proxies widely used for studies of plant SOA. Here we present the first study of SOA from Californian sage plants and the oxygenated monoterpenes representing their major emissions. We identify SOA products and show the importance of the formation of highly oxygenated organic molecules and oligomers.
Chinmoy Sarkar, Alex B. Guenther, Jeong-Hoo Park, Roger Seco, Eliane Alves, Sarah Batalha, Raoni Santana, Saewung Kim, James Smith, Julio Tóta, and Oscar Vega
Atmos. Chem. Phys., 20, 7179–7191, https://doi.org/10.5194/acp-20-7179-2020, https://doi.org/10.5194/acp-20-7179-2020, 2020
Short summary
Short summary
Biogenic volatile organic compounds (BVOCs) are important components of the atmosphere due to their contribution to atmospheric chemistry and biogeochemical cycles. In this study, we report major BVOCs, e.g. isoprene and total monoterpene flux measurements with a proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) using the eddy covariance (EC) method at a primary rainforest in eastern Amazonia. We used the measured data to evaluate the MEGAN2.1 model for the emission site.
Karin Kreher, Michel Van Roozendael, Francois Hendrick, Arnoud Apituley, Ermioni Dimitropoulou, Udo Frieß, Andreas Richter, Thomas Wagner, Johannes Lampel, Nader Abuhassan, Li Ang, Monica Anguas, Alkis Bais, Nuria Benavent, Tim Bösch, Kristof Bognar, Alexander Borovski, Ilya Bruchkouski, Alexander Cede, Ka Lok Chan, Sebastian Donner, Theano Drosoglou, Caroline Fayt, Henning Finkenzeller, David Garcia-Nieto, Clio Gielen, Laura Gómez-Martín, Nan Hao, Bas Henzing, Jay R. Herman, Christian Hermans, Syedul Hoque, Hitoshi Irie, Junli Jin, Paul Johnston, Junaid Khayyam Butt, Fahim Khokhar, Theodore K. Koenig, Jonas Kuhn, Vinod Kumar, Cheng Liu, Jianzhong Ma, Alexis Merlaud, Abhishek K. Mishra, Moritz Müller, Monica Navarro-Comas, Mareike Ostendorf, Andrea Pazmino, Enno Peters, Gaia Pinardi, Manuel Pinharanda, Ankie Piters, Ulrich Platt, Oleg Postylyakov, Cristina Prados-Roman, Olga Puentedura, Richard Querel, Alfonso Saiz-Lopez, Anja Schönhardt, Stefan F. Schreier, André Seyler, Vinayak Sinha, Elena Spinei, Kimberly Strong, Frederik Tack, Xin Tian, Martin Tiefengraber, Jan-Lukas Tirpitz, Jeroen van Gent, Rainer Volkamer, Mihalis Vrekoussis, Shanshan Wang, Zhuoru Wang, Mark Wenig, Folkard Wittrock, Pinhua H. Xie, Jin Xu, Margarita Yela, Chengxin Zhang, and Xiaoyi Zhao
Atmos. Meas. Tech., 13, 2169–2208, https://doi.org/10.5194/amt-13-2169-2020, https://doi.org/10.5194/amt-13-2169-2020, 2020
Short summary
Short summary
In September 2016, 36 spectrometers from 24 institutes measured a number of key atmospheric pollutants during an instrument intercomparison campaign (CINDI-2) at Cabauw, the Netherlands. Here we report on the outcome of this intercomparison exercise. The three major goals were to characterise the differences between the participating instruments, to define a robust methodology for performance assessment, and to contribute to the harmonisation of the measurement settings and retrieval methods.
August Andersson, Elena N. Kirillova, Stefano Decesari, Langley DeWitt, Jimmy Gasore, Katherine E. Potter, Ronald G. Prinn, Maheswar Rupakheti, Jean de Dieu Ndikubwimana, Julius Nkusi, and Bonfils Safari
Atmos. Chem. Phys., 20, 4561–4573, https://doi.org/10.5194/acp-20-4561-2020, https://doi.org/10.5194/acp-20-4561-2020, 2020
Short summary
Short summary
Large-scale biomass burning events seasonally cover sub-Saharan Africa with air particles. In this study, we find that the concentrations of these particles at a remote mountain site in Rwanda may increase by a factor of 10 during such dry biomass burning periods, with strong implications for the regional climate and human health. These results provide quantitative constraints that could contribute to reducing the large uncertainties regarding the environmental impact of these fires.
Md. Robiul Islam, Thilina Jayarathne, Isobel J. Simpson, Benjamin Werden, John Maben, Ashley Gilbert, Puppala S. Praveen, Sagar Adhikari, Arnico K. Panday, Maheswar Rupakheti, Donald R. Blake, Robert J. Yokelson, Peter F. DeCarlo, William C. Keene, and Elizabeth A. Stone
Atmos. Chem. Phys., 20, 2927–2951, https://doi.org/10.5194/acp-20-2927-2020, https://doi.org/10.5194/acp-20-2927-2020, 2020
Short summary
Short summary
The Kathmandu Valley experiences high levels of air pollution. In this study, atmospheric gases and particulate matter were characterized by online and off-line measurements, with an emphasis on understanding their sources. The major sources of particulate matter and trace gases were identified as garbage burning, biomass burning, and vehicles. The majority of secondary organic aerosol was attributed to anthropogenic precursors, while a minority was attributed to biogenic gases.
Lejish Vettikkat, Vinayak Sinha, Savita Datta, Ashish Kumar, Haseeb Hakkim, Priya Yadav, and Baerbel Sinha
Atmos. Chem. Phys., 20, 375–389, https://doi.org/10.5194/acp-20-375-2020, https://doi.org/10.5194/acp-20-375-2020, 2020
Short summary
Short summary
There are several widely grown tree species whose BVOC emission potentials are still unknown. Studies over the Amazon rainforest have reported presence of terrestrial dimethyl sulfide sources. Here, we show that mahogany, which is grown widely in several regions of the world, is a high emitter of dimethyl sulfide and monoterpenes. With future land use and land cover changes promoting plantations of this tree for economic purposes, its impact on air quality could be quite significant.
Pallavi, Baerbel Sinha, and Vinayak Sinha
Atmos. Chem. Phys., 19, 15467–15482, https://doi.org/10.5194/acp-19-15467-2019, https://doi.org/10.5194/acp-19-15467-2019, 2019
Short summary
Short summary
This study provides quantitative information regarding the source contributions of the major non-methane volatile organic compound sources in Mohali in the northwestern Indo-Gangetic Plain. Combining in situ data and model analyses, we show that residential biofuel use and waste disposal emissions as well as the VOC burden associated with solvent use and industrial sources are overestimated by all emission inventories.
Pankaj Sadavarte, Maheswar Rupakheti, Prakash Bhave, Kiran Shakya, and Mark Lawrence
Atmos. Chem. Phys., 19, 12953–12973, https://doi.org/10.5194/acp-19-12953-2019, https://doi.org/10.5194/acp-19-12953-2019, 2019
Short summary
Short summary
Emission inventory studies are an important regulatory tool for quantifying the amount of pollutants released in the atmosphere using the fuel consumption and emission rates for different fuels. This study developed an emission inventory over Nepal for 2001–2016 that reveals the changing fuel consumption and subsequently the pollution across different sectors of industrial, transport, agricultural, commercial and residential uses with the use of spatial distribution of anthropogenic activities.
Min Zhong, Eri Saikawa, Alexander Avramov, Chen Chen, Boya Sun, Wenlu Ye, William C. Keene, Robert J. Yokelson, Thilina Jayarathne, Elizabeth A. Stone, Maheswar Rupakheti, and Arnico K. Panday
Atmos. Chem. Phys., 19, 8209–8228, https://doi.org/10.5194/acp-19-8209-2019, https://doi.org/10.5194/acp-19-8209-2019, 2019
Short summary
Short summary
Air pollution is one of the most pressing environmental issues in the Kathmandu Valley, the capital city of Nepal. We estimated emissions from two of the major source types in the valley (vehicles and brick kilns) and found that they have significant impacts on air quality surrounding the valley. Our results highlight the importance of improving local emissions estimates for air quality modeling.
Xin Wan, Shichang Kang, Maheswar Rupakheti, Qianggong Zhang, Lekhendra Tripathee, Junming Guo, Pengfei Chen, Dipesh Rupakheti, Arnico K. Panday, Mark G. Lawrence, Kimitaka Kawamura, and Zhiyuan Cong
Atmos. Chem. Phys., 19, 2725–2747, https://doi.org/10.5194/acp-19-2725-2019, https://doi.org/10.5194/acp-19-2725-2019, 2019
Short summary
Short summary
The sources of primary and secondary aerosols in the Hindu Kush–Himalayan–Tibetan Plateau region are not well known. Organic molecular tracers are useful for aerosol source apportionment. The characterization of molecular tracers were first systemically investigated and the contribution from primary and secondary sources to carbonaceous aerosols was estimated in the Kathmandu Valley. Our results demonstrate that biomass burning contributed a significant fraction to OC in the Kathmandu Valley.
H. Langley DeWitt, Jimmy Gasore, Maheswar Rupakheti, Katherine E. Potter, Ronald G. Prinn, Jean de Dieu Ndikubwimana, Julius Nkusi, and Bonfils Safari
Atmos. Chem. Phys., 19, 2063–2078, https://doi.org/10.5194/acp-19-2063-2019, https://doi.org/10.5194/acp-19-2063-2019, 2019
Short summary
Short summary
Air quality in rapidly developing East Africa is a growing but understudied concern. We analyzed long-term black carbon, carbon monoxide, and ozone measurements from the remote Rwanda Climate Observatory and found that seasonal regional biomass burning raised black carbon levels to above-urban concentrations 6 months out of the year. Additional local pollution could exacerbate this issue. More regional monitoring needs to be done to understand and reduce air pollution in this region.
Ashish Singh, Khadak S. Mahata, Maheswar Rupakheti, Wolfgang Junkermann, Arnico K. Panday, and Mark G. Lawrence
Atmos. Chem. Phys., 19, 245–258, https://doi.org/10.5194/acp-19-245-2019, https://doi.org/10.5194/acp-19-245-2019, 2019
Short summary
Short summary
This paper reports the first airborne measurement campaign in the central Himalayan foothill region, one of the polluted but relatively poorly sampled regions of the world. The measurement campaign quantifies the vertical distribution of aerosols over a polluted mountain valley in the Himalayan foothills and investigates the extent of regional emission transport.
J. Douglas Goetz, Michael R. Giordano, Chelsea E. Stockwell, Ted J. Christian, Rashmi Maharjan, Sagar Adhikari, Prakash V. Bhave, Puppala S. Praveen, Arnico K. Panday, Thilina Jayarathne, Elizabeth A. Stone, Robert J. Yokelson, and Peter F. DeCarlo
Atmos. Chem. Phys., 18, 14653–14679, https://doi.org/10.5194/acp-18-14653-2018, https://doi.org/10.5194/acp-18-14653-2018, 2018
Short summary
Short summary
Size distributions and emission factors of submicron aerosol were quantified using online techniques for a variety of common but under-sampled combustion sources in South Asia: wood and dung cooking fires, groundwater pumps, brick kilns, trash burning, and open burning of crop residues. Optical properties (brown carbon light absorption and the absorption Ångström exponent, AAE) of the emissions were also investigated. Contextual comparisons to the literature and other NAMaSTE results were made.
Khadak Singh Mahata, Maheswar Rupakheti, Arnico Kumar Panday, Piyush Bhardwaj, Manish Naja, Ashish Singh, Andrea Mues, Paolo Cristofanelli, Deepak Pudasainee, Paolo Bonasoni, and Mark G. Lawrence
Atmos. Chem. Phys., 18, 14113–14132, https://doi.org/10.5194/acp-18-14113-2018, https://doi.org/10.5194/acp-18-14113-2018, 2018
Short summary
Short summary
This paper presents the first-time simultaneous measurement of CO and O3 at multiple sites in the Kathmandu Valley bottom, its mountain rim and a river outlet, providing their spatial, temporal and seasonal–diurnal variations. Our study reveals that high O3, especially during premonsoon, in observed sites is of high concern for human health and ecosystems in the region. We also estimated CO emission flux to be 2–14 times higher than widely used emission databases (EDGAR HTAP, REAS and INTEX-B).
Piyush Bhardwaj, Manish Naja, Maheswar Rupakheti, Aurelia Lupascu, Andrea Mues, Arnico Kumar Panday, Rajesh Kumar, Khadak Singh Mahata, Shyam Lal, Harish C. Chandola, and Mark G. Lawrence
Atmos. Chem. Phys., 18, 11949–11971, https://doi.org/10.5194/acp-18-11949-2018, https://doi.org/10.5194/acp-18-11949-2018, 2018
Short summary
Short summary
This study provides information about the regional variabilities in some of the pollutants using observations in Nepal and India. It is shown that agricultural crop residue burning leads to a significant enhancement in ozone and CO over a wider region. Further, the wintertime higher ozone levels are shown to be largely due to local emissions, while regional transport could be important in spring and hence shows the role of regional sources versus local sources in the Kathmandu Valley.
Erika von Schneidemesser, Boris Bonn, Tim M. Butler, Christian Ehlers, Holger Gerwig, Hannele Hakola, Heidi Hellén, Andreas Kerschbaumer, Dieter Klemp, Claudia Kofahl, Jürgen Kura, Anja Lüdecke, Rainer Nothard, Axel Pietsch, Jörn Quedenau, Klaus Schäfer, James J. Schauer, Ashish Singh, Ana-Maria Villalobos, Matthias Wiegner, and Mark G. Lawrence
Atmos. Chem. Phys., 18, 8621–8645, https://doi.org/10.5194/acp-18-8621-2018, https://doi.org/10.5194/acp-18-8621-2018, 2018
Short summary
Short summary
This paper provides an overview of the measurements done at an urban background site in Berlin from June-August of 2014. Results show that natural source contributions to ozone and particulate matter (PM) air pollutants are substantial. Large contributions of secondary aerosols formed in the atmosphere to PM10 concentrations were quantified. An analysis of the sources also identified contributions to PM from plant-based sources, vehicles, and a small contribution from wood burning.
Andrea Mues, Axel Lauer, Aurelia Lupascu, Maheswar Rupakheti, Friderike Kuik, and Mark G. Lawrence
Geosci. Model Dev., 11, 2067–2091, https://doi.org/10.5194/gmd-11-2067-2018, https://doi.org/10.5194/gmd-11-2067-2018, 2018
D. Rupakheti, S. Kang, Z. Cong, M. Rupakheti, L. Tripathee, A. K. Panday, and B. Holben
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 1493–1497, https://doi.org/10.5194/isprs-archives-XLII-3-1493-2018, https://doi.org/10.5194/isprs-archives-XLII-3-1493-2018, 2018
Thilina Jayarathne, Chelsea E. Stockwell, Prakash V. Bhave, Puppala S. Praveen, Chathurika M. Rathnayake, Md. Robiul Islam, Arnico K. Panday, Sagar Adhikari, Rashmi Maharjan, J. Douglas Goetz, Peter F. DeCarlo, Eri Saikawa, Robert J. Yokelson, and Elizabeth A. Stone
Atmos. Chem. Phys., 18, 2259–2286, https://doi.org/10.5194/acp-18-2259-2018, https://doi.org/10.5194/acp-18-2259-2018, 2018
Short summary
Short summary
Emissions of fine particulate matter and its constituents were quantified for a variety of under-sampled combustion sources in South Asia: wood and dung cooking fires, generators, groundwater pumps, brick kilns, trash burning, and open burning of biomasses. Garbage burning and three-stone cooking fires were among the highest emitters, while servicing of motor vehicles significantly reduced PM. These data may be used in source apportionment and to update regional and global emission inventories.
