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Abstract. The Aralkum Desert presents a challenging environment for satellite aerosol observations due to its
very bright, heterogeneous, and dynamic surfaces and the lack of in situ constraints on region-specific aerosol
properties. We survey current global satellite algorithms capable of detecting the presence, column burden, and
elevation of airborne dust over the Aral Sea basin. Discrepancies and potential biases in retrieved UV aerosol
index (UVAI), mid-visible and thermal infrared optical depth (AOD), and layer height due to different assump-
tions on surface and aerosol properties are assessed. The results indicate that (1) UVAI products consistently
delineate dust plume extent but show large positive values over turbid waters and salt flats due to enhanced sur-
face absorption. (2) MODIS and VIIRS total and coarse-mode AOD retrievals show strong agreement over the
Caspian Sea despite using different aerosol optical models. Over desert surfaces, all operational AOD products
misclassify fresh dust plumes as clouds and exhibit strong nonlinear relationships. The NOAA EPS algorithm
retrieves significantly lower AOD than others, although the agreement improves when a dust optical model is
used. The MISR research algorithm produces higher, more consistent AOD and improved particle property re-
trievals compared to the MISR operational product. (3) Among four IASI infrared products, the LMD algorithm
performs best in detecting dust plume features over both desert and water surfaces. (4) The EPIC aerosol optical
centroid height (AOCH) product overestimates dust layer altitude under low aerosol loadings but exhibits good
agreement with CALIOP in detecting the elevated dust characterized by well-defined upper boundaries. MISR
height retrievals also align well with CALIOP and EPIC. IASI infrared retrievals are about 0.4 km higher than
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EPIC over dust-laden scenes. This study underscores the value of a synergistic, multisensor approach leveraging
the complementary strengths of satellite aerosol products and calls for their appropriate application and careful
interpretation when characterizing saline dust from the Aralkum Desert.

1 Introduction

Emerging from the desiccated basin of the former Aral Sea,
the Aralkum Desert has evolved into one of the most active
sources of windblown dust, with adverse impacts on bio-
diversity, agriculture, and human well-being across Central
Asia (Orlovsky and Orlovsky, 2001; Xi and Sokolik, 2016).
Aralkum stands out among the extensive dust sources in
Asia, not only because of its anthropogenic origin but also
due to the distinct chemical and mineralogical compositions
of its erodible sediments. Figure 1 shows the spectral abun-
dance of four mineral groups derived from the Earth Sur-
face Mineral Dust Source Investigation (EMIT) instrument.
EMIT reveals that Aralkum contains more abundant carbon-
ate and sulfate minerals but less iron oxide and clay than
the nearby Karakum and Taklamakan deserts. Groll et al.
(2019) confirmed that dust samples collected near Aralkum
contained considerably higher sulfate and chloride content
than those from sandy deserts. Given its distinct mineralog-
ical compositions, Aralkum dust is expected to be more hy-
groscopic and less light-absorbing than typical desert dust
(Sokolik and Toon, 1999). Indeed, ground lidar measure-
ments in Tajikistan reported significantly lower extinction-
to-backscatter or lidar ratios (23 sr at 532 nm) for the salt-rich
dust compared to typical desert dust (44± 9 sr) (Hofer et al.,
2017).

Even within the desiccated Aral Sea bed, there is substan-
tial variability in the physiochemical properties of erodible
sediments. As the Aral Sea continued shrinking, sediment
grain size became progressively smaller towards the basin’s
lowest point, while evaporate minerals began to precipitate
following a typical sequence of calcite, gypsum/anhydrite,
halite, and finally potassium and magnesium salts. Conse-
quently, distinct spatial gradients in mineralogy, grain size,
and soil texture have been observed in the exposed sedi-
ments. For instance, Jiang et al. (2021) reported increasing
abundances of clay and evaporite minerals but decreasing
abundance of carbonates and organic carbon when moving
from the older coastline towards the newly exposed seabed.
Argaman et al. (2006) found that the highly erodible takyr
soils dominate the outer rim of Aralkum, whereas the newly
formed solonchak soils are more likely protected by salt
crusts which create stable, coarse aggregates that are resis-
tant to wind erosion.

