Articles | Volume 15, issue 13
https://doi.org/10.5194/acp-15-7195-2015
https://doi.org/10.5194/acp-15-7195-2015
Research article
 | 
01 Jul 2015
Research article |  | 01 Jul 2015

A simple formulation of the CH2O photolysis quantum yields

E.-P. Röth and D. H. Ehhalt

Related authors

Quantum Yields of CHDO above 300 nm
Ernst-Peter Röth and Luc Vereecken
EGUsphere, https://doi.org/10.5194/egusphere-2023-2254,https://doi.org/10.5194/egusphere-2023-2254, 2023
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Zonal variability of methane trends derived from satellite data
Jonas Hachmeister, Oliver Schneising, Michael Buchwitz, John P. Burrows, Justus Notholt, and Matthias Buschmann
Atmos. Chem. Phys., 24, 577–595, https://doi.org/10.5194/acp-24-577-2024,https://doi.org/10.5194/acp-24-577-2024, 2024
Short summary
Weekly derived top-down volatile-organic-compound fluxes over Europe from TROPOMI HCHO data from 2018 to 2021
Glenn-Michael Oomen, Jean-François Müller, Trissevgeni Stavrakou, Isabelle De Smedt, Thomas Blumenstock, Rigel Kivi, Maria Makarova, Mathias Palm, Amelie Röhling, Yao Té, Corinne Vigouroux, Martina M. Friedrich, Udo Frieß, François Hendrick, Alexis Merlaud, Ankie Piters, Andreas Richter, Michel Van Roozendael, and Thomas Wagner
Atmos. Chem. Phys., 24, 449–474, https://doi.org/10.5194/acp-24-449-2024,https://doi.org/10.5194/acp-24-449-2024, 2024
Short summary
Current status of model predictions of volatile organic compounds and impacts on surface ozone predictions during summer in China
Yongliang She, Jingyi Li, Xiaopu Lyu, Hai Guo, Momei Qin, Xiaodong Xie, Kangjia Gong, Fei Ye, Jianjiong Mao, Lin Huang, and Jianlin Hu
Atmos. Chem. Phys., 24, 219–233, https://doi.org/10.5194/acp-24-219-2024,https://doi.org/10.5194/acp-24-219-2024, 2024
Short summary
Utility of Geostationary Lightning Mapper-derived lightning NO emission estimates in air quality modeling studies
Peiyang Cheng, Arastoo Pour-Biazar, Yuling Wu, Shi Kuang, Richard T. McNider, and William J. Koshak
Atmos. Chem. Phys., 24, 41–63, https://doi.org/10.5194/acp-24-41-2024,https://doi.org/10.5194/acp-24-41-2024, 2024
Short summary
The suitability of atmospheric oxygen measurements to constrain western European fossil-fuel CO2 emissions and their trends
Christian Rödenbeck, Karina E. Adcock, Markus Eritt, Maksym Gachkivskyi, Christoph Gerbig, Samuel Hammer, Armin Jordan, Ralph F. Keeling, Ingeborg Levin, Fabian Maier, Andrew C. Manning, Heiko Moossen, Saqr Munassar, Penelope A. Pickers, Michael Rothe, Yasunori Tohjima, and Sönke Zaehle
Atmos. Chem. Phys., 23, 15767–15782, https://doi.org/10.5194/acp-23-15767-2023,https://doi.org/10.5194/acp-23-15767-2023, 2023
Short summary

Cited articles

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055, https://doi.org/10.5194/acp-6-3625-2006, 2006.
Bowman, J. M. and Shepler, B. C.: Roaming Radicals, Ann. Rev. Phys. Chem., 62, 531–553, 2011.
Christoffel, K. M. and Bowman, J. M.: Three Reaction Pathways in the H + HCO → H2 + CO Reaction, J. Phys. Chem. A, 113, 4138–4144, 2009.
Clark, J. H., Moore, C. B., and Nogar, N. S.: The photochemistry of formaldehyde: Absolute quantum yields, radical reactions, and NO reactions, J. Chem. Phys., 68, 1264–1271, 1978.
DeMore, W. B., Sander, S. P., Howard, C. J., Ravishankara, A. R., Golden, D. M., Kolb, C. E., Hampson, R. F., Kurylo, M. J., and Molina, M. J.: NASA panel for data evaluation, chemical kinetics and photochemical data evaluation for use in stratospheric modeling, JPL Publication 97-4, 1997.
Download
Short summary
We present a new way to formulate the quantum yields of formaldehyde with several advantages. The formulation is simpler and has fewer parameters than those used so far, and the parameters have a physical meaning. It provides a template for the formulation of other quantum yields, e.g., of the isotopologues of formaldehyde. In addition, we offer a careful review of published measurements. It is also advantageous that the formulation can easily be modified to include temperature effects.
Altmetrics
Final-revised paper
Preprint