Shradda Dhungel, Bhogendra Kathayat, Khadak Mahata, and Arnico Panday
Atmos. Chem. Phys., 18, 1203–1216, https://doi.org/10.5194/acp-18-1203-2018, https://doi.org/10.5194/acp-18-1203-2018, 2018
Short summary
Short summary
We analyze seasonal and diurnal concentrations of black carbon (BC), ozone, and associated meteorological conditions within a remote trans-Himalayan valley in western Nepal. We observe elevated BC concentrations during non-monsoon seasons, frequent and persistent episodes of higher-than-average concentrations, and net up-valley fluxes throughout the year. The findings provide direct observational evidence of trans-Himalayan valleys serving as vital pollutant transport pathways.
Khadak Singh Mahata, Arnico Kumar Panday, Maheswar Rupakheti, Ashish Singh, Manish Naja, and Mark G. Lawrence
Atmos. Chem. Phys., 17, 12573–12596, https://doi.org/10.5194/acp-17-12573-2017, https://doi.org/10.5194/acp-17-12573-2017, 2017
Short summary
Short summary
The paper provides an overview of CH4, CO2, and CO mixing ratios, including diurnal and seasonal variation, and discusses the association of potential sources and meteorology with the observed temporal variation in the Kathmandu Valley. The study will provide an important dataset for a poorly studied region and will be useful for validating estimates from emission inventories, regional models, and satellite observations and assisting in the design of mitigation measures in the region.
Chaeyoon Cho, Sang-Woo Kim, Maheswar Rupakheti, Jin-Soo Park, Arnico Panday, Soon-Chang Yoon, Ji-Hyoung Kim, Hyunjae Kim, Haeun Jeon, Minyoung Sung, Bong Mann Kim, Seungkyu K. Hong, Rokjin J. Park, Dipesh Rupakheti, Khadak Singh Mahata, Puppala Siva Praveen, Mark G. Lawrence, and Brent Holben
Atmos. Chem. Phys., 17, 12617–12632, https://doi.org/10.5194/acp-17-12617-2017, https://doi.org/10.5194/acp-17-12617-2017, 2017
Short summary
Short summary
We investigated the optical and chemical properties and direct radiative effects of aerosols in the Kathmandu Valley. We concluded that the ratio of light-absorbing to scattering aerosols as well as the concentration of light-absorbing aerosols is much higher at Kathmandu than other comparable regions, and it contributes to a great atmospheric absorption efficiency. This study provides unprecedented insights into aerosol optical properties and their radiative forcings in the Kathmandu Valley.
Xiufeng Yin, Shichang Kang, Benjamin de Foy, Zhiyuan Cong, Jiali Luo, Lang Zhang, Yaoming Ma, Guoshuai Zhang, Dipesh Rupakheti, and Qianggong Zhang
Atmos. Chem. Phys., 17, 11293–11311, https://doi.org/10.5194/acp-17-11293-2017, https://doi.org/10.5194/acp-17-11293-2017, 2017
Short summary
Short summary
We presented 5-year surface ozone measurements at Nam Co in the inland Tibetan Plateau and made a synthesis comparison of diurnal and seasonal patterns on regional and hemispheric scales. Surface ozone at Nam Co is mainly dominated by natural processes and is less influenced by stratospheric intrusions and human activities than on the rim of the Tibetan Plateau. Ozone at Nam Co is representative of background that is valuable for studying ozone-related effects on large scales.
Dipesh Rupakheti, Bhupesh Adhikary, Puppala Siva Praveen, Maheswar Rupakheti, Shichang Kang, Khadak Singh Mahata, Manish Naja, Qianggong Zhang, Arnico Kumar Panday, and Mark G. Lawrence
Atmos. Chem. Phys., 17, 11041–11063, https://doi.org/10.5194/acp-17-11041-2017, https://doi.org/10.5194/acp-17-11041-2017, 2017
Short summary
Short summary
For the first time, atmospheric composition was monitored during pre-monsoon season of 2013 at Lumbini (UNESCO world heritage site as birthplace of the Buddha). PM and O3 frequently exceeded WHO guidelines. Pollution concentration, diurnal characteristics and influence of open burning on air quality in Lumbini were investigated. Potential source regions were also identified. Results show that air pollution at this site is of a great concern, requiring prompt attention for mitigation.
Heiko Bozem, Tim M. Butler, Mark G. Lawrence, Hartwig Harder, Monica Martinez, Dagmar Kubistin, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 17, 10565–10582, https://doi.org/10.5194/acp-17-10565-2017, https://doi.org/10.5194/acp-17-10565-2017, 2017
Short summary
Short summary
We present airborne measurements and model simulations in the tropics and mid-latitudes during GABRIEL and HOOVER, respectively. Based only on in situ data net ozone formation/destruction tendencies (NOPR) are calculated and compared to a 3-D chemistry transport model. The NOPR is positive in the continental boundary layer and the upper troposphere above 6 km. In the marine boundary layer and the middle troposphere ozone destruction prevails. Fresh convection shows strong net ozone formation.
Xin Wan, Shichang Kang, Quanlian Li, Dipesh Rupakheti, Qianggong Zhang, Junming Guo, Pengfei Chen, Lekhendra Tripathee, Maheswar Rupakheti, Arnico K. Panday, Wu Wang, Kimitaka Kawamura, Shaopeng Gao, Guangming Wu, and Zhiyuan Cong
Atmos. Chem. Phys., 17, 8867–8885, https://doi.org/10.5194/acp-17-8867-2017, https://doi.org/10.5194/acp-17-8867-2017, 2017
Short summary
Short summary
Biomass burning (BB) tracers in the aerosols in Lumbini, northern IGP, were studied for the first time. The levoglucosan was the predominant tracer and BB significantly contributed to the air quality in Lumbini. Mixed crop residues and hardwood were main burning materials. BB emissions constituted large fraction of OC, especially during the post-monsoon season. The sources of BB aerosols in Lumbini varies seasonally due to the influence of local emissions and long-range transport.
Andrea Mues, Maheswar Rupakheti, Christoph Münkel, Axel Lauer, Heiko Bozem, Peter Hoor, Tim Butler, and Mark G. Lawrence
Atmos. Chem. Phys., 17, 8157–8176, https://doi.org/10.5194/acp-17-8157-2017, https://doi.org/10.5194/acp-17-8157-2017, 2017
Short summary
Short summary
Ceilometer measurements taken in the Kathmandu Valley, Nepal, were used to study the temporal and spatial evolution of the mixing layer height in the valley. This provides important information on the vertical structure of the atmosphere and can thus also help to understand the mixing of air pollutants (e.g. black carbon) in the valley. The seasonal and diurnal cycles of the mixing layer were found to be highly dependent on meteorology and mainly anticorrelated to black carbon concentrations.
Chinmoy Sarkar, Vinayak Sinha, Baerbel Sinha, Arnico K. Panday, Maheswar Rupakheti, and Mark G. Lawrence
Atmos. Chem. Phys., 17, 8129–8156, https://doi.org/10.5194/acp-17-8129-2017, https://doi.org/10.5194/acp-17-8129-2017, 2017
Short summary
Short summary
This study provides quantitative information regarding the source contributions of the major non-methane volatile organic compound sources in the Kathmandu Valley. Combining high-resolution in situ NMVOC data and model analyses, we show that REAS v2.1 and EDGAR v4.2 emission inventories underestimate the contribution of traffic and do not take the contribution of brick kilns into account. Furthermore, REAS v2.1 overestimates the contribution of residential biofuel use and industries.
Anna Novelli, Korbinian Hens, Cheryl Tatum Ernest, Monica Martinez, Anke C. Nölscher, Vinayak Sinha, Pauli Paasonen, Tuukka Petäjä, Mikko Sipilä, Thomas Elste, Christian Plass-Dülmer, Gavin J. Phillips, Dagmar Kubistin, Jonathan Williams, Luc Vereecken, Jos Lelieveld, and Hartwig Harder
Atmos. Chem. Phys., 17, 7807–7826, https://doi.org/10.5194/acp-17-7807-2017, https://doi.org/10.5194/acp-17-7807-2017, 2017
Short summary
Short summary
The ambient concentration of stabilised Criegee intermediates (SCIs) was estimated for two
environments using field data. The low concentrations predicted indicate that SCIs are
unlikely to have a large impact on atmospheric chemistry. Concurrent measurements of an OH background signal using the Mainz IPI-LIF-FAGE instrument were found to be consistent with the chemistry of SCIs during the measurement campaigns.
Kabindra M. Shakya, Maheswar Rupakheti, Anima Shahi, Rejina Maskey, Bidya Pradhan, Arnico Panday, Siva P. Puppala, Mark Lawrence, and Richard E. Peltier
Atmos. Chem. Phys., 17, 6503–6516, https://doi.org/10.5194/acp-17-6503-2017, https://doi.org/10.5194/acp-17-6503-2017, 2017
Short summary
Short summary
Particulate matter levels were monitored at six major roadway intersections in the Kathmandu Valley during two seasons in 2014. The study documented distinct seasonal (dry season versus wet season) and diel variations in particulate matter levels. This study suggests traffic-related emissions, and soil–dust–construction materials were found to be a major source of particulate matter at these locations.
Sujan Shrestha, Siva Praveen Puppala, Bhupesh Adhikary, Kundan Lal Shrestha, and Arnico K. Panday
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-287, https://doi.org/10.5194/acp-2017-287, 2017
Revised manuscript not accepted
Chelsea E. Stockwell, Ted J. Christian, J. Douglas Goetz, Thilina Jayarathne, Prakash V. Bhave, Puppala S. Praveen, Sagar Adhikari, Rashmi Maharjan, Peter F. DeCarlo, Elizabeth A. Stone, Eri Saikawa, Donald R. Blake, Isobel J. Simpson, Robert J. Yokelson, and Arnico K. Panday
Atmos. Chem. Phys., 16, 11043–11081, https://doi.org/10.5194/acp-16-11043-2016, https://doi.org/10.5194/acp-16-11043-2016, 2016
Short summary
Short summary
We present the first, or rare, field measurements in South Asia of emission factors for up to 80 gases (pollutants, greenhouse gases, and precursors) and black carbon and aerosol optical properties at 405 and 870 nm for many previously under-sampled sources that are important in developing countries such as cooking with dung and wood, garbage and crop residue burning, brick kilns, motorcycles, generators and pumps, etc. Brown carbon contributes significantly to total aerosol absorption.
Boris Bonn, Erika von Schneidemesser, Dorota Andrich, Jörn Quedenau, Holger Gerwig, Anja Lüdecke, Jürgen Kura, Axel Pietsch, Christian Ehlers, Dieter Klemp, Claudia Kofahl, Rainer Nothard, Andreas Kerschbaumer, Wolfgang Junkermann, Rüdiger Grote, Tobias Pohl, Konradin Weber, Birgit Lode, Philipp Schönberger, Galina Churkina, Tim M. Butler, and Mark G. Lawrence
Atmos. Chem. Phys., 16, 7785–7811, https://doi.org/10.5194/acp-16-7785-2016, https://doi.org/10.5194/acp-16-7785-2016, 2016
Short summary
Short summary
The distribution of air pollutants (gases and particles) have been investigated in different environments in Potsdam, Germany. Remarkable variations of the pollutants have been observed for distances of tens of meters by bicycles, vans and aircraft. Vegetated areas caused reductions depending on the pollutants, the vegetation type and dimensions. Our measurements show the pollutants to be of predominantly local origin, resulting in a huge challenge for common models to resolve.
Marje Prank, Mikhail Sofiev, Svetlana Tsyro, Carlijn Hendriks, Valiyaveetil Semeena, Xavier Vazhappilly Francis, Tim Butler, Hugo Denier van der Gon, Rainer Friedrich, Johannes Hendricks, Xin Kong, Mark Lawrence, Mattia Righi, Zissis Samaras, Robert Sausen, Jaakko Kukkonen, and Ranjeet Sokhi
Atmos. Chem. Phys., 16, 6041–6070, https://doi.org/10.5194/acp-16-6041-2016, https://doi.org/10.5194/acp-16-6041-2016, 2016
Short summary
Short summary
Aerosol composition in Europe was simulated by four chemistry transport models and compared to observations to identify the most prominent areas for model improvement. Notable differences were found between the models' predictions, attributable to different treatment or omission of aerosol sources and processes. All models underestimated the observed concentrations by 10–60 %, mostly due to under-predicting the carbonaceous and mineral particles and omitting the aerosol-bound water.
Peng Fei Chen, Chao Liu Li, Shi Chang Kang, Maheswar Rupakheti, Arnico K. Panday, Fang Ping Yan, Quan Lian Li, Qiang Gong Zhang, Jun Ming Guo, Dipesh Rupakheti, and Wei Luo
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-71, https://doi.org/10.5194/acp-2016-71, 2016
Revised manuscript not accepted
Short summary
Short summary
PAHs were measured at six sites along two south-north transects across the central Himalayas. The annual average PAHs and their dry deposition fluxes decreased noticeably from the south to north sides, however, a similar compostion pattern was found at three remote sites, suggesting the northern slope of the Himalayas may be affected by anthropogenic emissions form Indo-Gangetic Plain. PAHs showed a clear seasonal variation at Nepal and they were mainly form biomass and fossil combustion .
E. W. Butt, A. Rap, A. Schmidt, C. E. Scott, K. J. Pringle, C. L. Reddington, N. A. D. Richards, M. T. Woodhouse, J. Ramirez-Villegas, H. Yang, V. Vakkari, E. A. Stone, M. Rupakheti, P. S. Praveen, P. G. van Zyl, J. P. Beukes, M. Josipovic, E. J. S. Mitchell, S. M. Sallu, P. M. Forster, and D. V. Spracklen
Atmos. Chem. Phys., 16, 873–905, https://doi.org/10.5194/acp-16-873-2016, https://doi.org/10.5194/acp-16-873-2016, 2016
Short summary
Short summary
We estimate the impact of residential emissions (cooking and heating) on atmospheric aerosol, human health, and climate. We find large contributions to annual mean ambient PM2.5 in residential sources regions resulting in significant but uncertain global premature mortality when key uncertainties in emission flux are considered. We show that residential emissions exert an uncertain global radiative effect and suggest more work is needed to characterise residential emissions climate importance.
D. Putero, P. Cristofanelli, A. Marinoni, B. Adhikary, R. Duchi, S. D. Shrestha, G. P. Verza, T. C. Landi, F. Calzolari, M. Busetto, G. Agrillo, F. Biancofiore, P. Di Carlo, A. K. Panday, M. Rupakheti, and P. Bonasoni
Atmos. Chem. Phys., 15, 13957–13971, https://doi.org/10.5194/acp-15-13957-2015, https://doi.org/10.5194/acp-15-13957-2015, 2015
Short summary
Short summary
The aim of this paper is to present a full-year analysis of simultaneous measurements of ozone, black carbon, and aerosol number concentration at Paknajol, in the Kathmandu Valley, one of the global “hot spots” in terms of air pollution. Results indicate persisting poor air quality conditions throughout the measurement period, and suggest that the pollutants' variability is mainly driven by local pollution source activity, local- and large-scale dynamics, photochemistry, and vegetation fires.
B. Kravitz, A. Robock, S. Tilmes, O. Boucher, J. M. English, P. J. Irvine, A. Jones, M. G. Lawrence, M. MacCracken, H. Muri, J. C. Moore, U. Niemeier, S. J. Phipps, J. Sillmann, T. Storelvmo, H. Wang, and S. Watanabe
Geosci. Model Dev., 8, 3379–3392, https://doi.org/10.5194/gmd-8-3379-2015, https://doi.org/10.5194/gmd-8-3379-2015, 2015
R. F. Hansen, M. Blocquet, C. Schoemaecker, T. Léonardis, N. Locoge, C. Fittschen, B. Hanoune, P. S. Stevens, V. Sinha, and S. Dusanter
Atmos. Meas. Tech., 8, 4243–4264, https://doi.org/10.5194/amt-8-4243-2015, https://doi.org/10.5194/amt-8-4243-2015, 2015
Short summary
Short summary
This paper describes and presents results from a intercomparison, in an environment rich in NOx (i.e., NO+NO2), of two OH reactivity instruments: one based on the comparative reactivity method, and one based on the pump-probe method. Co-located measurements were made of both ambient air and standard mixtures. Ambient OH reactivity values measured by both instruments were found to be in good agreement for ambient NOx mixing ratios as high as 100 ppbv.