Assessing the impacts of Aralkum-generated saline dust
is greatly hindered by lack of in situ measurements of the
physical and chemical properties of the erodible sediments
(e.g., soil texture, mineralogical composition, crusting) and

airborne particles (e.g., particle size distribution, shape, non-
sphericity, chemical composition, mixing state, solubility).
Particularly, the global network of ground-based Sun/sky
photometers, AERosol RObotic NETwork (AERONET), has
no operating sites near Aralkum. The two operational sites in
Central Asia – Issyk-Kul and Dushanbe – are located too far
away to provide representative measurements of the saline
dust from Aralkum (Semenov et al., 2005; Rupakheti et al.,
2020). AERONET serves two important purposes. First, it
provides the climatological aerosol information needed to
specify season- and region-dependent aerosol optical mod-
els used in passive satellite retrieval algorithms (Dubovik
et al., 2002). Second, AERONET measurements are used as
a benchmark for validating satellite retrievals. Consequently,
the a priori assumptions about aerosol microphysical prop-
erties in satellite algorithms may not accurately capture the
distinct particle properties over Aralkum. The lack of ground
truth also prevents an evaluation of satellite product perfor-
mance for the region. In general, satellite algorithms are op-
timized for global performance but may exhibit significant
local biases when the local prevailing aerosol conditions de-
viate substantially from the algorithm assumptions on parti-
cle microphysical properties.

Dust event monitoring has relied on satellite retrievals over
ocean basins frequently affected by continental dust out-
flow. For dust sources located deep within continental inte-
riors, observing airborne dust from space is more challeng-
ing due to difficulty in separating the surface contribution
from the top-of-the-atmosphere (TOA) radiance measure-
ments. Central Asia comprises a range of dust sources with
varying sediment abundance and erodibility, including sandy
and hilly deserts, desert steppes, salt flats, and ephemeral or
dry lakes (Xi and Sokolik, 2015a, b). These regions feature
heterogeneous, dynamic surface properties and conditions
(e.g., reflectivity, emissivity, land/water boundary, water tur-
bidity), posing a major challenge for isolating aerosol sig-
nals from surface contributions. Currently, a number of tech-
niques have been developed to facilitate aerosol retrievals
over desert surfaces. However, data users may struggle with
the product choice, not knowing the strengths and limitations
of each product for their specific area of interest. To date,
the performance of satellite aerosol products for character-
izing the Aralkum dust is poorly understood. It is also un-
clear whether these products are consistent with each other.
In this regard, a multisensor approach is preferred over the
use of a single product and may provide potential insights
about satellite product performance through the synergy of
different observation techniques.
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Figure 1. Aggregated spectral abundance of four mineral groups based on the Earth Surface Mineral Dust Source Investigation (EMIT) L3
product: (a) clays (including chlorite, illite, muscovite, kaolinite, montmorillonite, and vermiculite); (b) carbonates (calcite and dolomite);
(c) iron oxides (goethite and hematite); and (d) gypsum. Boxed regions indicate the Aralkum Desert.

During 27–29 May 2018, a saline dust storm was triggered
from the Aralkum Desert by a cold air outbreak, causing per-
sistent haze, record high particulate concentrations, and salt
deposition on agricultural areas (Xi, 2023). This paper docu-
ments the first part of a detailed investigation of this event, fo-
cusing on the consistency and synergy of multisensor aerosol
products. We first conduct a survey of current satellite tech-
niques and algorithms capable of detecting the presence, col-
umn burden, and vertical height of airborne dust over the
Aral Sea basin (Sect. 2). The survey focuses on the theo-
retical basis and a priori assumptions about aerosol and sur-
face properties associated with satellite retrievals of ultravi-
olet aerosol index (UVAI), mid-visible and thermal infrared
aerosol optical depth (AOD), and aerosol layer height (ALH).
In Sect. 3, we compare multiple UVAI, AOD (at both 0.55
and 10 µm), and ALH products to investigate the cross-sensor
and cross-algorithm consistency in observing the saline dust
from Aralkum on 27–29 May 2018. To avoid confusion, we
will refer to the mid-visible (0.55 µm) AOD simply as AOD,
while specifying the wavelength as a subscript for other
cases, e.g., AOD10 for 10 µm AOD and AOD0.68 for 0.68 µm
AOD. Due to lack of validation data, we focus on assessing
the consistency (or lack thereof) between different products
rather than their performance or accuracy. Through a syn-
ergistic analysis of multisensor satellite products, we aim to
highlight the complementary strengths of various techniques,
uncover their inconsistencies and limitations, and emphasize
the need for their appropriate application and interpretation
over the Aralkum Desert. Section 4 summarizes the findings
of this study.

