Articles | Volume 16, issue 3
https://doi.org/10.5194/acp-16-1789-2016
https://doi.org/10.5194/acp-16-1789-2016
Research article
 | 
16 Feb 2016
Research article |  | 16 Feb 2016

Aerosol optical properties derived from the DRAGON-NE Asia campaign, and implications for a single-channel algorithm to retrieve aerosol optical depth in spring from Meteorological Imager (MI) on-board the Communication, Ocean, and Meteorological Satellite (COMS)

M. Kim, J. Kim, U. Jeong, W. Kim, H. Hong, B. Holben, T. F. Eck, J. H. Lim, C. K. Song, S. Lee, and C.-Y. Chung

Related authors

An overview of mesoscale aerosol processes, comparisons, and validation studies from DRAGON networks
Brent N. Holben, Jhoon Kim, Itaru Sano, Sonoyo Mukai, Thomas F. Eck, David M. Giles, Joel S. Schafer, Aliaksandr Sinyuk, Ilya Slutsker, Alexander Smirnov, Mikhail Sorokin, Bruce E. Anderson, Huizheng Che, Myungje Choi, James H. Crawford, Richard A. Ferrare, Michael J. Garay, Ukkyo Jeong, Mijin Kim, Woogyung Kim, Nichola Knox, Zhengqiang Li, Hwee S. Lim, Yang Liu, Hal Maring, Makiko Nakata, Kenneth E. Pickering, Stuart Piketh, Jens Redemann, Jeffrey S. Reid, Santo Salinas, Sora Seo, Fuyi Tan, Sachchida N. Tripathi, Owen B. Toon, and Qingyang Xiao
Atmos. Chem. Phys., 18, 655–671, https://doi.org/10.5194/acp-18-655-2018,https://doi.org/10.5194/acp-18-655-2018, 2018
Short summary
GOCI Yonsei aerosol retrieval version 2 products: an improved algorithm and error analysis with uncertainty estimation from 5-year validation over East Asia
Myungje Choi, Jhoon Kim, Jaehwa Lee, Mijin Kim, Young-Je Park, Brent Holben, Thomas F. Eck, Zhengqiang Li, and Chul H. Song
Atmos. Meas. Tech., 11, 385–408, https://doi.org/10.5194/amt-11-385-2018,https://doi.org/10.5194/amt-11-385-2018, 2018
Short summary
GOCI Yonsei Aerosol Retrieval (YAER) algorithm and validation during the DRAGON-NE Asia 2012 campaign
Myungje Choi, Jhoon Kim, Jaehwa Lee, Mijin Kim, Young-Je Park, Ukkyo Jeong, Woogyung Kim, Hyunkee Hong, Brent Holben, Thomas F. Eck, Chul H. Song, Jae-Hyun Lim, and Chang-Keun Song
Atmos. Meas. Tech., 9, 1377–1398, https://doi.org/10.5194/amt-9-1377-2016,https://doi.org/10.5194/amt-9-1377-2016, 2016
Short summary