N. Zannoni, S. Dusanter, V. Gros, R. Sarda Esteve, V. Michoud, V. Sinha, N. Locoge, and B. Bonsang
Atmos. Meas. Tech., 8, 3851–3865, https://doi.org/10.5194/amt-8-3851-2015, https://doi.org/10.5194/amt-8-3851-2015, 2015
Short summary
Short summary
Our manuscript shows results of an intercomparison exercise conducted on two home-built comparative reactivity method (CRM) instruments operating under the same settings for measuring total OH reactivity. Despite the corrections of the raw data sets for instrumental artifacts having different weights on the two CRMs, we found very consistent results for the final processed data of ambient OH reactivity. Furthermore, we present in detail how to validate the instruments and process the raw data.
B. Sinha, K. Singh Sangwan, Y. Maurya, V. Kumar, C. Sarkar, B. P. Chandra, and V. Sinha
Atmos. Chem. Phys., 15, 9555–9576, https://doi.org/10.5194/acp-15-9555-2015, https://doi.org/10.5194/acp-15-9555-2015, 2015
Short summary
Short summary
We use ozone measurements at a suburban site in Punjab to estimate ozone-related crop yield losses for wheat, rice, cotton and maize in Punjab and Haryana for the years 2011-2013. Crop production losses amount to 10.3-20.8 Mt yr-1 for wheat and 3.2-5.4 Mt yr-1 for rice, enough to feed 225-437 million of India’s poor. The lower limit for the ozone-related economic losses is 3.7-6.5 billion USD (Punjab and Haryana), while the upper limit amounts to 3.5-20% of Indian GDP (all of India).
M. Beekmann, A. S. H. Prévôt, F. Drewnick, J. Sciare, S. N. Pandis, H. A. C. Denier van der Gon, M. Crippa, F. Freutel, L. Poulain, V. Ghersi, E. Rodriguez, S. Beirle, P. Zotter, S.-L. von der Weiden-Reinmüller, M. Bressi, C. Fountoukis, H. Petetin, S. Szidat, J. Schneider, A. Rosso, I. El Haddad, A. Megaritis, Q. J. Zhang, V. Michoud, J. G. Slowik, S. Moukhtar, P. Kolmonen, A. Stohl, S. Eckhardt, A. Borbon, V. Gros, N. Marchand, J. L. Jaffrezo, A. Schwarzenboeck, A. Colomb, A. Wiedensohler, S. Borrmann, M. Lawrence, A. Baklanov, and U. Baltensperger
Atmos. Chem. Phys., 15, 9577–9591, https://doi.org/10.5194/acp-15-9577-2015, https://doi.org/10.5194/acp-15-9577-2015, 2015
Short summary
Short summary
A detailed characterization of air quality in the Paris (France) agglomeration, a megacity, during two summer and winter intensive campaigns and from additional 1-year observations, revealed that about 70% of the fine particulate matter (PM) at urban background is transported into the megacity from upwind regions. Unexpectedly, a major part of organic PM is of modern origin (woodburning and cooking activities, secondary formation from biogenic VOC).
H. Pawar, S. Garg, V. Kumar, H. Sachan, R. Arya, C. Sarkar, B. P. Chandra, and B. Sinha
Atmos. Chem. Phys., 15, 9501–9520, https://doi.org/10.5194/acp-15-9501-2015, https://doi.org/10.5194/acp-15-9501-2015, 2015
Short summary
Short summary
We quantify the contribution of long-range transport to PM levels in the NW-IGP through back-trajectory climatology analysis. Transport from the west significantly enhanced coarse- and fine-mode PM mass loadings during all seasons. Local pollution episodes enhanced coarse-mode PM only during winter and fine-mode PM during winter and summer seasons. South-easterly air masses (source region: SE-IGP) were associated with significantly lower fine- and coarse-mode PM mass loadings during all seasons.
Z. L. Lüthi, B. Škerlak, S.-W. Kim, A. Lauer, A. Mues, M. Rupakheti, and S. Kang
Atmos. Chem. Phys., 15, 6007–6021, https://doi.org/10.5194/acp-15-6007-2015, https://doi.org/10.5194/acp-15-6007-2015, 2015
Short summary
Short summary
The Himalayas and the Tibetan Plateau region (HTP) is regularly exposed to polluted air masses that might influence glaciers as well as climate on regional to global scales. We found that atmospheric brown clouds from South Asia reach the HTP by crossing the Himalayas not only through the major north--south river valleys but rather over large areas by being lifted and advected at mid-troposheric levels. The transport is enabled by a combination of synoptic and local meteorological settings.
L. Drinovec, G. Močnik, P. Zotter, A. S. H. Prévôt, C. Ruckstuhl, E. Coz, M. Rupakheti, J. Sciare, T. Müller, A. Wiedensohler, and A. D. A. Hansen
Atmos. Meas. Tech., 8, 1965–1979, https://doi.org/10.5194/amt-8-1965-2015, https://doi.org/10.5194/amt-8-1965-2015, 2015
Short summary
Short summary
We present a new real-time algorithm for compensation of the filter-loading effect in filter photometers, based on a two parallel spot measurement of optical absorption. This algorithm has been incorporated into the new Aethalometer AE33. Intercomparison studies show excellent reproducibility of the AE33 measurements and very good agreement with post-processed data obtained using earlier aethalometer models and other filter-based absorption photometers.
V. Sinha, V. Kumar, and C. Sarkar
Atmos. Chem. Phys., 14, 5921–5941, https://doi.org/10.5194/acp-14-5921-2014, https://doi.org/10.5194/acp-14-5921-2014, 2014
J. A. Adame, M. Martínez, M. Sorribas, P. J. Hidalgo, H. Harder, J.-M. Diesch, F. Drewnick, W. Song, J. Williams, V. Sinha, M. A. Hernández-Ceballos, J. Vilà-Guerau de Arellano, R. Sander, Z. Hosaynali-Beygi, H. Fischer, J. Lelieveld, and B. De la Morena
Atmos. Chem. Phys., 14, 2325–2342, https://doi.org/10.5194/acp-14-2325-2014, https://doi.org/10.5194/acp-14-2325-2014, 2014
C. Liu, S. Beirle, T. Butler, P. Hoor, C. Frankenberg, P. Jöckel, M. Penning de Vries, U. Platt, A. Pozzer, M. G. Lawrence, J. Lelieveld, H. Tost, and T. Wagner
Atmos. Chem. Phys., 14, 1717–1732, https://doi.org/10.5194/acp-14-1717-2014, https://doi.org/10.5194/acp-14-1717-2014, 2014
Z. S. Stock, M. R. Russo, T. M. Butler, A. T. Archibald, M. G. Lawrence, P. J. Telford, N. L. Abraham, and J. A. Pyle
Atmos. Chem. Phys., 13, 12215–12231, https://doi.org/10.5194/acp-13-12215-2013, https://doi.org/10.5194/acp-13-12215-2013, 2013
M. D. Andrés-Hernández, D. Kartal, J. N. Crowley, V. Sinha, E. Regelin, M. Martínez-Harder, V. Nenakhov, J. Williams, H. Harder, H. Bozem, W. Song, J. Thieser, M. J. Tang, Z. Hosaynali Beigi, and J. P. Burrows
Atmos. Chem. Phys., 13, 5731–5749, https://doi.org/10.5194/acp-13-5731-2013, https://doi.org/10.5194/acp-13-5731-2013, 2013
S. M. Burrows, P. J. Rayner, T. Butler, and M. G. Lawrence
Atmos. Chem. Phys., 13, 5473–5488, https://doi.org/10.5194/acp-13-5473-2013, https://doi.org/10.5194/acp-13-5473-2013, 2013
D. Kunkel, H. Tost, and M. G. Lawrence
Atmos. Chem. Phys., 13, 4203–4222, https://doi.org/10.5194/acp-13-4203-2013, https://doi.org/10.5194/acp-13-4203-2013, 2013
J. Lelieveld, M. G. Lawrence, and D. Kunkel
Atmos. Chem. Phys., 13, 31–34, https://doi.org/10.5194/acp-13-31-2013, https://doi.org/10.5194/acp-13-31-2013, 2013
A. C. Nölscher, V. Sinha, S. Bockisch, T. Klüpfel, and J. Williams
Atmos. Meas. Tech., 5, 2981–2992, https://doi.org/10.5194/amt-5-2981-2012, https://doi.org/10.5194/amt-5-2981-2012, 2012
Related subject area
Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Molecular and seasonal characteristics of organic vapors in urban Beijing: insights from Vocus-PTR measurements
The variations in volatile organic compounds based on the policy change for Omicron in the traffic hub of Zhengzhou
On the dynamics of ozone depletion events at Villum Research Station in the High Arctic
Measurement report: Long-term measurements of surface ozone and trends in semi-natural sub-Saharan African ecosystems
Characterization of biogenic volatile organic compounds and their oxidation products in a stressed spruce-dominated forest close to a biogas power plant
Reactive chlorine-, sulfur-, and nitrogen-containing volatile organic compounds impact atmospheric chemistry in the megacity of Delhi during both clean and extremely polluted seasons
Analysis of the day-to-day variability of ozone vertical profiles in the lower troposphere during the 2022 Paris ACROSS campaign
Ozone deposition measurements over wheat fields in the North China Plain: variability and related factors of deposition flux and velocity
Consistency evaluation of tropospheric ozone from ozonesonde and IAGOS (In-service Aircraft for a Global Observing System) observations: vertical distribution, ozonesonde types, and station–airport distance
CO2 and CO temporal variability over Mexico City from ground-based total column and surface measurements
Investigating carbonyl compounds above the Amazon rainforest using a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) with NO+ chemical ionization
Measurement report: In-flight and ground-based measurements of nitrogen oxide emissions from latest-generation jet engines and 100 % sustainable aviation fuel
Measurement report: Sources, sinks, and lifetime of NOx in a suburban temperate forest at night
Measurement report: Urban ammonia and amines in Houston, Texas
Biomass-burning sources control ambient particulate matter, but traffic and industrial sources control volatile organic compound (VOC) emissions and secondary-pollutant formation during extreme pollution events in Delhi
Multi-year observations of variable incomplete combustion in the New York megacity
Observations of the vertical distributions of summertime atmospheric pollutants in Nam Co: OH production and source analysis
Understanding summertime peroxyacetyl nitrate (PAN) formation and its relation to aerosol pollution: Insights from high-resolution measurements and modeling
Measurement report: Elevated atmospheric ammonia may promote particle pH and HONO formation – insights from the COVID-19 pandemic
Measurement report: Vertical and temporal variability in the near-surface ozone production rate and sensitivity in an urban area in the Pearl River Delta region, China
Elevated oxidized mercury in the free troposphere: analytical advances and application at a remote continental mountaintop site
Using observed urban NOx sinks to constrain VOC reactivity and the ozone and radical budget in the Seoul Metropolitan Area
Real-world emission characteristics of VOCs from typical cargo ships and their potential contributions to secondary organic aerosol and O3 under low-sulfur fuel policies
NO3 reactivity during a summer period in a temperate forest below and above the canopy
The role of oceanic ventilation and terrestrial outflow in atmospheric non-methane hydrocarbons over the Chinese marginal seas
Concentration and source changes of nitrous acid (HONO) during the COVID-19 lockdown in Beijing
Characteristics and sources of nonmethane volatile organic compounds (NMVOCs) and O3–NOx–NMVOC relationships in Zhengzhou, China
Seasonal Air Concentration Variability, Gas/Particle Partitioning, Precipitation Scavenging, and Air-Water Equilibrium of Organophosphate Esters in Southern Canada
Exploring the variations in ambient BTEX in urban Europe and its environmental health implications
Measurement report: Surface exchange fluxes of HONO during the growth process of paddy fields in the Huaihe River Basin, China
Cloud processing of DMS oxidation products limits SO2 and OCS production in the Eastern North Atlantic marine boundary layer
Deciphering anthropogenic and biogenic contributions to selected non-methane volatile organic compound emissions in an urban area
Emission characteristics of reactive organic gases (ROGs) from industrial volatile chemical products (VCPs) in the Pearl River Delta (PRD), China
Measurement report: Enhanced photochemical formation of formic and isocyanic acids in urban regions aloft – insights from tower-based online gradient measurements
Sources of organic gases and aerosol particles and their roles in nighttime particle growth at a rural forested site in southwest Germany
Exploring the Crucial Role of Atmospheric Carbonyl Compounds in Regional Ozone heavy Pollution: Insights from Intensive Field Observations and Observation-based modelling in the Chengdu Plain Urban Agglomeration, China
Surface snow bromide and nitrate at Eureka, Canada, in early spring and implications for polar boundary layer chemistry
Opinion: Strengthening research in the Global South – atmospheric science opportunities in South America and Africa
Shipping and algae emissions have a major impact on ambient air mixing ratios of non-methane hydrocarbons (NMHCs) and methanethiol on Utö Island in the Baltic Sea
Contribution of cooking emissions to the urban volatile organic compounds in Las Vegas, NV
Reanalysis of NOAA H2 observations: implications for the H2 budget
A large role of missing volatile organic compound reactivity from anthropogenic emissions in ozone pollution regulation
Diurnal, seasonal, and interannual variations in δ(18O) of atmospheric O2 and its application to evaluate changes in oxygen, carbon, and water cycles
Measurement report: Insights into the chemical composition and origin of molecular clusters and potential precursor molecules present in the free troposphere over the southern Indian Ocean: observations from the Maïdo Observatory (2150 m a.s.l., Réunion)
Production of oxygenated volatile organic compounds from the ozonolysis of coastal seawater
Comment on “Transport of substantial stratospheric ozone to the surface by a dying typhoon and shallow convection” by Chen et al. (2022)
Observations of cyanogen bromide (BrCN) in the global troposphere and their relation to polar surface O3 destruction
Individual coal mine methane emissions constrained by eddy covariance measurements: low bias and missing sources
Measurement report: Observations of ground-level ozone concentration gradients perpendicular to the Lake Ontario shoreline
Measurement report: The Palau Atmospheric Observatory and its ozonesonde record – continuous monitoring of tropospheric composition and dynamics in the tropical western Pacific
Zhaojin An, Rujing Yin, Xinyan Zhao, Xiaoxiao Li, Yuyang Li, Yi Yuan, Junchen Guo, Yiqi Zhao, Xue Li, Dandan Li, Yaowei Li, Dongbin Wang, Chao Yan, Kebin He, Douglas R. Worsnop, Frank N. Keutsch, and Jingkun Jiang
Atmos. Chem. Phys., 24, 13793–13810, https://doi.org/10.5194/acp-24-13793-2024, https://doi.org/10.5194/acp-24-13793-2024, 2024
Short summary
Short summary
Online Vocus-PTR measurements show the compositions and seasonal variations in organic vapors in urban Beijing. With enhanced sensitivity and mass resolution, various species at a level of sub-parts per trillion (ppt) and organics with multiple oxygens (≥ 3) were observed. The fast photooxidation process in summer leads to an increase in both concentration and proportion of organics with multiple oxygens, while, in other seasons, the variations in them could be influenced by mixed sources.
Bowen Zhang, Dong Zhang, Zhe Dong, Xinshuai Song, Ruiqin Zhang, and Xiao Li
Atmos. Chem. Phys., 24, 13587–13601, https://doi.org/10.5194/acp-24-13587-2024, https://doi.org/10.5194/acp-24-13587-2024, 2024
Short summary
Short summary
To gain insight into the impact of changes due to epidemic control policies, we undertook continuous online monitoring of volatile organic compounds (VOCs) at an urban site in Zhengzhou over a 2-month period. This study examines the characteristics of VOCs, their sources, and their temporal evolution. It also assesses the impact of the policy change on VOC pollution during the monitoring period, thus providing a basis for further research on VOC pollution and source control.
