Articles | Volume 13, issue 6
https://doi.org/10.5194/acp-13-3345-2013
https://doi.org/10.5194/acp-13-3345-2013
Research article
 | 
25 Mar 2013
Research article |  | 25 Mar 2013

The global 3-D distribution of tropospheric aerosols as characterized by CALIOP

D. M. Winker, J. L. Tackett, B. J. Getzewich, Z. Liu, M. A. Vaughan, and R. R. Rogers

Related authors

A Level 3 Monthly Gridded Ice Cloud Dataset Derived from a Decade of CALIOP Measurements
David Winker, Xia Cai, Mark Vaughan, Anne Garnier, Brian Magill, Melody Avery, and Brian Getzewich
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-373,https://doi.org/10.5194/essd-2023-373, 2023
Revised manuscript accepted for ESSD
Short summary
Incorporation of aerosol into the COSPv2 satellite lidar simulator for climate model evaluation
Marine Bonazzola, Hélène Chepfer, Po-Lun Ma, Johannes Quaas, David M. Winker, Artem Feofilov, and Nick Schutgens
Geosci. Model Dev., 16, 1359–1377, https://doi.org/10.5194/gmd-16-1359-2023,https://doi.org/10.5194/gmd-16-1359-2023, 2023
Short summary
The CALIPSO version 4.5 stratospheric aerosol subtyping algorithm
Jason L. Tackett, Jayanta Kar, Mark A. Vaughan, Brian J. Getzewich, Man-Hae Kim, Jean-Paul Vernier, Ali H. Omar, Brian E. Magill, Michael C. Pitts, and David M. Winker
Atmos. Meas. Tech., 16, 745–768, https://doi.org/10.5194/amt-16-745-2023,https://doi.org/10.5194/amt-16-745-2023, 2023
Short summary
Assessing the benefits of Imaging Infrared Radiometer observations for the CALIOP version 4 cloud and aerosol discrimination algorithm
Thibault Vaillant de Guélis, Gérard Ancellet, Anne Garnier, Laurent C.-Labonnote, Jacques Pelon, Mark A. Vaughan, Zhaoyan Liu, and David M. Winker
Atmos. Meas. Tech., 15, 1931–1956, https://doi.org/10.5194/amt-15-1931-2022,https://doi.org/10.5194/amt-15-1931-2022, 2022
Short summary
Two-dimensional and multi-channel feature detection algorithm for the CALIPSO lidar measurements
Thibault Vaillant de Guélis, Mark A. Vaughan, David M. Winker, and Zhaoyan Liu
Atmos. Meas. Tech., 14, 1593–1613, https://doi.org/10.5194/amt-14-1593-2021,https://doi.org/10.5194/amt-14-1593-2021, 2021
Short summary

Related subject area

Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Quantifying the effects of the microphysical properties of black carbon on the determination of brown carbon using measurements at multiple wavelengths
Jie Luo, Dan Li, Yuanyuan Wang, Dandan Sun, Weizhen Hou, Jinghe Ren, Hailing Wu, Peng Zhou, and Jibing Qiu
Atmos. Chem. Phys., 24, 427–448, https://doi.org/10.5194/acp-24-427-2024,https://doi.org/10.5194/acp-24-427-2024, 2024
Short summary
An emerging aerosol climatology via remote sensing over Metro Manila, the Philippines
Genevieve Rose Lorenzo, Avelino F. Arellano, Maria Obiminda Cambaliza, Christopher Castro, Melliza Templonuevo Cruz, Larry Di Girolamo, Glenn Franco Gacal, Miguel Ricardo A. Hilario, Nofel Lagrosas, Hans Jarett Ong, James Bernard Simpas, Sherdon Niño Uy, and Armin Sorooshian
Atmos. Chem. Phys., 23, 10579–10608, https://doi.org/10.5194/acp-23-10579-2023,https://doi.org/10.5194/acp-23-10579-2023, 2023
Short summary
Ozone Monitoring Instrument (OMI) UV aerosol index data analysis over the Arctic region for future data assimilation and climate forcing applications
Blake T. Sorenson, Jianglong Zhang, Jeffrey S. Reid, Peng Xian, and Shawn L. Jaker
Atmos. Chem. Phys., 23, 7161–7175, https://doi.org/10.5194/acp-23-7161-2023,https://doi.org/10.5194/acp-23-7161-2023, 2023
Short summary
Monitoring multiple satellite aerosol optical depth (AOD) products within the Copernicus Atmosphere Monitoring Service (CAMS) data assimilation system
Sebastien Garrigues, Samuel Remy​​​​​​​, Julien Chimot, Melanie Ades, Antje Inness, Johannes Flemming, Zak Kipling, Istvan Laszlo, Angela Benedetti, Roberto Ribas, Soheila Jafariserajehlou, Bertrand Fougnie, Shobha Kondragunta, Richard Engelen, Vincent-Henri Peuch, Mark Parrington, Nicolas Bousserez, Margarita Vazquez Navarro, and Anna Agusti-Panareda
Atmos. Chem. Phys., 22, 14657–14692, https://doi.org/10.5194/acp-22-14657-2022,https://doi.org/10.5194/acp-22-14657-2022, 2022
Short summary
Comparisons between the distributions of dust and combustion aerosols in MERRA-2, FLEXPART, and CALIPSO and implications for deposition freezing over wintertime Siberia
Lauren M. Zamora, Ralph A. Kahn, Nikolaos Evangeliou, Christine D. Groot Zwaaftink, and Klaus B. Huebert
Atmos. Chem. Phys., 22, 12269–12285, https://doi.org/10.5194/acp-22-12269-2022,https://doi.org/10.5194/acp-22-12269-2022, 2022
Short summary

Cited articles

Burton, S. P., Ferrare, R. A., Hostetler, C. A., Hair, J. W., Rogers, R. R., Obland, M. D., Butler, C. F., Cook, A. L., Harper, D. B., and Froyd, K. D.: Aerosol classification using airborne High Spectral Resolution Lidar measurements – methodology and examples, Atmos. Meas. Tech., 5, 73–98, https://doi.org/10.5194/amt-5-73-2012, 2012.
Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N., Martin, R. V., Logan, J. A., Higurashi, A., and Nakajima, T.: Tropospheric Aerosol Optical Thickness from the GOCART Model and Comparisons with satellite and Sun photometer Measurements, J. Atmos. Sci., 59, 461–483, 2002.
Clarke, A. D. and Kapustin, V. N.: A Pacific aerosol survey. Part I: A decade of data on particle production, transport, evolution, and mixing in the troposphere, J. Atmos. Sci., 59, 363–382, 2002.
DeWeaver, E. and Bitz, C. M.: Atmospheric Circulation and Its Effect on Arctic Sea Ice in CCSM3 Simulations at Medium and High Resolution, J. Climate, 19, 2415–2436, 2006.
Fernald, F. G.: Analysis of atmospheric lidar observations: some comments, Appl. Opt., 23, 652–653, 1984.
Download
Altmetrics
Final-revised paper
Preprint