Articles | Volume 13, issue 14
https://doi.org/10.5194/acp-13-6807-2013
https://doi.org/10.5194/acp-13-6807-2013
Research article
 | 
22 Jul 2013
Research article |  | 22 Jul 2013

Application of WRF/Chem-MADRID and WRF/Polyphemus in Europe – Part 1: Model description, evaluation of meteorological predictions, and aerosol–meteorology interactions

Y. Zhang, K. Sartelet, S.-Y. Wu, and C. Seigneur

Related authors

Biomass-burning smoke's properties and its interactions with marine stratocumulus clouds in WRF-CAM5 and southeastern Atlantic field campaigns
Calvin Howes, Pablo E. Saide, Hugh Coe, Amie Dobracki, Steffen Freitag, Jim M. Haywood, Steven G. Howell, Siddhant Gupta, Janek Uin, Mary Kacarab, Chongai Kuang, L. Ruby Leung, Athanasios Nenes, Greg M. McFarquhar, James Podolske, Jens Redemann, Arthur J. Sedlacek, Kenneth L. Thornhill, Jenny P. S. Wong, Robert Wood, Huihui Wu, Yang Zhang, Jianhao Zhang, and Paquita Zuidema
Atmos. Chem. Phys., 23, 13911–13940, https://doi.org/10.5194/acp-23-13911-2023,https://doi.org/10.5194/acp-23-13911-2023, 2023
Short summary
Projected increases in wildfires may challenge regulatory curtailment of PM2.5 over the eastern US by 2050
Chandan Sarangi, Yun Qian, L. Ruby Leung, Yang Zhang, Yufei Zou, and Yuhang Wang
Atmos. Chem. Phys., 23, 1769–1783, https://doi.org/10.5194/acp-23-1769-2023,https://doi.org/10.5194/acp-23-1769-2023, 2023
Short summary
MUNICH v2.0: a street-network model coupled with SSH-aerosol (v1.2) for multi-pollutant modelling
Youngseob Kim, Lya Lugon, Alice Maison, Thibaud Sarica, Yelva Roustan, Myrto Valari, Yang Zhang, Michel André, and Karine Sartelet
Geosci. Model Dev., 15, 7371–7396, https://doi.org/10.5194/gmd-15-7371-2022,https://doi.org/10.5194/gmd-15-7371-2022, 2022
Short summary
Interpreting machine learning prediction of fire emissions and comparison with FireMIP process-based models
Sally S.-C. Wang, Yun Qian, L. Ruby Leung, and Yang Zhang
Atmos. Chem. Phys., 22, 3445–3468, https://doi.org/10.5194/acp-22-3445-2022,https://doi.org/10.5194/acp-22-3445-2022, 2022
Short summary
Reduced-complexity air quality intervention modeling over China: the development of InMAPv1.6.1-China and a comparison with CMAQv5.2
Ruili Wu, Christopher W. Tessum, Yang Zhang, Chaopeng Hong, Yixuan Zheng, Xinyin Qin, Shigan Liu, and Qiang Zhang
Geosci. Model Dev., 14, 7621–7638, https://doi.org/10.5194/gmd-14-7621-2021,https://doi.org/10.5194/gmd-14-7621-2021, 2021
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Quantifying the impacts of marine aerosols over the southeast Atlantic Ocean using a chemical transport model: implications for aerosol–cloud interactions
Mashiat Hossain, Rebecca M. Garland, and Hannah M. Horowitz
Atmos. Chem. Phys., 24, 14123–14143, https://doi.org/10.5194/acp-24-14123-2024,https://doi.org/10.5194/acp-24-14123-2024, 2024
Short summary
Quantifying the impact of global nitrate aerosol on tropospheric composition fields and its production from lightning NOx
Ashok K. Luhar, Anthony C. Jones, and Jonathan M. Wilkinson
Atmos. Chem. Phys., 24, 14005–14028, https://doi.org/10.5194/acp-24-14005-2024,https://doi.org/10.5194/acp-24-14005-2024, 2024
Short summary
Rapid oxidation of phenolic compounds by O3 and HO: effects of the air–water interface and mineral dust in tropospheric chemical processes
Yanru Huo, Mingxue Li, Xueyu Wang, Jianfei Sun, Yuxin Zhou, Yuhui Ma, and Maoxia He
Atmos. Chem. Phys., 24, 12409–12423, https://doi.org/10.5194/acp-24-12409-2024,https://doi.org/10.5194/acp-24-12409-2024, 2024
Short summary
Modeling the contribution of leads to sea spray aerosol in the high Arctic
Rémy Lapere, Louis Marelle, Pierre Rampal, Laurent Brodeau, Christian Melsheimer, Gunnar Spreen, and Jennie L. Thomas
Atmos. Chem. Phys., 24, 12107–12132, https://doi.org/10.5194/acp-24-12107-2024,https://doi.org/10.5194/acp-24-12107-2024, 2024
Short summary
Importance of aerosol composition and aerosol vertical profiles in global spatial variation in the relationship between PM2.5 and aerosol optical depth
Haihui Zhu, Randall V. Martin, Aaron van Donkelaar, Melanie S. Hammer, Chi Li, Jun Meng, Christopher R. Oxford, Xuan Liu, Yanshun Li, Dandan Zhang, Inderjeet Singh, and Alexei Lyapustin
Atmos. Chem. Phys., 24, 11565–11584, https://doi.org/10.5194/acp-24-11565-2024,https://doi.org/10.5194/acp-24-11565-2024, 2024
Short summary

Cited articles

Abdul-Razzak, H. and Ghan, S. J.: A parameterization of aerosol activation. 3. Sectional representation, J. Geophys. Res., 107, D3, 4026, https://doi.org/10.1029/2001JD000483, 2002.
Aphekom (Improving Knowledge and Communication for Decision Making on Air Pollution and Health in Europe): Summary report of the Aphekom project, 2008–2011, Institute De Veille Sanitaire, 94415, Saint-Maurice Cedex, France, 2011.
Baklanov, A., Hänninen, O., Slørdal, L. H., Kukkonen, J., Bjergene, N., Fay, B., Finardi, S., Hoe, S. C., Jantunen, M., Karppinen, A., Rasmussen, A., Skouloudis, A., Sokhi, R. S., Sørensen, J. H., and Ødegaard, V.: Integrated systems for forecasting urban meteorology, air pollution and population exposure, Atmos. Chem. Phys., 7, 855–874, https://doi.org/10.5194/acp-7-855-2007, 2007.
Baklanov, A., Korsholm, U., Mahura, A., Petersen, C., and Gross, A.: ENVIRO-HIRLAM: on-line coupled modelling of urban meteorology and air pollution, Adv. Sci. Res., 2, 41–46, https://doi.org/10.5194/asr-2-41-2008, 2008.
Baklanov, A.: Chemical weather forecasting: a new concept of integrated modelling, Adv. Sci. Res., 4, 23–27, https://doi.org/10.5194/asr-4-23-2010, 2010.
Download
Altmetrics
Final-revised paper
Preprint