Jakob Boyd Pernov, Jens Liengaard Hjorth, Lise Lotte Sørensen, and Henrik Skov
Atmos. Chem. Phys., 24, 13603–13631, https://doi.org/10.5194/acp-24-13603-2024, https://doi.org/10.5194/acp-24-13603-2024, 2024
Short summary
Short summary
Arctic ozone depletion events (ODEs) occur every spring and have vast implications for the oxidizing capacity, radiative balance, and mercury oxidation. In this study, we analyze ozone, ODEs, and their connection to meteorological and air mass history variables through statistical analyses, back trajectories, and machine learning (ML) at Villum Research Station. ODEs are favorable under sunny, calm conditions with air masses arriving from northerly wind directions with sea ice contact.
Hagninou Elagnon Venance Donnou, Aristide Barthélémy Akpo, Money Ossohou, Claire Delon, Véronique Yoboué, Dungall Laouali, Marie Ouafo-Leumbe, Pieter Gideon Van Zyl, Ousmane Ndiaye, Eric Gardrat, Maria Dias-Alves, and Corinne Galy-Lacaux
Atmos. Chem. Phys., 24, 13151–13182, https://doi.org/10.5194/acp-24-13151-2024, https://doi.org/10.5194/acp-24-13151-2024, 2024
Short summary
Short summary
Ozone is a secondary air pollutant that is detrimental to human and plant health. A better understanding of its chemical evolution is a challenge for Africa, where it is still undersampled. Out of 14 sites examined (1995–2020), high levels of O3 are reported in southern Africa. The dominant chemical processes leading to O3 formation are identified. A decrease in O3 is observed at Katibougou (Mali) and Banizoumbou (Niger), and an increase is found at Zoétélé (Cameroon) and Skukuza (South Africa).
Junwei Song, Georgios I. Gkatzelis, Ralf Tillmann, Nicolas Brüggemann, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 24, 13199–13217, https://doi.org/10.5194/acp-24-13199-2024, https://doi.org/10.5194/acp-24-13199-2024, 2024
Short summary
Short summary
Biogenic volatile organic compounds (BVOCs) and organic aerosol (OA) particles were measured online in a stressed spruce-dominated forest. OA was mainly attributed to the monoterpene oxidation products. The mixing ratios of BVOCs were higher than the values previously measured in other temperate forests. The results demonstrate that BVOCs are influenced not only by meteorology and biogenic emissions but also by local anthropogenic emissions and subsequent chemical transformation processes.
Sachin Mishra, Vinayak Sinha, Haseeb Hakkim, Arpit Awasthi, Sachin D. Ghude, Vijay Kumar Soni, Narendra Nigam, Baerbel Sinha, and Madhavan N. Rajeevan
Atmos. Chem. Phys., 24, 13129–13150, https://doi.org/10.5194/acp-24-13129-2024, https://doi.org/10.5194/acp-24-13129-2024, 2024
Short summary
Short summary
We quantified 111 gases using mass spectrometry to understand how seasonal and emission changes lead from clean air in the monsoon season to extremely polluted air in the post-monsoon season in Delhi. Averaged total mass concentrations (260 µg m-3) were > 4 times in polluted periods, driven by biomass burning emissions and reduced atmospheric ventilation. Reactive gaseous nitrogen, chlorine, and sulfur compounds hitherto unreported from such a polluted environment were discovered.
Gérard Ancellet, Camille Viatte, Anne Boynard, François Ravetta, Jacques Pelon, Cristelle Cailteau-Fischbach, Pascal Genau, Julie Capo, Axel Roy, and Philippe Nédélec
Atmos. Chem. Phys., 24, 12963–12983, https://doi.org/10.5194/acp-24-12963-2024, https://doi.org/10.5194/acp-24-12963-2024, 2024
Short summary
Short summary
Characterization of ozone pollution in urban areas benefited from a measurement campaign in summer 2022 in the Paris region. The analysis is based on 21 d of lidar and aircraft observations. The main objective is an analysis of the sensitivity of ozone pollution to the micrometeorological processes in the urban atmospheric boundary layer and the transport of regional pollution. The paper also discusses to what extent satellite observations can track observed ozone plumes.
Xiaoyi Zhang, Wanyun Xu, Weili Lin, Gen Zhang, Jinjian Geng, Li Zhou, Huarong Zhao, Sanxue Ren, Guangsheng Zhou, Jianmin Chen, and Xiaobin Xu
Atmos. Chem. Phys., 24, 12323–12340, https://doi.org/10.5194/acp-24-12323-2024, https://doi.org/10.5194/acp-24-12323-2024, 2024
Short summary
Short summary
Ozone (O3) deposition is a key process that removes surface O3, affecting air quality, ecosystems and climate change. We conducted O3 deposition measurement over a wheat canopy using a newly relaxed eddy accumulation flux system. Large variabilities in O3 deposition were detected, mainly determined by crop growth and modulated by various environmental factors. More O3 deposition observations over different surfaces are needed for exploring deposition mechanisms and model optimization.
Honglei Wang, David W. Tarasick, Jane Liu, Herman G. J. Smit, Roeland Van Malderen, Lijuan Shen, Romain Blot, and Tianliang Zhao
Atmos. Chem. Phys., 24, 11927–11942, https://doi.org/10.5194/acp-24-11927-2024, https://doi.org/10.5194/acp-24-11927-2024, 2024
Short summary
Short summary
In this study, we identify 23 suitable pairs of sites from World Ozone and Ultraviolet Radiation Data Centre (WOUDC) and In-service Aircraft for a Global Observing System (IAGOS) datasets (1995 to 2021), compare the average vertical distributions of tropospheric O3 from ozonesonde and aircraft measurements, and analyze the differences based on ozonesonde type and station–airport distance.
Noémie Taquet, Wolfgang Stremme, María Eugenia González del Castillo, Victor Almanza, Alejandro Bezanilla, Olivier Laurent, Carlos Alberti, Frank Hase, Michel Ramonet, Thomas Lauvaux, Ke Che, and Michel Grutter
Atmos. Chem. Phys., 24, 11823–11848, https://doi.org/10.5194/acp-24-11823-2024, https://doi.org/10.5194/acp-24-11823-2024, 2024
Short summary
Short summary
We characterize the variability in CO and CO2 emissions over Mexico City from long-term time-resolved Fourier transform infrared spectroscopy solar absorption and surface measurements from 2013 to 2021. Using the average intraday CO growth rate from total columns, the average CO / CO2 ratio and TROPOMI data, we estimate the interannual variability in the CO and CO2 anthropogenic emissions of Mexico City, highlighting the effect of an unprecedented drop in activity due to the COVID-19 lockdown.
Akima Ringsdorf, Achim Edtbauer, Bruna Holanda, Christopher Poehlker, Marta O. Sá, Alessandro Araújo, Jürgen Kesselmeier, Jos Lelieveld, and Jonathan Williams
Atmos. Chem. Phys., 24, 11883–11910, https://doi.org/10.5194/acp-24-11883-2024, https://doi.org/10.5194/acp-24-11883-2024, 2024
Short summary
Short summary
We show the average height distribution of separately observed aldehydes and ketones over a day and discuss their rainforest-specific sources and sinks as well as their seasonal changes above the Amazon. Ketones have much longer atmospheric lifetimes than aldehydes and thus different implications for atmospheric chemistry. However, they are commonly observed together, which we overcome by measuring with a NO+ chemical ionization mass spectrometer for the first time in the Amazon rainforest.
Theresa Harlass, Rebecca Dischl, Stefan Kaufmann, Raphael Märkl, Daniel Sauer, Monika Scheibe, Paul Stock, Tiziana Bräuer, Andreas Dörnbrack, Anke Roiger, Hans Schlager, Ulrich Schumann, Magdalena Pühl, Tobias Schripp, Tobias Grein, Linda Bondorf, Charles Renard, Maxime Gauthier, Mark Johnson, Darren Luff, Paul Madden, Peter Swann, Denise Ahrens, Reetu Sallinen, and Christiane Voigt
Atmos. Chem. Phys., 24, 11807–11822, https://doi.org/10.5194/acp-24-11807-2024, https://doi.org/10.5194/acp-24-11807-2024, 2024
Short summary
Short summary
Emissions from aircraft have a direct impact on our climate. Here, we present airborne and ground-based measurement data of nitrogen oxides that were collected in the exhaust of an Airbus aircraft. We study the impact of burning fossil and sustainable aviation fuel on nitrogen oxide emissions at different engine settings related to combustor temperature, pressure and fuel flow. Further, we compare observations with engine emission models.
Simone T. Andersen, Max R. McGillen, Chaoyang Xue, Tobias Seubert, Patrick Dewald, Gunther N. T. E. Türk, Jan Schuladen, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Marina Jamar, Sergio Harb, Manuela Cirtog, Vincent Michoud, Mathieu Cazaunau, Antonin Bergé, Christopher Cantrell, Sebastien Dusanter, Bénédicte Picquet-Varrault, Alexandre Kukui, Abdelwahid Mellouki, Lucy J. Carpenter, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 24, 11603–11618, https://doi.org/10.5194/acp-24-11603-2024, https://doi.org/10.5194/acp-24-11603-2024, 2024
Short summary
Short summary
Using measurements of various trace gases in a suburban forest near Paris in the summer of 2022, we were able to gain insight into the sources and sinks of NOx (NO+NO2) with a special focus on their nighttime chemical and physical loss processes. NO was observed as a result of nighttime soil emissions when O3 levels were strongly depleted by deposition. NO oxidation products were not observed at night, indicating that soil and/or foliar surfaces are an efficient sink of reactive N.
Lee Tiszenkel, James H. Flynn, and Shan-Hu Lee
Atmos. Chem. Phys., 24, 11351–11363, https://doi.org/10.5194/acp-24-11351-2024, https://doi.org/10.5194/acp-24-11351-2024, 2024
Short summary
Short summary
Ammonia and amines are important ingredients for aerosol formation in urban environments, but the measurements of these compounds are extremely challenging. Our observations show that urban ammonia and amines in Houston are emitted from urban sources, and diurnal variations in their concentrations are likely governed by gas-to-particle conversion and emissions.
Arpit Awasthi, Baerbel Sinha, Haseeb Hakkim, Sachin Mishra, Varkrishna Mummidivarapu, Gurmanjot Singh, Sachin D. Ghude, Vijay Kumar Soni, Narendra Nigam, Vinayak Sinha, and Madhavan N. Rajeevan
Atmos. Chem. Phys., 24, 10279–10304, https://doi.org/10.5194/acp-24-10279-2024, https://doi.org/10.5194/acp-24-10279-2024, 2024
Short summary
Short summary
We use 111 volatile organic compounds (VOCs), PM10, and PM2.5 in a positive matrix factorization (PMF) model to resolve 11 pollution sources validated with chemical fingerprints. Crop residue burning and heating account for ~ 50 % of the PM, while traffic and industrial emissions dominate the gas-phase VOC burden and formation potential of secondary organic aerosols (> 60 %). Non-tailpipe emissions from compressed-natural-gas-fuelled commercial vehicles dominate the transport sector's PM burden.
Luke D. Schiferl, Cong Cao, Bronte Dalton, Andrew Hallward-Driemeier, Ricardo Toledo-Crow, and Róisín Commane
Atmos. Chem. Phys., 24, 10129–10142, https://doi.org/10.5194/acp-24-10129-2024, https://doi.org/10.5194/acp-24-10129-2024, 2024
Short summary
Short summary
Carbon monoxide (CO) is an air pollutant and an important indicator of the incomplete combustion of fossil fuels in cities. Using 4 years of winter and spring observations in New York City, we found that both the magnitude and variability of CO from the metropolitan area are greater than expected. Transportation emissions cannot explain the missing and variable CO, which points to energy from buildings as a likely underappreciated source of urban air pollution and greenhouse gas emissions.
Chengzhi Xing, Cheng Liu, Chunxiang Ye, Jingkai Xue, Hongyu Wu, Xiangguang Ji, Jinping Ou, and Qihou Hu
Atmos. Chem. Phys., 24, 10093–10112, https://doi.org/10.5194/acp-24-10093-2024, https://doi.org/10.5194/acp-24-10093-2024, 2024
Short summary
Short summary
We identified the contributions of ozone (O3) and nitrous acid (HONO) to the production rates of hydroxide (OH) in vertical space on the Tibetan Plateau (TP). A new insight was offered: the contributions of HONO and O3 to the production rates of OH on the TP are even greater than in lower-altitudes areas. This study enriches the understanding of vertical distribution of atmospheric components and explains the strong atmospheric oxidation capacity (AOC) on the TP.
Baoye Hu, Naihua Chen, Rui Li, Mingqiang Huang, Jinsheng Chen, Youwei Hong, Lingling Xu, Xiaolong Fan, Mengren Li, Lei Tong, Qiuping Zheng, and Yuxiang Yang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2631, https://doi.org/10.5194/egusphere-2024-2631, 2024
Short summary
Short summary
Box modeling with the master chemical mechanism (MCM) was used to address the puzzle of summertime PAN formation and its association with aerosol pollution under high ozone conditions. The MCM model proves to be an ideal tool for investigating PAN photochemical formation (IOA=0.75). The model performed better during the clean period than during the haze period. Through the machine learning method of XGBoost, we found that the top three factors leading to simulation bias were NH3, NO3, and PM2.5.
Xinyuan Zhang, Lingling Wang, Nan Wang, Shuangliang Ma, Shenbo Wang, Ruiqin Zhang, Dong Zhang, Mingkai Wang, and Hongyu Zhang
Atmos. Chem. Phys., 24, 9885–9898, https://doi.org/10.5194/acp-24-9885-2024, https://doi.org/10.5194/acp-24-9885-2024, 2024
Short summary
Short summary
This study highlights the importance of the redox reaction of NO2 with SO2 based on actual atmospheric observations. The particle pH in future China is expected to rise steadily. Consequently, this reaction could become a significant source of HONO in China. Therefore, it is crucial to coordinate the control of SO2, NOx, and NH3 emissions to avoid a rapid increase in the particle pH.
Jun Zhou, Chunsheng Zhang, Aiming Liu, Bin Yuan, Yan Wang, Wenjie Wang, Jie-Ping Zhou, Yixin Hao, Xiao-Bing Li, Xianjun He, Xin Song, Yubin Chen, Suxia Yang, Shuchun Yang, Yanfeng Wu, Bin Jiang, Shan Huang, Junwen Liu, Yuwen Peng, Jipeng Qi, Minhui Deng, Bowen Zhong, Yibo Huangfu, and Min Shao
Atmos. Chem. Phys., 24, 9805–9826, https://doi.org/10.5194/acp-24-9805-2024, https://doi.org/10.5194/acp-24-9805-2024, 2024
Short summary
Short summary
In-depth understanding of the near-ground vertical variability in photochemical ozone (O3) formation is crucial for mitigating O3 pollution. Utilizing a self-built vertical observation system, a direct net photochemical O3 production rate detection system, and an observation-based model, we diagnosed the vertical distributions and formation mechanism of net photochemical O3 production rates and sensitivity in the Pearl River Delta region, one of the most O3-polluted areas in China.
Eleanor J. Derry, Tyler R. Elgiar, Taylor Y. Wilmot, Nicholas W. Hoch, Noah S. Hirshorn, Peter Weiss-Penzias, Christopher F. Lee, John C. Lin, A. Gannet Hallar, Rainer Volkamer, Seth N. Lyman, and Lynne E. Gratz
Atmos. Chem. Phys., 24, 9615–9643, https://doi.org/10.5194/acp-24-9615-2024, https://doi.org/10.5194/acp-24-9615-2024, 2024
Short summary
Short summary
Mercury (Hg) is a globally distributed neurotoxic pollutant. Atmospheric deposition is the main source of Hg in ecosystems. However, measurement biases hinder understanding of the origins and abundance of the more bioavailable oxidized form. We used an improved, calibrated measurement system to study air mass composition and transport of atmospheric Hg at a remote mountaintop site in the central US. Oxidized Hg originated upwind in the low to middle free troposphere under clean, dry conditions.
