Articles | Volume 16, issue 3
https://doi.org/10.5194/acp-16-1789-2016
https://doi.org/10.5194/acp-16-1789-2016
Research article
 | 
16 Feb 2016
Research article |  | 16 Feb 2016

Aerosol optical properties derived from the DRAGON-NE Asia campaign, and implications for a single-channel algorithm to retrieve aerosol optical depth in spring from Meteorological Imager (MI) on-board the Communication, Ocean, and Meteorological Satellite (COMS)

M. Kim, J. Kim, U. Jeong, W. Kim, H. Hong, B. Holben, T. F. Eck, J. H. Lim, C. K. Song, S. Lee, and C.-Y. Chung

Related authors

An overview of mesoscale aerosol processes, comparisons, and validation studies from DRAGON networks
Brent N. Holben, Jhoon Kim, Itaru Sano, Sonoyo Mukai, Thomas F. Eck, David M. Giles, Joel S. Schafer, Aliaksandr Sinyuk, Ilya Slutsker, Alexander Smirnov, Mikhail Sorokin, Bruce E. Anderson, Huizheng Che, Myungje Choi, James H. Crawford, Richard A. Ferrare, Michael J. Garay, Ukkyo Jeong, Mijin Kim, Woogyung Kim, Nichola Knox, Zhengqiang Li, Hwee S. Lim, Yang Liu, Hal Maring, Makiko Nakata, Kenneth E. Pickering, Stuart Piketh, Jens Redemann, Jeffrey S. Reid, Santo Salinas, Sora Seo, Fuyi Tan, Sachchida N. Tripathi, Owen B. Toon, and Qingyang Xiao
Atmos. Chem. Phys., 18, 655–671, https://doi.org/10.5194/acp-18-655-2018,https://doi.org/10.5194/acp-18-655-2018, 2018
Short summary
GOCI Yonsei aerosol retrieval version 2 products: an improved algorithm and error analysis with uncertainty estimation from 5-year validation over East Asia
Myungje Choi, Jhoon Kim, Jaehwa Lee, Mijin Kim, Young-Je Park, Brent Holben, Thomas F. Eck, Zhengqiang Li, and Chul H. Song
Atmos. Meas. Tech., 11, 385–408, https://doi.org/10.5194/amt-11-385-2018,https://doi.org/10.5194/amt-11-385-2018, 2018
Short summary
GOCI Yonsei Aerosol Retrieval (YAER) algorithm and validation during the DRAGON-NE Asia 2012 campaign
Myungje Choi, Jhoon Kim, Jaehwa Lee, Mijin Kim, Young-Je Park, Ukkyo Jeong, Woogyung Kim, Hyunkee Hong, Brent Holben, Thomas F. Eck, Chul H. Song, Jae-Hyun Lim, and Chang-Keun Song
Atmos. Meas. Tech., 9, 1377–1398, https://doi.org/10.5194/amt-9-1377-2016,https://doi.org/10.5194/amt-9-1377-2016, 2016
Short summary