Related subject area

Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Measurement report: Optical and structural properties of atmospheric water-soluble organic carbon in China – insights from multi-site spectroscopic measurements
Haibiao Chen, Caiqing Yan, Liubin Huang, Lin Du, Yang Yue, Xinfeng Wang, Qingcai Chen, Mingjie Xie, Junwen Liu, Fengwen Wang, Shuhong Fang, Qiaoyun Yang, Hongya Niu, Mei Zheng, Yan Wu, and Likun Xue
Atmos. Chem. Phys., 25, 3647–3667, https://doi.org/10.5194/acp-25-3647-2025,https://doi.org/10.5194/acp-25-3647-2025, 2025
Short summary
Measurement report: The variation properties of aerosol hygroscopic growth related to chemical composition during new particle formation days in a coastal city of Southeast China
Lingjun Li, Mengren Li, Xiaolong Fan, Yuping Chen, Ziyi Lin, Anqi Hou, Siqing Zhang, Ronghua Zheng, and Jinsheng Chen
Atmos. Chem. Phys., 25, 3669–3685, https://doi.org/10.5194/acp-25-3669-2025,https://doi.org/10.5194/acp-25-3669-2025, 2025
Short summary
In situ vertical observations of the layered structure of air pollution in a continental high-latitude urban boundary layer during winter
Roman Pohorsky, Andrea Baccarini, Natalie Brett, Brice Barret, Slimane Bekki, Gianluca Pappaccogli, Elsa Dieudonné, Brice Temime-Roussel, Barbara D'Anna, Meeta Cesler-Maloney, Antonio Donateo, Stefano Decesari, Kathy S. Law, William R. Simpson, Javier Fochesatto, Steve R. Arnold, and Julia Schmale
Atmos. Chem. Phys., 25, 3687–3715, https://doi.org/10.5194/acp-25-3687-2025,https://doi.org/10.5194/acp-25-3687-2025, 2025
Short summary
Size-resolved hygroscopicity and volatility properties of ambient urban aerosol particles measured by a volatility hygroscopicity tandem differential mobility analyzer system in Beijing
Aoyuan Yu, Xiaojing Shen, Qianli Ma, Jiayuan Lu, Xinyao Hu, Yangmei Zhang, Quan Liu, Linlin Liang, Lei Liu, Shuo Liu, Hongfei Tong, Huizheng Che, Xiaoye Zhang, and Junying Sun
Atmos. Chem. Phys., 25, 3389–3412, https://doi.org/10.5194/acp-25-3389-2025,https://doi.org/10.5194/acp-25-3389-2025, 2025
Short summary
Terrestrial runoff is an important source of biological ice-nucleating particles in Arctic marine systems
Corina Wieber, Lasse Z. Jensen, Leendert Vergeynst, Lorenz Meire, Thomas Juul-Pedersen, Kai Finster, and Tina Šantl-Temkiv
Atmos. Chem. Phys., 25, 3327–3346, https://doi.org/10.5194/acp-25-3327-2025,https://doi.org/10.5194/acp-25-3327-2025, 2025
Short summary

Cited articles

Bevan, S. L., North, P. R. J., Los, S. O., and Grey, W. M. F.: A global dataset of atmospheric aerosol optical depth and surface reflectance from AATSR, Remote Sens. Environ., 116, 199–210, https://doi.org/10.1016/j.rse.2011.05.024, 2012.
Castanho, A. D. D. A., Martins, J. V., and Artaxo, P.: MODIS aerosol optical depth Retrievals with high spatial resolution over an urban area using the critical reflectance, J. Geophys. Res.-Atmos., 113, D02201, https://doi.org/10.1029/2007jd008751, 2008.
Choi, M., Kim, J., Lee, J., Kim, M., Je Park, Y., Jeong, U., Kim, W., Holben, B., Eck, T. F., Lim, J. H., and Song, C. K.: GOCI Yonsei Aerosol Retrieval (YAER) algorithm and validation during DRAGON-NE Asia 2012 campaign, Atmos. Meas. Tech. Discuss., 8, 9565–9609, https://doi.org/10.5194/amtd-8-9565-2015, 2015.
Deroubaix, A., Martiny, N., Chiapello, I., and Marticorena, B.: Suitability of OMI aerosol index to reflect mineral dust surface conditions: Preliminary application for studying the link with meningitis epidemics in the sahel, Remote Sens. Environ., 133, 116–127, https://doi.org/10.1016/j.rse.2013.02.009, 2013.
Dubovik, O. and King, M. D.: A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements, J. Geophys. Res.-Atmos., 105, 20673–20696, https://doi.org/10.1029/2000jd900282, 2000.
Download
Short summary
An aerosol model optimized for East Asia is improved by applying inversion data from the DRAGON-NE Asia 2012 campaign, and is applied to an AOD retrieval algorithm using single visible measurements from a GEO satellite. In sensitivity tests, a 4 % overestimation in SSA can cause an underestimation in AOD of over 20 %. In accordance with the test, the overestimating tendency of AOD was improved by 8 % after the modification of the aerosol model.
Share
Altmetrics
Final-revised paper
Preprint