Benjamin A. Nault, Katherine R. Travis, James H. Crawford, Donald R. Blake, Pedro Campuzano-Jost, Ronald C. Cohen, Joshua P. DiGangi, Glenn S. Diskin, Samuel R. Hall, L. Gregory Huey, Jose L. Jimenez, Kyung-Eun Min, Young Ro Lee, Isobel J. Simpson, Kirk Ullmann, and Armin Wisthaler
Atmos. Chem. Phys., 24, 9573–9595, https://doi.org/10.5194/acp-24-9573-2024, https://doi.org/10.5194/acp-24-9573-2024, 2024
Short summary
Short summary
Ozone (O3) is a pollutant formed from the reactions of gases emitted from various sources. In urban areas, the density of human activities can increase the O3 formation rate (P(O3)), thus impacting air quality and health. Observations collected over Seoul, South Korea, are used to constrain P(O3). A high local P(O3) was found; however, local P(O3) was partly reduced due to compounds typically ignored. These observations also provide constraints for unmeasured compounds that will impact P(O3).
Fan Zhang, Binyu Xiao, Zeyu Liu, Yan Zhang, Chongguo Tian, Rui Li, Can Wu, Yali Lei, Si Zhang, Xinyi Wan, Yubao Chen, Yong Han, Min Cui, Cheng Huang, Hongli Wang, Yingjun Chen, and Gehui Wang
Atmos. Chem. Phys., 24, 8999–9017, https://doi.org/10.5194/acp-24-8999-2024, https://doi.org/10.5194/acp-24-8999-2024, 2024
Short summary
Short summary
Mandatory use of low-sulfur fuel due to global sulfur limit regulations means large uncertainties in volatile organic compound (VOC) emissions. On-board tests of VOCs from nine cargo ships in China were carried out. Results showed that switching from heavy-fuel oil to diesel increased emission factor VOCs by 48 % on average, enhancing O3 and the secondary organic aerosol formation potential. Thus, implementing a global ultra-low-sulfur oil policy needs to be optimized in the near future.
Patrick Dewald, Tobias Seubert, Simone T. Andersen, Gunther N. T. E. Türk, Jan Schuladen, Max R. McGillen, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Marina Jamar, Sergio Harb, Manuela Cirtog, Vincent Michoud, Mathieu Cazaunau, Antonin Bergé, Christopher Cantrell, Sebastien Dusanter, Bénédicte Picquet-Varrault, Alexandre Kukui, Chaoyang Xue, Abdelwahid Mellouki, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 24, 8983–8997, https://doi.org/10.5194/acp-24-8983-2024, https://doi.org/10.5194/acp-24-8983-2024, 2024
Short summary
Short summary
In the scope of a field campaign in a suburban forest near Paris in the summer of 2022, we measured the reactivity of the nitrate radical NO3 towards biogenic volatile organic compounds (BVOCs; e.g. monoterpenes) mainly below but also above the canopy. NO3 reactivity was the highest during nights with strong temperature inversions and decreased strongly with height. Reactions with BVOCs were the main removal process of NO3 throughout the diel cycle below the canopy.
Jian Wang, Lei Xue, Qianyao Ma, Feng Xu, Gaobin Xu, Shibo Yan, Jiawei Zhang, Jianlong Li, Honghai Zhang, Guiling Zhang, and Zhaohui Chen
Atmos. Chem. Phys., 24, 8721–8736, https://doi.org/10.5194/acp-24-8721-2024, https://doi.org/10.5194/acp-24-8721-2024, 2024
Short summary
Short summary
This study investigated the distribution and sources of non-methane hydrocarbons (NMHCs) in the lower atmosphere over the marginal seas of China. NMHCs, a subset of volatile organic compounds (VOCs), play a crucial role in atmospheric chemistry. Derived from systematic atmospheric sampling in coastal cities and marginal sea regions, this study offers valuable insights into the interaction between land and sea in shaping offshore atmospheric NMHCs.
Yusheng Zhang, Feixue Zheng, Zemin Feng, Chaofan Lian, Weigang Wang, Xiaolong Fan, Wei Ma, Zhuohui Lin, Chang Li, Gen Zhang, Chao Yan, Ying Zhang, Veli-Matti Kerminen, Federico Bianch, Tuukka Petäjä, Juha Kangasluoma, Markku Kulmala, and Yongchun Liu
Atmos. Chem. Phys., 24, 8569–8587, https://doi.org/10.5194/acp-24-8569-2024, https://doi.org/10.5194/acp-24-8569-2024, 2024
Short summary
Short summary
The nitrous acid (HONO) budget was validated during a COVID-19 lockdown event. The main conclusions are (1) HONO concentrations showed a significant decrease from 0.97 to 0.53 ppb during lockdown; (2) vehicle emissions accounted for 53 % of nighttime sources, with the heterogeneous conversion of NO2 on ground surfaces more important than aerosol; and (3) the dominant daytime source shifted from the homogenous reaction between NO and OH (51 %) to nitrate photolysis (53 %) during lockdown.
Dong Zhang, Xiao Li, Minghao Yuan, Yifei Xu, Qixiang Xu, Fangcheng Su, Shenbo Wang, and Ruiqin Zhang
Atmos. Chem. Phys., 24, 8549–8567, https://doi.org/10.5194/acp-24-8549-2024, https://doi.org/10.5194/acp-24-8549-2024, 2024
Short summary
Short summary
The increasing concentration of O3 precursors and unfavorable meteorological conditions are key factors in the formation of O3 pollution in Zhengzhou. Vehicular exhausts (28 %), solvent usage (27 %), and industrial production (22 %) are identified as the main sources of NMVOCs. Moreover, O3 formation in Zhengzhou is found to be in an anthropogenic volatile organic compound (AVOC)-limited regime. Thus, to reduce O3 formation, a minimum AVOCs / NOx reduction ratio ≥ 3 : 1 is recommended.
Yuening Li, Faqiang Zhan, Chubashini Shunthirasingham, Ying Duan Lei, Jenny Oh, Amina Ben Chaaben, Zhe Lu, Kelsey Lee, Frank A. P. C. Gobas, Hayley Hung, and Frank Wania
EGUsphere, https://doi.org/10.5194/egusphere-2024-1883, https://doi.org/10.5194/egusphere-2024-1883, 2024
Short summary
Short summary
Organophosphate esters are important man-made trace contaminants. Measuring them in the atmospheric gas phase, particles, precipitation and surface water from Canada, we explore seasonal concentration variability, gas/particle partitioning, precipitation scavenging, and air-water equilibrium. Whereas higher concentrations in summer and efficient precipitation scavenging conform with expectations, the lack of a relationship between compound volatility and gas-particle partitioning is puzzling.
Xiansheng Liu, Xun Zhang, Marvin Dufresne, Tao Wang, Lijie Wu, Rosa Lara, Roger Seco , Marta Monge, Ana Maria Yáñez-Serrano, Marie Gohy, Paul Petit, Audrey Chevalier, Marie-Pierre Vagnot, Yann Fortier, Alexia Baudic, Véronique Ghersi, Grégory Gille, Ludovic Lanzi, Valérie Gros, Leïla Simon, Heidi Hellen, Stefan Reimann, Zoé Le Bras, Michelle Jessy Müller, David Beddows, Siqi Hou, Zongbo Shi, Roy M. Harrison, William Bloss, James Dernie, Stéphane Sauvage, Philip K. Hopke, Xiaoli Duan, Taicheng An, Alastair Lewis, Jim Hopkins, Eleni Liakakou, Nikolaos Mihalopoulos, Xiaohu Zhang, Andrés Alastuey, Xavier Querol, and Thérèse Salameh
EGUsphere, https://doi.org/10.5194/egusphere-2024-2309, https://doi.org/10.5194/egusphere-2024-2309, 2024
Short summary
Short summary
This study examines BTEX (benzene, toluene, ethylbenzene, xylenes) pollution in urban areas across 7 European countries. Analyzing data from 22 monitoring sites, we found traffic and industrial activities significantly impact BTEX levels, with peaks during rush hours. Despite improvements, the risk from BTEX exposure remains moderate, especially in high-traffic and industrial zones. It highlights the need for targeted air quality management to protect public health and improve urban air quality.
Fanhao Meng, Baobin Han, Min Qin, Wu Fang, Ke Tang, Dou Shao, Zhitang Liao, Jun Duan, Yan Feng, Yong Huang, Ting Ni, and Pinhua Xie
EGUsphere, https://doi.org/10.5194/egusphere-2024-2127, https://doi.org/10.5194/egusphere-2024-2127, 2024
Short summary
Short summary
Comprehensive observations of HONO and NOx fluxes were first performed over paddy fields in the Huaihe River Basin. The consecutive peaks in HONO flux and NO flux demonstrated a potentially enhanced release of HONO and NO due to soil tillage, whereas higher WFPS (~80 %) inhibited microbial processes following irrigation. Notably, the biological processes and light-driven NO2 reactions on the surface could both be sources of HONO and influence the local HONO budget during rotary tillage.
Delaney B. Kilgour, Christopher M. Jernigan, Olga Garmash, Sneha Aggarwal, Claudia Mohr, Matt E. Salter, Joel A. Thornton, Jian Wang, Paul Zieger, and Timothy H. Bertram
EGUsphere, https://doi.org/10.5194/egusphere-2024-1975, https://doi.org/10.5194/egusphere-2024-1975, 2024
Short summary
Short summary
We report simultaneous measurements of dimethyl sulfide (DMS) and hydroperoxymethyl thioformate (HPMTF) in the Eastern North Atlantic. We use an observationally constrained box model to show cloud loss is the dominant sink of HPMTF in this region over six weeks, resulting in large reductions in DMS-derived products that contribute to aerosol formation and growth. Our findings indicate that fast cloud processing of HPMTF must be included in global models to accurately capture the sulfur cycle.
Arianna Peron, Martin Graus, Marcus Striednig, Christian Lamprecht, Georg Wohlfahrt, and Thomas Karl
Atmos. Chem. Phys., 24, 7063–7083, https://doi.org/10.5194/acp-24-7063-2024, https://doi.org/10.5194/acp-24-7063-2024, 2024
Short summary
Short summary
The anthropogenic fraction of non-methane volatile organic compound (NMVOC) emissions associated with biogenic sources (e.g., terpenes) is investigated based on eddy covariance observations. The anthropogenic fraction of terpene emissions is strongly dependent on season. When analyzing volatile chemical product (VCP) emissions in urban environments, we caution that observations from short-term campaigns might over-/underestimate their significance depending on local and seasonal circumstances.
Sihang Wang, Bin Yuan, Xianjun He, Ru Cui, Xin Song, Yubin Chen, Caihong Wu, Chaomin Wang, Yibo Huangfu, Xiao-Bing Li, Boguang Wang, and Min Shao
Atmos. Chem. Phys., 24, 7101–7121, https://doi.org/10.5194/acp-24-7101-2024, https://doi.org/10.5194/acp-24-7101-2024, 2024
Short summary
Short summary
Emissions of reactive organic gases from industrial volatile chemical product sources are measured. There are large differences among these industrial sources. We show that oxygenated species account for significant contributions to reactive organic gas emissions, especially for industrial sources utilizing water-borne chemicals.
Qing Yang, Xiao-Bing Li, Bin Yuan, Xiaoxiao Zhang, Yibo Huangfu, Lei Yang, Xianjun He, Jipeng Qi, and Min Shao
Atmos. Chem. Phys., 24, 6865–6882, https://doi.org/10.5194/acp-24-6865-2024, https://doi.org/10.5194/acp-24-6865-2024, 2024
Short summary
Short summary
Online vertical gradient measurements of formic and isocyanic acids were made based on a 320 m tower in a megacity. Vertical variations and sources of the two acids were analyzed in this study. We find that formic and isocyanic acids exhibited positive vertical gradients and were mainly contributed by photochemical formations. The formation of formic and isocyanic acids was also significantly enhanced in urban regions aloft.
Junwei Song, Harald Saathoff, Feng Jiang, Linyu Gao, Hengheng Zhang, and Thomas Leisner
Atmos. Chem. Phys., 24, 6699–6717, https://doi.org/10.5194/acp-24-6699-2024, https://doi.org/10.5194/acp-24-6699-2024, 2024
Short summary
Short summary
This study presents concurrent online measurements of organic gas and particles (VOCs and OA) at a forested site in summer. Both VOCs and OA were largely contributed by oxygenated organic compounds. Semi-volatile oxygenated OA and organic nitrate formed from monoterpenes and sesquiterpenes contributed significantly to nighttime particle growth. The results help us to understand the causes of nighttime particle growth regularly observed in summer in central European rural forested environments.
Jiemeng Bao, Xin Zhang, Zhenhai Wu, Li Zhou, Jun Qian, Qinwen Tan, Fumo Yang, Junhui Chen, Yunfeng Li, Hefan Liu, Liqun Deng, and Hong Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-1204, https://doi.org/10.5194/egusphere-2024-1204, 2024
Short summary
Short summary
Our research in the Chengdu Plain Urban Agglomeration (CPUA), China, reveals significant correlations between carbonyl compounds and ozone pollution, particularly in Chengdu. Formaldehyde, acetone, and acetaldehyde are key contributors to ozone formation. Urgent collaborative actions among cities are needed to mitigate carbonyl-related ozone pollution, stressing the control of NOx and VOCs emissions. Our study offers crucial insights for crafting effective regional pollution control strategies.
Xin Yang, Kimberly Strong, Alison S. Criscitiello, Marta Santos-Garcia, Kristof Bognar, Xiaoyi Zhao, Pierre Fogal, Kaley A. Walker, Sara M. Morris, and Peter Effertz
Atmos. Chem. Phys., 24, 5863–5886, https://doi.org/10.5194/acp-24-5863-2024, https://doi.org/10.5194/acp-24-5863-2024, 2024
Short summary
Short summary
This study uses snow samples collected from a Canadian high Arctic site, Eureka, to demonstrate that surface snow in early spring is a net sink of atmospheric bromine and nitrogen. Surface snow bromide and nitrate are significantly correlated, indicating the oxidation of reactive nitrogen is accelerated by reactive bromine. In addition, we show evidence that snow photochemical release of reactive bromine is very weak, and its emission flux is much smaller than the deposition flux of bromide.
Rebecca M. Garland, Katye E. Altieri, Laura Dawidowski, Laura Gallardo, Aderiana Mbandi, Nestor Y. Rojas, and N'datchoh E. Touré
Atmos. Chem. Phys., 24, 5757–5764, https://doi.org/10.5194/acp-24-5757-2024, https://doi.org/10.5194/acp-24-5757-2024, 2024
Short summary
Short summary
This opinion piece focuses on two geographical areas in the Global South where the authors are based that are underrepresented in atmospheric science. This opinion provides context on common challenges and constraints, with suggestions on how the community can address these. The focus is on the strengths of atmospheric science research in these regions. It is these strengths, we believe, that highlight the critical role of Global South researchers in the future of atmospheric science research.
Heidi Hellén, Rostislav Kouznetsov, Kaisa Kraft, Jukka Seppälä, Mika Vestenius, Jukka-Pekka Jalkanen, Lauri Laakso, and Hannele Hakola
Atmos. Chem. Phys., 24, 4717–4731, https://doi.org/10.5194/acp-24-4717-2024, https://doi.org/10.5194/acp-24-4717-2024, 2024
Short summary
Short summary
Mixing ratios of C2-C5 NMHCs and methanethiol were measured on an island in the Baltic Sea using an in situ gas chromatograph. Shipping emissions were found to be an important source of ethene, ethyne, propene, and benzene. High summertime mixing ratios of methanethiol and dependence of mixing ratios on seawater temperature and height indicated the biogenic origin to possibly be phytoplankton or macroalgae. These emissions may have a strong impact on SO2 production and new particle formation.