2 Overview of satellite aerosol retrievals over
deserts

2.1 UVAI

UVAI was first discovered as a spectral residual quantity in
the near-UV (330–380 nm), which measures the departure
of observed spectral contrast from that of a pure molecu-
lar atmosphere (Herman et al., 1997). Significant changes
in the spectral dependence of backscattered UV radiances
were frequently associated with the presence of absorbing
aerosols, such as dust, carbonaceous aerosols, and volcanic
ash. This phenomenon provides a physical basis for UVAI,
which yields large positive values for absorbing aerosols over
ocean and land (including deserts and snow/ice-covered sur-
faces), as well as above clouds. This makes UVAI an excel-
lent tracer for airborne dust (Prospero et al., 2002). Com-
pared to a pure molecular atmosphere, dust particles reduce
the spectral contrast of backscattered UV radiances by ab-
sorbing the Rayleigh scattered radiation from beneath the
dust layer (Torres et al., 1998; de Graaf et al., 2005). UVAI
depends on multiple factors – including AOD, ALH, absorp-
tion properties, and surface reflectivity – with higher ALH or
more absorbing particles leading to larger UVAI (de Graaf
et al., 2005).

In addition to absorbing aerosols, large positive UVAI may
also result from non-aerosol geophysical effects such as sun
glint, ocean color, and strong wavelength dependence of sur-
face reflectivity (Herman et al., 1997). These effects, if mis-
interpreted as aerosol signals, can introduce biases in dust
detection.

In the original UVAI definition, water clouds were treated
as part of a spectrally independent Lambertian equivalent re-
flector (LER), resulting in small negative UVAI values. Tor-
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res et al. (2018) introduced a new approach that explicitly
accounts for the Mie scattering effects of water clouds. This
Mie-based approach yields near-zero UVAI over clouds and
exhibits a weaker angular dependence than the LER-based
definition. Multidecadal UVAI records have been generated
from spaceborne UV–visible spectrometers. In this study,
we compare the UVAI products from Ozone Mapping and
Profiler Suite (OMPS), TROPOspheric Monitoring Instru-
ment (TROPOMI), and Earth Polychromatic Imaging Cam-
era (EPIC), described below.

2.1.1 OMPS

The OMPS Nadir Mapper is an imaging spectrometer on
board the Suomi National Polar-orbiting Partnership (SNPP)
spacecraft in a Sun-synchronous orbit with an ascending
node equatorial crossing at 13:30 local solar time. OMPS
measures UV radiances from 300 to 380 nm with a nadir
footprint of 50× 50 km2 and 110° across-track field of view,
equivalent to a ground swath of 2800 km. The OMPS Nadir
Mapper aerosol algorithm (NMMIEAI) reports the Mie-
based UVAI at the 340 and 378.5 nm wavelengths (Torres,
2019a).

2.1.2 TROPOMI

TROPOMI is a nadir-viewing, push-broom-type grating
spectrometer on board the Copernicus Sentinel 5 Precursor
(S5P) mission, which flies in close formation with SNPP
(less than 5 min apart) in a Sun-synchronous orbit with an
ascending node equatorial crossing time of 13:30 (Veefkind
et al., 2012). TROPOMI measures reflected and emitted radi-
ation from the UV to shortwave infrared (SWIR) with a nadir
footprint size of 3.5× 7 km2 and a 2600 km swath width.

There are two separate UVAI products from TROPOMI,
one developed by the ESA (European Space Agency) and
the other developed by NASA. The NASA version uses the
TropOMAER algorithm, which reports both LER- and Mie-
based UVAI at 354 and 388 nm (Torres, 2021). The ESA
version reports LER-based UVAI at three wavelength pairs:
354–388, 340–380, and 335–367 nm (Stein Zweers, 2022).
The first two pairs were selected to continue the multi-
decadal heritage UVAI records, while the 335–367 nm pair
was added to ensure compatibility with the future UVAI al-
gorithm planned for the Sentinel-5 mission.