Related subject area

Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Long-term observations of black carbon and carbon monoxide in the Poker Flat Research Range, central Alaska, with a focus on forest wildfire emissions
Takeshi Kinase, Fumikazu Taketani, Masayuki Takigawa, Chunmao Zhu, Yongwon Kim, Petr Mordovskoi, and Yugo Kanaya
Atmos. Chem. Phys., 25, 143–156, https://doi.org/10.5194/acp-25-143-2025,https://doi.org/10.5194/acp-25-143-2025, 2025
Short summary
High ice-nucleating particle concentrations associated with Arctic haze in springtime cold-air outbreaks
Erin N. Raif, Sarah L. Barr, Mark D. Tarn, James B. McQuaid, Martin I. Daily, Steven J. Abel, Paul A. Barrett, Keith N. Bower, Paul R. Field, Kenneth S. Carslaw, and Benjamin J. Murray
Atmos. Chem. Phys., 24, 14045–14072, https://doi.org/10.5194/acp-24-14045-2024,https://doi.org/10.5194/acp-24-14045-2024, 2024
Short summary
CCN estimations at a high-altitude remote site: role of organic aerosol variability and hygroscopicity
Fernando Rejano, Andrea Casans, Marta Via, Juan Andrés Casquero-Vera, Sonia Castillo, Hassan Lyamani, Alberto Cazorla, Elisabeth Andrews, Daniel Pérez-Ramírez, Andrés Alastuey, Francisco Javier Gómez-Moreno, Lucas Alados-Arboledas, Francisco José Olmo, and Gloria Titos
Atmos. Chem. Phys., 24, 13865–13888, https://doi.org/10.5194/acp-24-13865-2024,https://doi.org/10.5194/acp-24-13865-2024, 2024
Short summary
Aerosol hygroscopicity over the southeast Atlantic Ocean during the biomass burning season – Part 1: From the perspective of scattering enhancement​​​​​​​
Lu Zhang, Michal Segal-Rozenhaimer, Haochi Che, Caroline Dang, Junying Sun, Ye Kuang, Paola Formenti, and Steven G. Howell
Atmos. Chem. Phys., 24, 13849–13864, https://doi.org/10.5194/acp-24-13849-2024,https://doi.org/10.5194/acp-24-13849-2024, 2024
Short summary
Spatial, temporal, and meteorological impact of the 26 February 2023 dust storm: increase in particulate matter concentrations across New Mexico and West Texas
Mary C. Robinson, Kaitlin Schueth, and Karin Ardon-Dryer
Atmos. Chem. Phys., 24, 13733–13750, https://doi.org/10.5194/acp-24-13733-2024,https://doi.org/10.5194/acp-24-13733-2024, 2024
Short summary

Cited articles

Bevan, S. L., North, P. R. J., Los, S. O., and Grey, W. M. F.: A global dataset of atmospheric aerosol optical depth and surface reflectance from AATSR, Remote Sens. Environ., 116, 199–210, https://doi.org/10.1016/j.rse.2011.05.024, 2012.
Castanho, A. D. D. A., Martins, J. V., and Artaxo, P.: MODIS aerosol optical depth Retrievals with high spatial resolution over an urban area using the critical reflectance, J. Geophys. Res.-Atmos., 113, D02201, https://doi.org/10.1029/2007jd008751, 2008.
Choi, M., Kim, J., Lee, J., Kim, M., Je Park, Y., Jeong, U., Kim, W., Holben, B., Eck, T. F., Lim, J. H., and Song, C. K.: GOCI Yonsei Aerosol Retrieval (YAER) algorithm and validation during DRAGON-NE Asia 2012 campaign, Atmos. Meas. Tech. Discuss., 8, 9565–9609, https://doi.org/10.5194/amtd-8-9565-2015, 2015.
Deroubaix, A., Martiny, N., Chiapello, I., and Marticorena, B.: Suitability of OMI aerosol index to reflect mineral dust surface conditions: Preliminary application for studying the link with meningitis epidemics in the sahel, Remote Sens. Environ., 133, 116–127, https://doi.org/10.1016/j.rse.2013.02.009, 2013.
Dubovik, O. and King, M. D.: A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements, J. Geophys. Res.-Atmos., 105, 20673–20696, https://doi.org/10.1029/2000jd900282, 2000.
Download
Short summary
An aerosol model optimized for East Asia is improved by applying inversion data from the DRAGON-NE Asia 2012 campaign, and is applied to an AOD retrieval algorithm using single visible measurements from a GEO satellite. In sensitivity tests, a 4 % overestimation in SSA can cause an underestimation in AOD of over 20 %. In accordance with the test, the overestimating tendency of AOD was improved by 8 % after the modification of the aerosol model.
Altmetrics
Final-revised paper
Preprint