Matthew M. Coggon, Chelsea E. Stockwell, Lu Xu, Jeff Peischl, Jessica B. Gilman, Aaron Lamplugh, Henry J. Bowman, Kenneth Aikin, Colin Harkins, Qindan Zhu, Rebecca H. Schwantes, Jian He, Meng Li, Karl Seltzer, Brian McDonald, and Carsten Warneke
Atmos. Chem. Phys., 24, 4289–4304, https://doi.org/10.5194/acp-24-4289-2024, https://doi.org/10.5194/acp-24-4289-2024, 2024
Short summary
Short summary
Residential and commercial cooking emits pollutants that degrade air quality. Here, ambient observations show that cooking is an important contributor to anthropogenic volatile organic compounds (VOCs) emitted in Las Vegas, NV. These emissions are not fully presented in air quality models, and more work may be needed to quantify emissions from important sources, such as commercial restaurants.
Fabien Paulot, Gabrielle Pétron, Andrew M. Crotwell, and Matteo B. Bertagni
Atmos. Chem. Phys., 24, 4217–4229, https://doi.org/10.5194/acp-24-4217-2024, https://doi.org/10.5194/acp-24-4217-2024, 2024
Short summary
Short summary
New data from the National Oceanic and Atmospheric Administration show that hydrogen (H2) concentrations increased from 2010 to 2019, which is consistent with the simulated increase in H2 photochemical production (mainly from methane). But this cannot be reconciled with the expected decrease (increase) in H2 anthropogenic emissions (soil deposition) in the same period. This shows gaps in our knowledge of the H2 biogeochemical cycle that must be resolved to quantify the impact of higher H2 usage.
Wenjie Wang, Bin Yuan, Hang Su, Yafang Cheng, Jipeng Qi, Sihang Wang, Wei Song, Xinming Wang, Chaoyang Xue, Chaoqun Ma, Fengxia Bao, Hongli Wang, Shengrong Lou, and Min Shao
Atmos. Chem. Phys., 24, 4017–4027, https://doi.org/10.5194/acp-24-4017-2024, https://doi.org/10.5194/acp-24-4017-2024, 2024
Short summary
Short summary
This study investigates the important role of unmeasured volatile organic compounds (VOCs) in ozone formation. Based on results in a megacity of China, we show that unmeasured VOCs can contribute significantly to ozone fomation and also influence the determination of ozone control strategy. Our results show that these unmeasured VOCs are mainly from human sources.
Shigeyuki Ishidoya, Satoshi Sugawara, and Atsushi Okazaki
EGUsphere, https://doi.org/10.5194/egusphere-2024-654, https://doi.org/10.5194/egusphere-2024-654, 2024
Short summary
Short summary
Diurnal, seasonal, and interannual variations of the present-day stable isotopic ratio of atmospheric O2, in other words slight variations in the Dole-Morita effect, have been detected firstly. A box model that incorporated biological and water processes associated with the Dole-Morita effect reproduced the general characteristics of the observational results. Based on the findings, we proposed some applications to evaluate oxygen, carbon, and water cycles.
Romain Salignat, Matti Rissanen, Siddharth Iyer, Jean-Luc Baray, Pierre Tulet, Jean-Marc Metzger, Jérôme Brioude, Karine Sellegri, and Clémence Rose
Atmos. Chem. Phys., 24, 3785–3812, https://doi.org/10.5194/acp-24-3785-2024, https://doi.org/10.5194/acp-24-3785-2024, 2024
Short summary
Short summary
Using mass spectrometry data collected at the Maïdo Observatory (2160 m a.s.l., Réunion), we provide the first detailed analysis of molecular cluster chemical composition specifically in the marine free troposphere. The abundance of the identified species is related both to in situ meteorological parameters and air mass history, which also provide insight into their origin. Our work makes an important contribution to documenting the chemistry and physics of the marine free troposphere.
Delaney B. Kilgour, Gordon A. Novak, Megan S. Claflin, Brian M. Lerner, and Timothy H. Bertram
Atmos. Chem. Phys., 24, 3729–3742, https://doi.org/10.5194/acp-24-3729-2024, https://doi.org/10.5194/acp-24-3729-2024, 2024
Short summary
Short summary
Laboratory experiments with seawater mimics suggest ozone deposition to the surface ocean can be a source of reactive carbon to the marine atmosphere. We conduct both field and laboratory measurements to assess abiotic VOC composition and yields from ozonolysis of real surface seawater. We show that C5–C11 aldehydes contribute to the observed VOC emission flux. We estimate that VOCs generated by the ozonolysis of surface seawater are competitive with biological VOC production and emission.
Xiangdong Zheng, Wen Yang, Yuting Sun, Chunmei Geng, Yingying Liu, and Xiaobin Xu
Atmos. Chem. Phys., 24, 3759–3768, https://doi.org/10.5194/acp-24-3759-2024, https://doi.org/10.5194/acp-24-3759-2024, 2024
Short summary
Short summary
Chen et al. (2022) attributed the nocturnal ozone enhancement (NOE) during the night of 31 July 2021 in the North China Plain (NCP) to "the direct stratospheric intrusion to reach the surface". We analyzed in situ data from the NCP. Our results do not suggest that there was a significant impact from the stratosphere on surface ozone during the NOE. We argue that the NOE was not caused by stratospheric intrusion but originated from fresh photochemical production in the lower troposphere.
James M. Roberts, Siyuan Wang, Patrick R. Veres, J. Andrew Neuman, Michael A. Robinson, Ilann Bourgeois, Jeff Peischl, Thomas B. Ryerson, Chelsea R. Thompson, Hannah M. Allen, John D. Crounse, Paul O. Wennberg, Samuel R. Hall, Kirk Ullmann, Simone Meinardi, Isobel J. Simpson, and Donald Blake
Atmos. Chem. Phys., 24, 3421–3443, https://doi.org/10.5194/acp-24-3421-2024, https://doi.org/10.5194/acp-24-3421-2024, 2024
Short summary
Short summary
We measured cyanogen bromide (BrCN) in the troposphere for the first time. BrCN is a product of the same active bromine chemistry that destroys ozone and removes mercury in polar surface environments and is a previously unrecognized sink for active Br compounds. BrCN has an apparent lifetime against heterogeneous loss in the range 1–10 d, so it serves as a cumulative marker of Br-radical chemistry. Accounting for BrCN chemistry is an important part of understanding polar Br cycling.
Kai Qin, Wei Hu, Qin He, Fan Lu, and Jason Blake Cohen
Atmos. Chem. Phys., 24, 3009–3028, https://doi.org/10.5194/acp-24-3009-2024, https://doi.org/10.5194/acp-24-3009-2024, 2024
Short summary
Short summary
We compute CH4 emissions and uncertainty on a mine-by-mine basis, including underground, overground, and abandoned mines. Mine-by-mine gas and flux data and 30 min observations from a flux tower located next to a mine shaft are integrated. The observed variability and bias correction are propagated over the emissions dataset, demonstrating that daily observations may not cover the range of variability. Comparisons show both an emissions magnitude and spatial mismatch with current inventories.
Yao Yan Huang and D. James Donaldson
Atmos. Chem. Phys., 24, 2387–2398, https://doi.org/10.5194/acp-24-2387-2024, https://doi.org/10.5194/acp-24-2387-2024, 2024
Short summary
Short summary
Ground-level ozone interacts at the lake–land boundary; this is important to our understanding and modelling of atmospheric chemistry and air pollution in the lower atmosphere. We show that a steep ozone gradient occurs year-round moving inland up to 1 km from the lake and that this gradient is influenced by seasonal factors on the local land environment, where more rural areas are more greatly affected seasonally.
Katrin Müller, Jordis S. Tradowsky, Peter von der Gathen, Christoph Ritter, Sharon Patris, Justus Notholt, and Markus Rex
Atmos. Chem. Phys., 24, 2169–2193, https://doi.org/10.5194/acp-24-2169-2024, https://doi.org/10.5194/acp-24-2169-2024, 2024
Short summary
Short summary
The Palau Atmospheric Observatory is introduced as an ideal site to detect changes in atmospheric composition and dynamics above the remote tropical western Pacific. We focus on the ozone sounding program from 2016–2021, including El Niño 2016. The year-round high convective activity is reflected in dominant low tropospheric ozone and high relative humidity. Their seasonal distributions are unique compared to other tropical sites and are modulated by the Intertropical Convergence Zone.
Cited articles
Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S.,
Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and
domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys.,
11, 4039–4072,
https://doi.org/10.5194/acp-11-4039-2011,
2011.
Akagi, S. K., Yokelson, R. J., Burling, I. R., Meinardi, S., Simpson, I.,
Blake, D. R., McMeeking, G. R., Sullivan, A., Lee, T., Kreidenweis, S.,
Urbanski, S., Reardon, J., Griffith, D. W. T., Johnson, T. J., and
Weise, D. R.: Measurements of reactive trace gases and variable O3
formation rates in some South Carolina biomass burning plumes, Atmos. Chem.
Phys., 13, 1141–1165,
https://doi.org/10.5194/acp-13-1141-2013,
2013.
Al-Naiema, I., Estillore, A. D., Mudunkotuwa, I. A., Grassian, V. H., and
Stone, E. A.: Impacts of co-firing biomass on emissions of particulate matter
to the atmosphere, Fuel, 162, 111–120,
https://doi.org/10.1016/j.fuel.2015.08.054,
2015.
Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from
biomass burning, Global Biogeochem. Cy., 15, 955–966,
https://doi.org/10.1029/2000gb001382,
2001.
Andreae, M. O. and Raemdonck, H.: Dimethyl sulfide in the surface ocean and
the marine atmosphere – a global view, Science, 221, 744–747, 1983.
Aoki, N., Inomata, S., and Tanimoto, H.: Detection of C1–C5 alkyl nitrates
by proton transfer reaction time-of-flight mass spectrometry, Int. J. Mass
Spectrom., 263, 12–21,
https://doi.org/10.1016/j.ijms.2006.11.018,
2007.
Atkinson, R.: Atmospheric chemistry of VOCs and NOx, Atmos. Environ.,
34, 2063–2101,
https://doi.org/10.1016/S1352-2310(99)00460-4,
2000
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F.,
Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee:
Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II
– gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055,
https://doi.org/10.5194/acp-6-3625-2006,
2006.
Barletta, B., Meinardi, S., Simpson, I. J., Khwaja, H. A., Blake, D. R., and
Rowland, F. S.: Mixing ratios of volatile organic compounds (VOCs) in the
atmosphere of Karachi, Pakistan, Atmos. Environ., 36, 3429–3443,
https://doi.org/10.1016/S1352-2310(02)00302-3,
2002.
Barletta, B., Meinardi, S., Sherwood Rowland, F., Chan, C. Y., Wang, X.,
Zou, S., Yin Chan, L., and Blake, D. R.: Volatile organic compounds in 43
Chinese cities, Atmos. Environ., 39, 5979–5990,
https://doi.org/10.1016/j.atmosenv.2005.06.029,
2005.
Barnes, I., Solignac, G., Mellouki, A., and Becker, K. H.: Aspects of the
atmospheric chemistry of amides, Chem. Phys. Chem., 11, 3844–3857,
https://doi.org/10.1002/cphc.201000374,
2010.
Borbon, A., Fontaine, H., Veillerot, M., Locoge, N., Galloo, J. C., and
Guillermo, R.: An investigation into the traffic-related fraction of isoprene
at an urban location, Atmos. Environ., 35, 3749–3760,
https://doi.org/10.1016/S1352-2310(01)00170-4,
2001.
Bryan, A. M., Bertman, S. B., Carroll, M. A., Dusanter, S., Edwards, G. D.,
Forkel, R., Griffith, S., Guenther, A. B., Hansen, R. F., Helmig, D.,
Jobson, B. T., Keutsch, F. N., Lefer, B. L., Pressley, S. N., Shepson, P. B.,
Stevens, P. S., and Steiner, A. L.: In-canopy gas-phase chemistry during
CABINEX 2009: sensitivity of a 1-D canopy model to vertical mixing and
isoprene chemistry, Atmos. Chem. Phys., 12, 8829–8849,
https://doi.org/10.5194/acp-12-8829-2012,
2012.
Central Bureau of Statistics: Nepal Population and Housing Census Report,
National Planning Commission Secretariat, Government of Nepal, Kathmandu,
2011, 1–262, 2011.
Chandra, B. P., and Sinha, V.: Contribution of post-harvest agricultural
paddy residue fires in the N.W. Indo–Gangetic Plain to ambient carcinogenic
benzenoids, toxic isocyanic acid and carbon monoxide, Environ. Int., 88,
187–197,
https://doi.org/10.1016/j.envint.2015.12.025,
2016.
Christian, T. J., Kleiss, B., Yokelson, R. J., Holzinger, R., Crutzen, P. J.,
Hao, W. M., Saharjo, B. H., and Ward, D. E.: Comprehensive laboratory
measurements of biomass-burning emissions: 1. Emissions from Indonesian,
African, and other fuels, J. Geophys. Res.-Atmos., 108, 4719,
https://doi.org/10.1029/2003jd003704,
2003.
Davidson, C. I., Lin, S. F., Osborn, J. F., Pandey, M. R., Rasmussen, R. A.,
and Khalil, M. A. K.: Indoor and outdoor air pollution in the Himalayas,
Environ. Sci. Technol., 20, 561–567,
https://doi.org/10.1021/es00148a003, 1986.
de Foy, B., Varela, J. R., Molina, L. T., and Molina, M. J.: Rapid
ventilation of the Mexico City basin and regional fate of the urban plume,
Atmos. Chem. Phys., 6, 2321–2335,
https://doi.org/10.5194/acp-6-2321-2006,
2006.
de Gouw, J. and Warneke, C.: Measurements of volatile organic compounds in
the earth's atmosphere using proton-transfer-reaction mass spectrometry, Mass
Spectrom. Rev., 26, 223–257,
https://doi.org/10.1002/mas.20119, 2007.
de Gouw, J. A., Goldan, P. D., Warneke, C., Kuster, W. C., Roberts, J. M.,
Marchewka, M., Bertman, S. B., Pszenny, A. A. P., and Keene, W. C.:
Validation of proton transfer reaction-mass spectrometry (PTR-MS)
measurements of gas-phase organic compounds in the atmosphere during the New
England Air Quality Study (NEAQS) in 2002, J. Geophys. Res.-Atmos., 108,
4682,
https://doi.org/10.1029/2003jd003863,
2003.
Department of Plant Resources, Nepal: Bulletin of Department of Plant
Resources, Nepal 37, Ministry of Forests and Soil Conservation, Kathmandu,
1–122, 2015.
Dolgorouky, C., Gros, V., Sarda-Esteve, R., Sinha, V., Williams, J.,
Marchand, N., Sauvage, S., Poulain, L., Sciare, J., and Bonsang, B.: Total OH
reactivity measurements in Paris during the 2010 MEGAPOLI winter campaign,
Atmos. Chem. Phys., 12, 9593–9612,
https://doi.org/10.5194/acp-12-9593-2012,
2012.
Filella, I. and Peńuelas, J.: Daily, weekly, and seasonal time courses of
VOC concentrations in a semi-urban area near Barcelona, Atmos. Environ., 40,
7752–7769,
https://doi.org/10.1016/j.atmosenv.2006.08.002,
2006.
Ge, X., Wexler, A. S., and Clegg, S. L.: Atmospheric amines – Part I.
A review, Atmos. Environ., 45, 524–546,
https://doi.org/10.1016/j.atmosenv.2010.10.012,
2011.
Geron, C., Harley, P., and Guenther, A.: Isoprene emission capacity for US tree species,
Atmos. Environ., 35, 3341–3352,
https://doi.org/10.1016/S1352-2310(00)00407-6, 2001.
Gilman, J. B., Lerner, B. M., Kuster, W. C., Goldan, P. D., Warneke, C.,
Veres, P. R., Roberts, J. M., de Gouw, J. A., Burling, I. R., and
Yokelson, R. J.: Biomass burning emissions and potential air quality impacts
of volatile organic compounds and other trace gases from fuels common in the
US, Atmos. Chem. Phys., 15, 13915–13938,
https://doi.org/10.5194/acp-15-13915-2015,
2015.