2.1.3 EPIC

EPIC is an imaging spectroradiometer on board the Deep
Space Climate Observatory (DSCOVR) spacecraft, which
operates in a Lissajous orbit about Lagrange-1 point in the
Earth–Sun system. This allows EPIC to view the sunlit disk
of Earth every 60–100 min. EPIC measures reflected radi-
ances in 10 channels from UV to near-infrared (NIR), with
a ground resolution of 8 km at 443 nm and 16 km in other

bands. The EPIC EPICAERUV algorithm reports both LER-
and Mie-based UVAI at the 340 and 388 nm wavelengths
(Torres, 2019b).

2.2 Mid-visible AOD

Inferring column-integrated aerosol properties from reflected
visible–NIR observations is an ill-posed inverse problem
due to limited information content to fully characterize the
atmosphere–surface system. Mid-visible AOD is generally
the most readily available parameter, and consequently al-
gorithms must rely on a priori knowledge or assumptions
of the aerosol size distribution, shape, and refractive index
(known as aerosol optical models). A common strategy in-
volves using radiative transfer codes to create look-up tables
(LUTs) of TOA radiances for a set of predefined aerosol opti-
cal models, surface types, and solar/viewing geometries (e.g.,
Remer et al., 2013a). These LUTs are then used to match
measured TOA reflectances to derive optimal estimates of
AOD and, in some cases, additional aerosol properties re-
lated to particle size and absorption. Aerosol retrieval using
this strategy is highly sensitive to the aerosol optical mod-
els that are predefined in the algorithm and selected during
the retrieval. Although these aerosol models are designed to
represent season- and location-specific aerosol conditions as
realistically as possible, satellite algorithms may still incor-
porate inconsistent or even contradictory models, especially
for regions like Central Asia due to lack of observational con-
straints. In addition, satellite algorithms may fail to select
the appropriate model during the retrieval, leading to mis-
match between the assumed aerosol properties and the actual
aerosol conditions. These factors can contribute to inconsis-
tencies between retrieved AODs, including those from the
same instrument.

We compare multiple AOD products from three polar-
orbiting instruments on board NASA’s EOS and NOAA’s
JPSS satellites, including the Moderate Resolution Imag-
ing Spectroradiometer (MODIS), Multi-angle Imaging Spec-
troradiometer (MISR), and Visible Infrared Imaging Ra-
diometer Suite (VIIRS). MODIS and VIIRS employ three
single-view aerosol algorithms – Dark Target (DT), Deep
Blue (DB), and Enterprise Processing System (EPS) – and
the time-series-based Multi-Angle Implementation of Atmo-
spheric Correction (MAIAC) algorithm. MISR utilizes two
algorithms: an operational standard algorithm for generating
routine global aerosol records and a research algorithm de-
signed to explore alternative retrieval methods and additional
aerosol properties on a case-by-case basis.

Below, we briefly describe the MODIS, VIIRS, and MISR
aerosol algorithms, focusing on the a priori assumptions
about aerosol optical models and surface reflectances. Other
algorithm components (e.g., screening of clouds/sun glint/s-
now, spectral fitting) are not discussed.
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2.2.1 MODIS and VIIRS DT over-water algorithms

The DT algorithm includes different approaches for over-
land and over-water retrievals. We focus on the over-water
algorithm, which is well suited for retrieving dust proper-
ties over the Caspian Sea. DT exploits the contrast of reflec-
tive aerosol layers against a dark background in the visible
spectrum. Over water, the algorithm searches the LUT for
the best fit of measured TOA reflectances at seven window
bands from visible to SWIR and obtains solutions for both
AOD and the fine-mode fraction (FMF) (Tanré et al., 1997).
The ambient aerosol scene is represented as a linear combi-
nation of one fine and one coarse mode weighted by FMF.
DT considers nine aerosol optical models over water: four
fine aerosol models, three sea salt models, and two coarse
dust models, which are derived from long-term AERONET
measurements near water bodies (Remer et al., 2005). Each
optical mode comprises spherical particles, with the main
difference between the sea salt and dust modes being the
assumed complex refractive index. During the retrieval the
algorithm evaluates each of the 20 combinations of fine and
coarse modes, and in addition to AOD and FMF, it reports
which combination of modes led to the best fit. Due to the
nonsphericity of dust particles, the current DT algorithm is
known to yield biased retrievals over dusty oceanic scenes
(Zhou et al., 2020b). A spheroidal dust model will be imple-
mented in the MODIS Collection 7 as well as future versions
of VIIRS (Zhou et al., 2020a).

