Articles | Volume 25, issue 13
https://doi.org/10.5194/acp-25-7403-2025
https://doi.org/10.5194/acp-25-7403-2025
Research article
 | 
14 Jul 2025
Research article |  | 14 Jul 2025

Analysis of a saline dust storm from the Aralkum Desert – Part 1: Consistency between multisensor satellite aerosol products

Xin Xi, Jun Wang, Zhendong Lu, Andrew M. Sayer, Jaehwa Lee, Robert C. Levy, Yujie Wang, Alexei Lyapustin, Hongqing Liu, Istvan Laszlo, Changwoo Ahn, Omar Torres, Sabur Abdullaev, James Limbacher, and Ralph A. Kahn

Related authors

Analysis of a saline dust storm from the Aralkum Desert – Part 2: Atmospheric flow precursors in the Euro-Atlantic region
Xin Xi
EGUsphere, https://doi.org/10.5194/egusphere-2025-2808,https://doi.org/10.5194/egusphere-2025-2808, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
The relative importance of wind and hydroclimate drivers in modulating wind-blown dust emissions in Earth system models
Xinzhu Li, Longlei Li, Yan Feng, and Xin Xi
EGUsphere, https://doi.org/10.5194/egusphere-2025-3013,https://doi.org/10.5194/egusphere-2025-3013, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Global aeolian dust variations and trends: a revisit of dust event and visibility observations from surface weather stations
Xin Xi
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-813,https://doi.org/10.5194/acp-2020-813, 2020
Preprint withdrawn

Related subject area

Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Atmospheric processing and aerosol aging responsible for observed increase in absorptivity of long-range-transported smoke over the southeast Atlantic
Abdulamid A. Fakoya, Jens Redemann, Pablo E. Saide, Lan Gao, Logan T. Mitchell, Calvin Howes, Amie Dobracki, Ian Chang, Gonzalo A. Ferrada, Kristina Pistone, Samuel E. Leblanc, Michal Segal-Rozenhaimer, Arthur J. Sedlacek III, Thomas Eck, Brent Holben, Pawan Gupta, Elena Lind, Paquita Zuidema, Gregory Carmichael, and Connor J. Flynn
Atmos. Chem. Phys., 25, 7879–7902, https://doi.org/10.5194/acp-25-7879-2025,https://doi.org/10.5194/acp-25-7879-2025, 2025
Short summary
Discussion of the spectral slope of the lidar ratio between 355 and 1064 nm from multiwavelength Raman lidar observations
Moritz Haarig, Ronny Engelmann, Holger Baars, Benedikt Gast, Dietrich Althausen, and Albert Ansmann
Atmos. Chem. Phys., 25, 7741–7763, https://doi.org/10.5194/acp-25-7741-2025,https://doi.org/10.5194/acp-25-7741-2025, 2025
Short summary
Observational constraints suggest a smaller effective radiative forcing from aerosol–cloud interactions
Chanyoung Park, Brian J. Soden, Ryan J. Kramer, Tristan S. L'Ecuyer, and Haozhe He
Atmos. Chem. Phys., 25, 7299–7313, https://doi.org/10.5194/acp-25-7299-2025,https://doi.org/10.5194/acp-25-7299-2025, 2025
Short summary
Retrieval of microphysical properties of dust aerosols from extinction, backscattering and depolarization lidar measurements using various particle scattering models
Yuyang Chang, Qiaoyun Hu, Philippe Goloub, Thierry Podvin, Igor Veselovskii, Fabrice Ducos, Gaël Dubois, Masanori Saito, Anton Lopatin, Oleg Dubovik, and Cheng Chen
Atmos. Chem. Phys., 25, 6787–6821, https://doi.org/10.5194/acp-25-6787-2025,https://doi.org/10.5194/acp-25-6787-2025, 2025
Short summary
Fluorescence spectra of atmospheric aerosols
Jens Reichardt, Felix Lauermann, and Oliver Behrendt
Atmos. Chem. Phys., 25, 5857–5892, https://doi.org/10.5194/acp-25-5857-2025,https://doi.org/10.5194/acp-25-5857-2025, 2025
Short summary

Cited articles

Anstett, M., Limbacher, J. A., and Kahn, R. A.: A global aerosol microphysical property record from the Multi-angle Imaging SpectroRadiometer (MISR) research aerosol retrieval algorithm, in preparation, 2025. a
Argaman, E., Singer, A., and Tsoar, H.: Erodibility of some crust forming soils/sediments from the Southern Aral Sea Basin as determined in a wind tunnel, Earth Surf. Proc. Land., 31, 47–63, https://doi.org/10.1002/esp.1230, 2006. a
ASDC: MISR Level 2 Aerosol parameters V003, NASA Langley Atmospheric Science Data Center DAAC [data set], https://doi.org/10.5067/TERRA/MISR/MIL2ASAE_L2.003, 1999. a
ASDC: DSCOVR EPIC Aerosol Optical Centroid Height Version 1, NASA Langley Atmospheric Science Data Center DAAC [data set], https://doi.org/10.5067/EPIC/DSCOVR/L2_AOCH.001, 2018. a
ASDC: CALIPSO Lidar Level 2 Aerosol Profile, V4-51, NASA Langley Atmospheric Science Data Center DAAC [data set], https://doi.org/10.5067/CALIOP/CALIPSO/CAL_LID_L2_05kmAPro-Standard-V4-51, 2023. a
Download
Short summary
The Aralkum Desert is challenging for aerosol retrieval due to its bright, heterogeneous, and dynamic surfaces and the lack of in situ constraints on aerosol properties. The performance and consistency of satellite algorithms in observing Aralkum-generated saline dust remain unknown. This study compares multisensor UVAI (ultraviolet aerosol index), AOD (aerosol optical depth), and ALH (aerosol layer height) products and reveals inconsistencies and potential biases over the Aral Sea basin.
Share
Altmetrics
Final-revised paper
Preprint