Grosjean, D., Grosjean, E., and Williams, E. L.: Atmospheric chemistry of
olefins: a product study of the ozone-alkene reaction with cyclohexane added
to scavenge hydroxyl radical, Environ. Sci. Technol., 28, 186–196,
https://doi.org/10.1021/es00050a026, 1994.
Grosjean, E., Rasmussen, R. A., and Grosjean, D.: Ambient levels of gas phase
pollutants in Porto Alegre, Brazil, Atmos. Environ., 32, 3371–3379,
https://doi.org/10.1016/S1352-2310(98)00007-7,
1998.
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and
Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN
(Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys.,
6, 3181–3210,
https://doi.org/10.5194/acp-6-3181-2006,
2006.
Guo, H., So, K. L., Simpson, I. J., Barletta, B., Meinardi, S., and
Blake, D. R.: C1–C8 volatile organic compounds in the atmosphere of Hong
Kong: overview of atmospheric processing and source apportionment, Atmos.
Environ., 41, 1456–1472,
https://doi.org/10.1016/j.atmosenv.2006.10.011,
2007.
Gurung, A. and Bell, M. L.: Exposure to airborne particulate matter in
Kathmandu Valley, Nepal, J. Expos. Sci. Environ. Epidemiol., 22, 235–242,
2012.
Hao, W. M., Ward, D. E., Olbu, G., and Baker, S. P.: Emissions of CO2,
CO, and hydrocarbons from fires in diverse African savanna ecosystems, J.
Geophys. Res.-Atmos., 101, 23577–23584, 1996.
Hellèn, H., Tykkä, T., and Hakola, H.: Importance of monoterpenes and
isoprene in urban air in northern Europe, Atmos. Environ., 59, 59–66,
https://doi.org/10.1016/j.atmosenv.2012.04.049,
2012.
Henze, D. K., Seinfeld, J. H., Ng, N. L., Kroll, J. H., Fu, T.-M.,
Jacob, D. J., and Heald, C. L.: Global modeling of secondary organic aerosol
formation from aromatic hydrocarbons: high- vs. low-yield pathways, Atmos.
Chem. Phys., 8, 2405–2420,
https://doi.org/10.5194/acp-8-2405-2008,
2008.
Holzinger, R., Warneke, C., Hansel, A., Jordan, A., Lindinger, W.,
Scharffe, D. H., Schade, G., and Crutzen, P. J.: Biomass burning as a source
of formaldehyde, acetaldehyde, methanol, acetone, acetonitrile, and hydrogen
cyanide, Geophys. Res. Lett., 26, 1161–1164,
https://doi.org/10.1029/1999gl900156,
1999.
Inomata, S., Tanimoto, H., Fujitani, Y., Sekimoto, K., Sato, K., Fushimi, A.,
Yamada, H., Hori, S., Kumazawa, Y., Shimono, A., and Hikida, T.: On-line
measurements of gaseous nitro-organic compounds in diesel vehicle exhaust by
proton-transfer-reaction mass spectrometry, Atmos. Environ., 73, 195–203,
https://doi.org/10.1016/j.atmosenv.2013.03.035,
2013.
Inomata, S., Fujitani, Y., Fushimi, A., Tanimoto, H., Sekimoto, K., and
Yamada, H.: Field measurement of nitromethane from automotive emissions at
a busy intersection using proton-transfer-reaction mass spectrometry, Atmos.
Environ., 96, 301–309,
https://doi.org/10.1016/j.atmosenv.2014.07.058,
2014.
IPCC: Impacts, Adaptation and Vulnerability: Working Group II Contribution to
the Intergovernmental Panel on Climate Change: Fifth Assessment Report:
Summary for Policymakers, Intergovernmental Panel on Climate Change. Working
Group Impacts, Cambridge University Press, Cambridge, UK and New York, NY,
USA, 1–32, 2013.
Jardine, K., Yañez-Serrano, A. M., Williams, J., Kunert, N., Jardine, A.,
Taylor, T., Abrell, L., Artaxo, P., Guenther, A., Hewitt, C. N., House, E.,
Florentino, A. P., Manzi, A., Higuchi, N., Kesselmeier, J., Behrendt, T.,
Veres, P. R., Derstroff, B., Fuentes, J. D., Martin, S. T., and
Andreae, M. O.: Dimethyl sulfide in the Amazon rain forest, Global
Biogeochem. Cy., 29, 19–32,
https://doi.org/10.1002/2014gb004969,
2015.
Jones, C. E., Hopkins, J. R., and Lewis, A. C.: In situ measurements of
isoprene and monoterpenes within a south-east Asian tropical rainforest,
Atmos. Chem. Phys., 11, 6971–6984,
https://doi.org/10.5194/acp-11-6971-2011,
2011.
Jordan, A., Haidacher, S., Hanel, G., Hartungen, E., Märk, L.,
Seehauser, H., Schottkowsky, R., Sulzer, P., and Märk, T. D.: A high
resolution and high sensitivity proton-transfer-reaction time-of-flight mass
spectrometer (PTR-TOF-MS), Int. J. Mass Spectrom., 286, 122–128,
https://doi.org/10.1016/j.ijms.2009.07.005,
2009.
Karl, T., Jobson, T., Kuster, W. C., Williams, E., Stutz, J., Shetter, R.,
Hall, S. R., Goldan, P., Fehsenfeld, F., and Lindinger, W.: Use of
proton-transfer-reaction mass spectrometry to characterize volatile organic
compound sources at the La Porte super site during the Texas Air Quality
Study 2000, J. Geophys. Res.-Atmos., 108, 4508,
https://doi.org/10.1029/2002jd003333,
2003.
Karl, T. G., Christian, T. J., Yokelson, R. J., Artaxo, P., Hao, W. M., and
Guenther, A.: The Tropical Forest and Fire Emissions Experiment: method
evaluation of volatile organic compound emissions measured by PTR-MS, FTIR,
and GC from tropical biomass burning, Atmos. Chem. Phys., 7, 5883–5897,
https://doi.org/10.5194/acp-7-5883-2007,
2007.
Kesselmeier, J., Bode, K., Hofmann, U., Müller, H., Schäfer, L.,
Wolf, A., Ciccioli, P., Brancaleoni, E., Cecinato, A., Frattoni, M.,
Foster, P., Ferrari, C., Jacob, V., Fugit, J. L., Dutaur, L., Simon, V., and
Torres, L.: Emission of short chained organic acids, aldehydes and
monoterpenes from Quercus ilex L., and Pinus pinea L. in relation to
physiological activities, carbon budget and emission algorithms, Atmos.
Environ., 31, 119–133,
https://doi.org/10.1016/S1352-2310(97)00079-4,
1997.
Kesselmeier, J. and Staudt, M.: Biogenic Volatile Organic Compounds (VOC): an
overview on emission, physiology and ecology, J. Atmos. Chem., 33, 23–88,
https://doi.org/10.1023/a:1006127516791,
1999.
Kitada, T. and Regmi, R. P.: Dynamics of air pollution transport in late
wintertime over Kathmandu Valley, Nepal: as revealed with numerical
simulation, J. Appl. Meteorol., 42, 1770–1798,
https://doi.org/10.1175/1520-0450(2003)042<1770:DOAPTI>2.0.CO;2,
2003.
Kumar, V. and Sinha, V.: VOC–OHM: A new technique for rapid measurements of
ambient total OH reactivity and volatile organic compounds using a single
proton transfer reaction mass spectrometer, Int. J. Mass Spectrom., 374,
55–63,
https://doi.org/10.1016/j.ijms.2014.10.012,
2014.
Langford, B., Nemitz, E., House, E., Phillips, G. J., Famulari, D.,
Davison, B., Hopkins, J. R., Lewis, A. C., and Hewitt, C. N.: Fluxes and
concentrations of volatile organic compounds above central London, UK, Atmos.
Chem. Phys., 10, 627–645,
https://doi.org/10.5194/acp-10-627-2010,
2010.
Larssen, S., F. Gram, I. Haugsbakk, J. Huib, X. Olsthoorn, A. S. Giri, R.
Shah, M. L. Shrestha, A., and Shrestha, B.: Urban Air Quality Management
Strategy in Asia: Kathmandu Valley Report, World Bank, Washington, D.C., USA,
1–173, 1997.
Lee, A., Goldstein, A. H., Kroll, J. H., Ng, N. L., Varutbangkul, V.,
Flagan, R. C., and Seinfeld, J. H.: Gas-phase products and secondary aerosol
yields from the photooxidation of 16 different terpenes, J. Geophys.
Res.-Atmos., 111, D17305,
https://doi.org/10.1029/2006jd007050,
2006.
Lelieveld, J., Dentener, F. J., Peters, W., and Krol, M. C.: On the role of
hydroxyl radicals in the self-cleansing capacity of the troposphere, Atmos.
Chem. Phys., 4, 2337–2344,
https://doi.org/10.5194/acp-4-2337-2004,
2004.
Lemieux, P. M., Lutes, C. C., and Santoianni, D. A.: Emissions of organic air
toxics from open burning: a comprehensive review, Progress in Energy and
Combustion Science, 30, 1-32,
https://doi.org/10.1016/j.pecs.2003.08.001,
2004.
Lindinger, W., Hansel, A., and Jordan, A.: On-line monitoring of volatile
organic compounds at pptv levels by means of proton-transfer-reaction mass
spectrometry (PTR-MS) medical applications, food control and environmental
research, Int. J. Mass Spectrom., 173, 191–241,
https://doi.org/10.1016/s0168-1176(97)00281-4,
1998.
Liu, Ying, Shao, Min, Lu, Sihua, Chang, Chih-chung, Wang, Jia-Lin, and
Chen, Gao: Volatile Organic Compound (VOC) measurements in the Pearl River
Delta (PRD) region, China, Atmos. Chem. Phys., 8, 1531–1545,
https://doi.org/10.5194/acp-8-1531-2008,
2008.
Lockhart, J., Blitz, M. A., Heard, D. E., Seakins, P. W., and Shannon, R. J.:
The mechanism of the reaction of OH with alkynes in the presence of
oxygen, J. Phys. Chem. A, 117, 5407–5418,
https://doi.org/10.1021/jp404233b, 2013.
Martinez, M., Harder, H., Ren, X., Lesher, R. L., and Brune, W. H.: Measuring
atmospheric naphthalene with laser-induced fluorescence, Atmos. Chem. Phys.,
4, 563–569,
https://doi.org/10.5194/acp-4-563-2004,
2004.
Millet, D. B., Guenther, A., Siegel, D. A., Nelson, N. B., Singh, H. B.,
de Gouw, J. A., Warneke, C., Williams, J., Eerdekens, G., Sinha, V.,
Karl, T., Flocke, F., Apel, E., Riemer, D. D., Palmer, P. I., and
Barkley, M.: Global atmospheric budget of acetaldehyde: 3-D model analysis
and constraints from in-situ and satellite observations, Atmos. Chem. Phys.,
10, 3405–3425,
https://doi.org/10.5194/acp-10-3405-2010,
2010.
Molina, L. T., Kolb, C. E., de Foy, B., Lamb, B. K., Brune, W. H.,
Jimenez, J. L., Ramos-Villegas, R., Sarmiento, J., Paramo-Figueroa, V. H.,
Cardenas, B., Gutierrez-Avedoy, V., and Molina, M. J.: Air quality in North
America's most populous city – overview of the MCMA-2003 campaign, Atmos.
Chem. Phys., 7, 2447–2473,
https://doi.org/10.5194/acp-7-2447-2007,
2007.
Müller, M., Graus, M., Ruuskanen, T. M., Schnitzhofer, R., Bamberger, I.,
Kaser, L., Titzmann, T., Hörtnagl, L., Wohlfahrt, G., Karl, T., and
Hansel, A.: First eddy covariance flux measurements by PTR-TOF, Atmos. Meas.
Tech., 3, 387–395,
https://doi.org/10.5194/amt-3-387-2010,
2010.
Nelson, P. F., Li, C. Z., and Ledesma, E.: Formation of HNCO from the rapid
pyrolysis of coals, Energy and Fuels, 10, 264–265,
https://doi.org/10.1021/ef950183o, 1996.
Ng, N. L., Chhabra, P. S., Chan, A. W. H., Surratt, J. D., Kroll, J. H.,
Kwan, A. J., McCabe, D. C., Wennberg, P. O., Sorooshian, A., Murphy, S. M.,
Dalleska, N. F., Flagan, R. C., and Seinfeld, J. H.: Effect of NOx level
on secondary organic aerosol (SOA) formation from the photooxidation of
terpenes, Atmos. Chem. Phys., 7, 5159–5174,
https://doi.org/10.5194/acp-7-5159-2007,
2007.
Padhy, P. K. and Varshney, C. K.: Emission of volatile organic compounds
(VOC) from tropical plant species in India, Chemosphere, 59, 1643–1653,
https://doi.org/10.1016/j.chemosphere.2005.01.046,
2005.
Panday, A. K. and Prinn, R. G.: Diurnal cycle of air pollution in the
Kathmandu Valley, Nepal: observations, J. Geophys. Res.-Atmos., 114, D09305,
https://doi.org/10.1029/2008jd009777,
2009.
Panday, A. K., Prinn, R. G., and Schär, C.: Diurnal cycle of air pollution
in the Kathmandu Valley, Nepal: 2. Modeling results, J. Geophys. Res.-Atmos.,
114, D21308,
https://doi.org/10.1029/2008jd009808,
2009.
Panday, A. K., Adhikary, B., Praveen, P. S., Mahata, K. S., and
Rupakheti, M.: Meteorology and Air Pollution Transport in the Kathmandu
Valley, Nepal, Atmos. Chem. Phys. Discuss., in preparation, 2016.
Pariyar, S. K., Das, T., and Ferdous, T.: Environment and Health Impact for
Brick Kilns in Kathmandu Valley, Int. J. Sci. Technol. Res., 2, 184–187, 2013.
Park, J.-H., Goldstein, A. H., Timkovsky, J., Fares, S., Weber, R.,
Karlik, J., and Holzinger, R.: Eddy covariance emission and deposition flux
measurements using proton transfer reaction – time of flight – mass
spectrometry (PTR-TOF-MS): comparison with PTR-MS measured vertical gradients
and fluxes, Atmos. Chem. Phys., 13, 1439–1456,
https://doi.org/10.5194/acp-13-1439-2013,
2013.
Pudasainee, D., Sapkota, B., Shrestha, M. L., Kaga, A., Kondo, A., and
Inoue, Y.: Ground level ozone concentrations and its association with
NOx and meteorological parameters in Kathmandu Valley, Nepal, Atmos.
Environ., 40, 8081–8087,
https://doi.org/10.1016/j.atmosenv.2006.07.011,
2006.
Putero, D., Cristofanelli, P., Marinoni, A., Adhikary, B., Duchi, R.,
Shrestha, S. D., Verza, G. P., Landi, T. C., Calzolari, F., Busetto, M.,
Agrillo, G., Biancofiore, F., Di Carlo, P., Panday, A. K., Rupakheti, M., and
Bonasoni, P.: Seasonal variation of ozone and black carbon observed at
Paknajol, an urban site in the Kathmandu Valley, Nepal, Atmos. Chem. Phys.,
15, 13957–13971,
https://doi.org/10.5194/acp-15-13957-2015,
2015.
Ramana, M. V., Ramanathan, V., Podgorny, I. A., Pradhan, B. B., and
Shrestha, B.: The direct observations of large aerosol radiative forcing in
the Himalayan region, Geophys. Res. Lett., 31, L05111,
https://doi.org/10.1029/2003gl018824,
2004.
Rappenglück, B., Schmitz, R., Bauerfeind, M., Cereceda-Balic, F., von
Baer, D., Jorquera, H., Silva, Y., and Oyola, P.: An urban photochemistry
study in Santiago de Chile, Atmos. Environ., 39, 2913–2931,
https://doi.org/10.1016/j.atmosenv.2004.12.049,
2005.