In the MODIS product suite, DT aerosol retrieval is per-
formed at a nominal resolution of 10× 10 km2. A higher-
resolution product (DT3K) was later introduced at 3×3 km2

to capture small-scale aerosol features (Remer et al., 2013b).
DT3K employs the same technique as DT, but using different
pixel aggregation and quality assurance (QA) rules. The DT
algorithm has been ported to VIIRS, which retrieves AOD at
a nominal resolution of 6× 6 km2 (Sawyer et al., 2020).

2.2.2 MODIS and VIIRS DB algorithms

Inspired by the aerosol detection capability in the near-UV,
the DB algorithm employs the 0.41 µm or “deep blue” band,
which has lower and more homogeneous surface reflectiv-
ity than the longer visible wavelengths (Hsu et al., 2004).
Aerosols are represented by a spheroidal dust model and a
spherical fine-dominated anthropogenic model, which em-
ploy various single-scattering albedo (SSA) values depend-
ing on locations and seasons. The surface reflectances are
determined based on a pre-calculated database over bright
surfaces (e.g., deserts, urban areas) and empirical relation-
ships between visible and SWIR bands over vegetated sur-
faces (Hsu et al., 2013).

DB was initially implemented to fill the data gap over
bright surfaces in the MODIS aerosol product. In the VIIRS
product suite, DB has been expanded to all cloud-, snow-
, and ice-free land surfaces and also performs retrieval over

water using the Satellite Ocean Aerosol Retrieval (SOAR) al-
gorithm (Hsu et al., 2019; Lee et al., 2024). SOAR considers
four aerosol optical models: maritime, dust, fine-dominated,
and mixed, each represented by a bimodal distribution con-
sisting of one fine and one coarse mode (Sayer et al., 2018).
The dust model consists of one spherical fine mode and one
spheroidal coarse mode, derived from AERONET measure-
ments at Cape Verde (Lee et al., 2017).

2.2.3 VIIRS EPS algorithm

The EPS algorithm is developed for NOAA’s next-generation
polar-orbiting and geostationary meteorological satellites.
Here we focus on the VIIRS EPS aerosol product described
in Laszlo (2018) and more recently in Laszlo and Liu (2022).
Over water, EPS is based on the MODIS heritage and repre-
sents the aerosol column as a linear combination of one fine
and one coarse mode weighted by FMF, selected from four
fine-mode and five coarse-mode aerosol models the same as
the MODIS DT algorithm (Remer et al., 2006). The algo-
rithm searches for the AOD and FMF that give the best match
between observed and pre-calculated TOA reflectances at
seven VIIRS channels (Jackson et al., 2013; Laszlo and Liu,
2022).

Over land, EPS simultaneously retrieves AOD, aerosol
optical model, and Lambertian surface reflectances in se-
lected bands by matching the observed and calculated TOA
reflectance over both dark and bright (snow-free) surfaces.
EPS considers four candidate aerosol optical models, three of
which are spherical, fine-mode-dominated aerosols (labeled
as generic, urban, and smoke) and one of which is nonspher-
ical, coarse-mode-dominated aerosol (labeled as dust). The
dust model is forcibly used for North Africa and the Ara-
bian Peninsula to account for the dominant dust presence
in these regions. The candidate aerosol models are adopted
from the MODIS Collection 5 DT algorithm (Remer et al.,
2006). Over bright desert surfaces, the surface reflectance is
estimated from a static database of spectral reflectance ratios
between VIIRS channels (Zhang et al., 2016).

2.2.4 MODIS MAIAC algorithm

Unlike the single-view approach adopted by the DT, DB, and
EPS algorithms, MAIAC uses a sliding window to accumu-
late up to 16 d of multi-angle observations from different or-
bits for the same location to retrieve bidirectional surface re-
flectance over land (including deserts) simultaneously with
aerosol properties (Lyapustin et al., 2018). MAIAC uses a
dynamic minimum reflectance method to define the surface
reflectance spectral ratios for each 1 km grid cell, which al-
lows AOD retrieval over both dark and bright surfaces. The
MODIS Collection 6 MAIAC algorithm uses nine aerosol
optical models derived from AERONET climatology to rep-
resent the regional background aerosol conditions. For Cen-
tral Asia, the background aerosol model (“Model 2”) is de-
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rived from AERONET measurements over the western US,
which represents a mixture of dust and fine-mode aerosols.
During the retrieval, a smoke/dust test is first applied to deter-
mine whether the background or dust model should be used.
If dust is detected, the algorithm uses a spheroidal dust model
(“Model 6”) derived from AERONET measurements from
the Solar Village site in Saudi Arabia (Dubovik et al., 2006).

2.2.5 MISR AOD and particle property algorithms

MISR measures reflected sunlight using nine push-broom
cameras with view angles of ±70.5, ±60.0, ±45.6, ±26.1,
and 0° along-track, each in four spectral bands (446, 558,
672, and 866 nm) across a 380 km swath at pixel resolu-
tion between 275 m and 1.1 km, depending on the channel
(Diner et al., 1998). The MISR Standard Aerosol retrieval al-
gorithm produces AOD and constraints on column-effective
particle type operationally (Garay et al., 2020). The aerosol
column is represented by 74 aerosol optical models as mix-
tures of single-composition components, including 50 mix-
tures of spherical components, 20 mixtures of spherical and
dust components, and 4 mixtures of dust components. The
algorithm accounts for the contribution of surface bidirec-
tional reflectance factor (BRF) based on a principal compo-
nent analysis of TOA radiances (Martonchik et al., 2009).

The MISR Research Aerosol (RA) retrieval algorithm is
optimized to provide constraints on particle size, spheric-
ity, and light absorption under favorable observing condi-
tions on a case-by-case basis (Limbacher et al., 2022). The
algorithm considers a broader range of aerosol mixtures to
allow more subtle particle property distinction. For the sur-
face reflectance, two different approaches are considered:
(a) surface BRF retrieved self-consistently with the atmo-
sphere using only MISR data (similar to the standard algo-
rithm) and (b) surface BRF contribution prescribed from the
MODIS MAIAC product to separate the surface contribution.
In addition, an XGBoost AI/ML approach has been devel-
oped using the retrieved and prescribed RA results, along
with an aerosol microphysical property validation dataset
developed by Anstett et al. (2025). The XGBoost models
employed here use MISR RA prescribed+ retrieved geo-
physical output as input, training models separately against
AERONET AOD, FMF, Ångström exponent, nonsphericity,
and SSA. The training dataset consists of ∼ 50 000 global
MISR/AERONET over-land coincidences, with each of the
coincidences containing potentially> 2000 MISR pixels (re-
trievals). For the purposes of developing optimal AI/ML co-
efficients, each of these quality-assessed pixels was treated
as an independent data point, yielding a total of ∼ 18 million
data points that were used for training.

2.3 Thermal infrared AOD (AOD10)

Compared to visible and NIR-based techniques, aerosol re-
trieval in the thermal infrared (TIR) offers several advan-

tages, such as nighttime observation and enhanced contrast of
dust signals over deserts. In addition, the infrared spectrum is
primarily sensitive to coarse particles (diameter> 1 µm), pro-
viding better dust detection. Split-window techniques have
been used to detect dust from passive radiometers by ex-
ploiting the distinct negative brightness temperature differ-
ence between two neighboring atmospheric window chan-
nels (e.g., 10.8 and 12 µm) (Legrand et al., 2001; Lensky
and Rosenfeld, 2008). Based on this approach, the dust RGB
composite derived from the Spinning Enhanced Visible and
InfraRed Imager (SEVIRI) is capable of tracking dust plumes
every 15 min and mapping the source locations over Central
Asia, as demonstrated in Xi (2023).

Hyperspectral infrared spectrometers have offered new po-
tential to infer dust properties, including AOD10 and dust
layer height. A major challenge in TIR-based retrieval is
isolating the aerosol signal from the infrared emissions of
the atmosphere and the underlying surface. TIR-based algo-
rithms rely on forward model simulations of TOA radiances
or brightness temperatures for a range of atmospheric pro-
files (e.g., temperature, water vapor), surface properties (e.g.,
emissivity, temperature), and dust aerosol properties (e.g.,
AOD10, vertical distribution, size, and refractive index). Be-
low, we describe four different algorithms used for retriev-
ing AOD10 from the Infrared Atmospheric Sounding Inter-
ferometer (IASI), a Fourier transform spectrometer on board
the European MetOp satellite series that observes the Earth’s
radiation spectra from 645 to 2760 cm−1 (3.6–15.5 µm) at a
spectral resolution of 0.5 cm−1 and a nadir ground resolution
of 12 km. The four algorithms differ in the retrieval methods,
the atmosphere and surface input data, and the dust optical
models assumed in forward model calculations, among other
factors.