Raut, A. K.: Brick Kilns in Kathmandu Valley: Current status, environmental
impacts and future options, Himal. J. Sci., 1, 59–61,
https://doi.org/10.3126/hjs.v1i1.189,
2003.
Regmi, R. P., Kitada, T., and Kurata, G.: Numerical simulation of late
wintertime local flows in Kathmandu Valley, Nepal: implication for air
pollution transport, J. Appl. Meteorol., 42, 389–403,
https://doi.org/10.1175/1520-0450(2003)042<0389:nsolwl>2.0.CO;2,
2003.
Roberts, J. M., Veres, P. R., Cochran, A. K., Warneke, C., Burling, I. R.,
Yokelson, R. J., Lerner, B., Gilman, J. B., Kuster, W. C., Fall, R., and de
Gouw, J.: Isocyanic acid in the atmosphere and its possible link to
smoke-related health effects, P. Natl. Acad. Sci. USA, 108, 8966–8971,
https://doi.org/10.1073/pnas.1103352108,
2011.
Roberts, J. M., Veres, P., VandenBoer, T. C., Warneke, C., Graus, M.,
Williams, E. J., Lefer, B. L., Brock, C. A., Bahreini, R., Öztürk, F.,
Middlebrook, A. M., Wagner, N. L., Dubè, W. P. A., and de Gouw, J. A.: New
insights into atmospheric sources and sinks of isocyanic acid, HNCO, from
recent urban and regional observations, J. Geophys. Res.-Atmos., 119,
1060–1072,
https://doi.org/10.1002/2013JD019931,
2014.
Ropkins, K. and Carslaw, D. C.: Openair – Data Analysis Tools for the Air
Quality Community, The R Journal, 4, 20–29, 2012.
Rupakheti, M., Panday, A. K., Lawrence, M. G., Kim, S. W., Sinha, V.,
Kang, S. C., Naja, M., Park, J. S., Hoor, P., Holben, B., Sharma, R. K.,
Mues, A., Mahata, K. S., Bhardwaj, P., Sarkar, C., Rupakheti, D.,
Regmi, R. P., and Gustafsson, Ö.: Air pollution in the Himalayan
foothills: overview of the SusKat-ABC international air pollution measurement
campaign in Nepal, Atmos. Chem. Phys. Discuss., in preparation, 2016.
Ruuskanen, T. M., Müller, M., Schnitzhofer, R., Karl, T., Graus, M.,
Bamberger, I., Hörtnagl, L., Brilli, F., Wohlfahrt, G., and Hansel, A.:
Eddy covariance VOC emission and deposition fluxes above grassland using
PTR-TOF, Atmos. Chem. Phys., 11, 611–625,
https://doi.org/10.5194/acp-11-611-2011,
2011.
Sarkar, C., Kumar, V., and Sinha, V.: Massive emissions of carcinogenic
benzenoids from paddy residue burning in North India, Curr. Sci. India, 104,
1703–1709, 2013.
Sarkar, C., Sinha, V., Rupakheti, M., Panday, A. K., Bhave, P., Sinha, B.,
and Lawrence, M. G.: Source apportionment of VOCs in the Kathmandu Valley
during the SusKat-ABC international field campaign using positive matrix
factorization, Atmos. Chem. Phys. Discuss., in preparation, 2016.
Sasaki, J., Aschmann, S. M., Kwok, E. S. C., Atkinson, R., and Arey, J.:
Products of the gas-phase OH and NO3 radical-initiated reactions of
naphthalene, Environ. Sci. Technol., 31, 3173–3179,
https://doi.org/10.1021/es9701523, 1997.
Schmitz, R.: Modelling of air pollution dispersion in Santiago de Chile,
Atmos. Environ., 39, 2035–2047,
https://doi.org/10.1016/j.atmosenv.2004.12.033,
2005.
Seco, R., Peñuelas, J., Filella, I., Llusià, J., Molowny-Horas, R.,
Schallhart, S., Metzger, A., Müller, M., and Hansel, A.: Contrasting
winter and summer VOC mixing ratios at a forest site in the Western
Mediterranean Basin: the effect of local biogenic emissions, Atmos. Chem.
Phys., 11, 13161–13179,
https://doi.org/10.5194/acp-11-13161-2011,
2011.
Sekimoto, K., Inomata, S., Tanimoto, H., Fushimi, A., Fujitani, Y., Sato, K.,
and Yamada, H.: Characterization of nitromethane emission from automotive
exhaust, Atmos. Environ., 81, 523–531,
https://doi.org/10.1016/j.atmosenv.2013.09.031,
2013.
Sharma, R. K., Bhattarai, B. K., Sapkota, B. K., Gewali, M. B., and
Kjeldstad, B.: Black carbon aerosols variation in Kathmandu Valley, Nepal,
Atmos. Environ., 63, 282–288,
https://doi.org/10.1016/j.atmosenv.2012.09.023,
2012.
Sharma, U. K., Kajii, Y., and Akimoto, H.: Characterization of NMHCs in
downtown urban center Kathmandu and rural site Nagarkot in Nepal, Atmos.
Environ., 34, 3297–3307,
https://doi.org/10.1016/S1352-2310(99)00485-9,
2000.
Simon, V., Dumergues, L., Bouchou, P., Torres, L., and Lopez, A.: Isoprene
emission rates and fluxes measured above a Mediterranean oak (Quercus
pubescens) forest, Atmos. Res., 74, 49–63,
https://doi.org/10.1016/j.atmosres.2004.04.005,
2005.
Singh, H. B., Kanakidou, M., Crutzen, P. J., and Jacob, D. J.: High
concentrations and photochemical fate of oxygenated hydrocarbons in the
global troposphere, Nature, 378, 50–54, 1995.
Sinha, V., Williams, J., Meyerhöfer, M., Riebesell, U., Paulino, A. I.,
and Larsen, A.: Air-sea fluxes of methanol, acetone, acetaldehyde, isoprene
and DMS from a Norwegian fjord following a phytoplankton bloom in a mesocosm
experiment, Atmos. Chem. Phys., 7, 739–755,
https://doi.org/10.5194/acp-7-739-2007,
2007.
Sinha, V., Williams, J., Lelieveld, J., Ruuskanen, T. M., Kajos, M. K.,
Patokoski, J., Hellen, H., Hakola, H., Mogensen, D., Boy, M., Rinne, J., and
Kulmala, M.: OH Reactivity Measurements within a Boreal Forest: Evidence for
Unknown Reactive Emissions, Environ. Sci. Technol., 44, 6614–6620,
https://doi.org/10.1021/es101780b, 2010.
Sinha, V., Williams, J., Diesch, J. M., Drewnick, F., Martinez, M.,
Harder, H., Regelin, E., Kubistin, D., Bozem, H., Hosaynali-Beygi, Z.,
Fischer, H., Andrés-Hernández, M. D., Kartal, D., Adame, J. A., and
Lelieveld, J.: Constraints on instantaneous ozone production rates and
regimes during DOMINO derived using in-situ OH reactivity measurements,
Atmos. Chem. Phys., 12, 7269–7283,
https://doi.org/10.5194/acp-12-7269-2012,
2012.
Sinha, V., Kumar, V., and Sarkar, C.: Chemical composition of pre-monsoon air
in the Indo-Gangetic Plain measured using a new air quality facility and
PTR-MS: high surface ozone and strong influence of biomass burning, Atmos.
Chem. Phys., 14, 5921–5941,
https://doi.org/10.5194/acp-14-5921-2014,
2014.
Sommariva, R., de Gouw, J. A., Trainer, M., Atlas, E., Goldan, P. D.,
Kuster, W. C., Warneke, C., and Fehsenfeld, F. C.: Emissions and
photochemistry of oxygenated VOCs in urban plumes in the Northeastern United
States, Atmos. Chem. Phys., 11, 7081–7096,
https://doi.org/10.5194/acp-11-7081-2011,
2011.
Staehelin, J., Keller, C., Stahel, W., Schläpfer, K., and Wunderli, S.:
Emission factors from road traffic from a tunnel study (Gubrist tunnel,
Switzerland). Part III: Results of organic compounds, SO2 and speciation
of organic exhaust emission, Atmos. Environ., 32, 999–1009,
https://doi.org/10.1016/S1352-2310(97)00339-7,
1998.
Stemmler, K., Bugmann, S., Buchmann, B., Reimann, S., and Staehelin, J.:
Large decrease of VOC emissions of Switzerland's car fleet during the past
decade: results from a highway tunnel study, Atmos. Environ., 39, 1009–1018,
https://doi.org/10.1016/j.atmosenv.2004.10.010,
2005.
Stockwell, C. E., Veres, P. R., Williams, J., and Yokelson, R. J.:
Characterization of biomass burning emissions from cooking fires, peat, crop
residue, and other fuels with high-resolution proton-transfer-reaction
time-of-flight mass spectrometry, Atmos. Chem. Phys., 15, 845–865,
https://doi.org/10.5194/acp-15-845-2015,
2015.
Stone, E. A., Schauer, J. J., Pradhan, B. B., Dangol, P. M., Habib, G.,
Venkataraman, C., and Ramanathan, V.: Characterization of emissions from
South Asian biofuels and application to source apportionment of carbonaceous
aerosol in the Himalayas, J. Geophys. Res.-Atmos., 115, D06301,
https://doi.org/10.1029/2009jd011881,
2010.
Tani, A., Hayward, S., Hansel, A., and Hewitt, C. N.: Effect of water vapour
pressure on monoterpene measurements using proton transfer reaction-mass
spectrometry (PTR-MS), Int. J. Mass Spectrom., 239, 161–169,
https://doi.org/10.1016/j.ijms.2004.07.020,
2004.
Taylor, W. D., Allston, T. D., Moscato, M. J., Fazekas, G. B., Kozlowski, R.,
and Takacs, G. A.: Atmospheric photodissociation lifetimes for nitromethane,
methyl nitrite, and methyl nitrate, Int. J. Chem. Kinet., 12, 231–240,
https://doi.org/10.1002/kin.550120404,
1980.
Tsai, S. M., Zhang, J., Smith, K. R., Ma, Y., Rasmussen, R. A., and
Khalil, M. A. K.: Characterization of non-methane hydrocarbons emitted from
various cookstoves used in China, Environ. Sci. Technol., 37, 2869–2877,
https://doi.org/10.1021/es026232a, 2003.
Wang, Z., Nicholls, S. J., Rodriguez, E. R., Kummu, O., Hórkko, S.,
Barnard, J., Reynolds, W. F., Topol, E. J., DiDonato, J. A., and
Hazen, S. L.: Protein carbamylation links infammation,smoking, uremia, and
atherogenesis, Nat. Med., 13, 1176–1184, 2007
Warneck, P. and Williams, J.: The Atmospheric Chemist's Companion: Numerical
Data for use in the Atmospheric Sciences, Springer, Dordrecht, Heidelberg,
London, New York, 1, 1–436,
https://doi.org/10.1007/978-94-007-2275-0,
2012.
Warneke, C., Roberts, J. M., Veres, P., Gilman, J., Kuster, W. C.,
Burling, I., Yokelson, R., and de Gouw, J. A.: VOC identification and
inter-comparison from laboratory biomass burning using PTR-MS and PIT-MS,
Int. J. Mass Spectrom., 303, 6–14,
https://doi.org/10.1016/j.ijms.2010.12.002,
2011.
Wentzell, J. J. B., Liggio, J., Li, S. M., Vlasenko, A., Staebler, R.,
Lu, G., Poitras, M. J., Chan, T., and Brook, J. R.: Measurements of gas phase
acids in diesel exhaust: a relevant source of HNCO?, Environ. Sci. Technol.,
47, 7663–7671,
https://doi.org/10.1021/es401127j, 2013.
WHO Guidelines for Indoor Air Quality: Selected Pollutants, edited by:
Theakston, F., World Health Organization: WHO Regional Office for Europe,
Copenhagen, Denmark, 1–454, 2010.
Yassaa, N., Meklati, B. Y., Brancaleoni, E., Frattoni, M., and Ciccioli, P.:
Polar and non-polar volatile organic compounds (VOCs) in urban Algiers and
saharian sites of Algeria, Atmos. Environ., 35, 787–801,
https://doi.org/10.1016/S1352-2310(00)00238-7,
2001.
Yokelson, R. J., Burling, I. R., Gilman, J. B., Warneke, C.,
Stockwell, C. E., de Gouw, J., Akagi, S. K., Urbanski, S. P., Veres, P.,
Roberts, J. M., Kuster, W. C., Reardon, J., Griffith, D. W. T.,
Johnson, T. J., Hosseini, S., Miller, J. W., Cocker III, D. R., Jung, H., and
Weise, D. R.: Coupling field and laboratory measurements to estimate the
emission factors of identified and unidentified trace gases for prescribed
fires, Atmos. Chem. Phys., 13, 89–116,
https://doi.org/10.5194/acp-13-89-2013,
2013.
Yoshino, A., Nakashima, Y., Miyazaki, K., Kato, S., Suthawaree, J.,
Shimo, N., Matsunaga, S., Chatani, S., Apel, E., Greenberg, J., Guenther, A.,
Ueno, H., Sasaki, H., Hoshi, J. Y., Yokota, H., Ishii, K., and Kajii, Y.: Air
quality diagnosis from comprehensive observations of total OH reactivity and
reactive trace species in urban central Tokyo, Atmos. Environ., 49, 51–59,
https://doi.org/10.1016/j.atmosenv.2011.12.029,
2012.
Young, P. J., Emmons, L. K., Roberts, J. M., Lamarque, J. F., Wiedinmyer, C.,
Veres, P., and VandenBoer, T. C.: Isocyanic acid in a global chemistry
transport model: tropospheric distribution, budget, and identification of
regions with potential health impacts, J. Geophys. Res.-Atmos., 117, D10308,
https://doi.org/10.1029/2011jd017393,
2012.
Yu, Y., Panday, A., Hodson, E., Galle, B., and Prinn, R.: Monocyclic aromatic
hydrocarbons in Kathmandu during the winter season, Water Air Soil Poll.,
191, 71–81,
https://doi.org/10.1007/s11270-007-9607-6,
2008.
Yu, Y., Galle, B., Panday, A., Hodson, E., Prinn, R., and Wang, S.:
Observations of high rates of NO2-HONO conversion in the nocturnal
atmospheric boundary layer in Kathmandu, Nepal, Atmos. Chem. Phys., 9,
6401–6415,
https://doi.org/10.5194/acp-9-6401-2009,
2009.
Zhang, Z., Lin, L., and Wang, L.: Atmospheric oxidation mechanism of
naphthalene initiated by OH radical. A theoretical study, Phys. Chem. Chem.
Phys., 14, 2645–2650,
https://doi.org/10.1039/c2cp23271e, 2012.
Zhao, R., Lee, A. K. Y., Wentzell, J. J. B., McDonald, A. M.,
Toom-Sauntry, D., Leaitch, W. R., Modini, R. L., Corrigan, A. L.,
Russell, L. M., Noone, K. J., Schroder, J. C., Bertram, A. K.,
Hawkins, L. N., Abbatt, J. P. D., and Liggio, J.: Cloud partitioning of
isocyanic acid (HNCO) and evidence of secondary source of HNCO in ambient
air, Geophys. Res. Lett., 41, 6962–6969,
https://doi.org/10.1002/2014gl061112,
2014.
Short summary
First deployment of PTR-TOF-MS in South Asia. High acetaldehyde and biogenic isoprene concentrations detected even in winter in the Kathmandu Valley. Isocyanic acid, formamide, acetamide, naphthalene and nitromethane were detected for the first time in South Asian air. Oxygenated VOCs and isoprene-dominated OH reactivity and ozone production potentials (> 68 % OPP). Regulation of emissions from biomass co-fired brick kilns' by cleaner technology would improve air quality of the valley.
First deployment of PTR-TOF-MS in South Asia. High acetaldehyde and biogenic isoprene...
Altmetrics
Final-revised paper
Preprint