2.3.1 LMD algorithm

The Laboratoire de Météorologie Dynamique (LMD) algo-
rithm employs a two-step, LUT-based approach (Capelle
et al., 2018). In the first step, the atmospheric state is deter-
mined using 18 IASI channels that are insensitive to the sur-
face or aerosols. In the second step, AOD10, mean altitude,
and surface temperature are retrieved by fitting observed
brightness temperatures against simulations at eight aerosol-
sensitive channels. These simulations incorporate a range of
atmospheric profiles, surface properties (emissivity, tempera-
ture, and pressure), AOD10, altitudes, and dust microphysical
properties. Dust is represented by a spherical, lognormal size
distribution (effective radius, Reff = 2.3 µm; standard devia-
tion, σg = 0.65) and two refractive indices from Balkanski
et al. (2007) and Volz (1973), corresponding to strongly and
weakly absorbing dust types, respectively. Surface emissiv-
ity is based on the monthly mean IASI retrievals by Capelle
et al. (2012).
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2.3.2 MAPIR algorithm

The Mineral Aerosol Profiling from Infrared Radiances
(MAPIR) algorithm retrieves the vertical profiles of dust
concentrations using the Rodgers optimal estimation method
(Callewaert et al., 2019). The dust concentration profiles are
converted to AOD10 using a Mie-calculated extinction cross
section based on an assumed size distribution and refractive
index. A forward model (RTTOV) is used to simulate IASI
radiances based on the a priori of the state vector (i.e., dust
concentration profiles at seven 1 km thick layers centered at
0.5 to 6.5 km), along with temperature and water vapor pro-
files derived from IASI. The dust optical model assumes a
lognormal size distribution (rg = 0.6 µm, σg = 2) and refrac-
tive index from Volz (1973). Surface emissivity is based on a
monthly climatology derived from IASI clear-sky spectra by
Zhou et al. (2011).

2.3.3 ULB algorithm

The Université libre de Bruxelles (ULB) algorithm estimates
dust AOD10 using a neural network approach (Clarisse et al.,
2019). The algorithm first performs dust detection by com-
puting a dust index from a linear discrimination analysis of
IASI-observed spectra. The dust index is then converted to
dust AOD10 via a neural network trained with synthetic spec-
tra generated by a forward model. The forward model incor-
porates a representative set of atmospheric states from IASI
Level-2 data, surface emissivity from Zhou et al. (2011), and
a range of dust layer altitudes (from 0 to 7 km). Dust aerosol
is represented by a lognormal size distribution (rg = 0.5 µm,
σg = 2) and refractive index from Volz (1973).

2.3.4 IMARS algorithm

The Infrared Mineral Aerosol Retrieval Scheme (IMARS) al-
gorithm performs probabilistic estimates of AOD10, compo-
sition, effective radius, and mean layer temperature (a proxy
for dust layer height) based on forward model simulations
of IASI-observed radiances under various dust and ice cloud
conditions (Offenwanger et al., 2024). The algorithm consid-
ers 12 possible combinations of four dust mineralogical mix-
tures (China, central Sahara, Niger, Iowa Loess) and three
size distributions. Each dust mixture is associated with pre-
defined mineral fractions (and hence refractive indices) and
particle effective radius. Surface emissivity is based on the
MODIS UCSB Emissivity Library.

2.4 ALH

Aerosol vertical distribution can be retrieved from both ac-
tive and passive sensors. Active sensors, such as the Cloud–
Aerosol Lidar with Orthogonal Polarization (CALIOP), pro-
vide vertically resolved retrievals of aerosol volume extinc-
tion at high vertical resolutions. However, they are limited
by narrow swaths and poor spatial coverage. In recent years,

substantial progress has been made in retrieving ALH from
passive sensors using various techniques, such as stereo-
scopic retrieval from polar-orbiting multi-angle or geosta-
tionary imagers (Nelson et al., 2013; Carr et al., 2020), po-
larimetric observations in the near-UV (Wu et al., 2016), dif-
ferential optical absorption spectroscopy in oxygen absorp-
tion bands (Xu et al., 2017, 2019), and hyperspectral infrared
measurements (Capelle et al., 2018; Callewaert et al., 2019;
Clarisse et al., 2019; Offenwanger et al., 2024). Although
passive techniques do not achieve the same level of accu-
racy as lidars and only estimate an effective height with lim-
ited information on the aerosol layer thickness, they provide
much better spatial coverage and revisit frequency (Lu et al.,
2021, 2023).

The ALH definition varies by retrieval techniques and may
refer to the top of aerosol layers such as from stereoscopic
techniques or an effective central height corresponding to
peak aerosol extinction (Xu et al., 2017). Like AOD, ALH is
an optical quantity and varies with the retrieval wavelength.
Except for stereoscopic techniques, passive ALH retrievals
depend on assumptions about the aerosol vertical distribu-
tion. In this study, we compare four ALH products, includ-
ing the CALIOP aerosol-extinction-weighted height, EPIC
aerosol optical centroid height (AOCH) product, IASI mean
dust layer altitude, and MISR plume height.

2.4.1 CALIOP aerosol-extinction-weighted height

CALIOP was a nadir-viewing elastic backscatter lidar on
board the Cloud–Aerosol Lidar and Infrared Pathfinder
Satellite Observations (CALIPSO) and measured polarized
backscatter at 532 nm and total attenuated backscatter at 532
and 1032 nm, with a vertical resolution of 30 m below 8.2 km
and 60 m between 8.2 and 20.2 km (Winker et al., 2009). In
the CALIOP data processing, calibrated attenuated backscat-
ter coefficient profiles are used to detect the top and base
altitudes of atmospheric features. A set of scene classifica-
tion algorithms (SCAs) then classifies these features as ei-
ther aerosol or cloud and determines the aerosol type and
cloud phase. During this process, aerosol lidar ratios are se-
lected to derive the aerosol extinction and backscatter coef-
ficient profiles (Young et al., 2018). The selection of lidar
ratios is based on the aerosol typing algorithm, which con-
siders six tropospheric aerosol types – clean marine, dusty
marine, dust, polluted continental/smoke, polluted dust, and
elevated smoke (Kim et al., 2018). Based on the aerosol ex-
tinction profile, the ALH with respect to the mean sea level
can be calculated as

∑n
i=1βext,iZi∑n
i=1βext,i

, where βext,i is the 532 or

1064 nm aerosol extinction coefficient (km−1) at level i, and
Zi is the altitude (km) at level i (Koffi et al., 2012).
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2.4.2 EPIC AOCH product

The EPIC AOCH product is derived from the spectral con-
trast in TOA reflectances between the oxygen (O2) absorp-
tion and continuum bands. The physical principle is that
ALH affects the path length of backscattered light and the
amount of light absorbed by well-mixed O2 molecules. Con-
sequently, the spectral contrast between the O2 absorption
bands and the continuum bands depends on the ALH (Xu
et al., 2019). The EPIC AOCH algorithm employs pre-
computed TOA reflectances for a range of AOD0.68, AOCH,
surface reflectivity, and surface pressure. Three aerosol opti-
cal models are considered: smoke, Saharan dust, and Asian
dust. The dust models are derived from AERONET measure-
ments at Cape Verde and over East Asia (Xu et al., 2017). The
aerosol vertical distribution assumes a quasi-Gaussian profile
characterized by a centroid altitude and a fixed half-width at
half-maxima of 1 km. Hence, the EPIC-retrieved AOCH rep-
resents the altitude of peak volume extinction.

2.4.3 IASI dust layer altitude

TIR-based retrieval of dust layer height employs the sensi-
tivity of infrared radiation to the temperature of the aerosol
layer, which is intrinsically linked to its mean altitude. The
IASI LMD algorithm estimates the dust AOD10 and mean
altitude by matching IASI observations to forward model
simulations assuming eight mean layer altitudes from 750
to 5795 m (Capelle et al., 2018). Dust is assumed to be
uniformly distributed within a single atmospheric layer, the
thickness of which varies from 500 to 800 m. The retrieved
mean altitude represents the height at which half of the
AOD10 is below and half of the AOD10 is above, and it is
considered an infrared optical equivalent to the centroid of
the aerosol vertical profiles.

2.4.4 MISR plume height

In addition to the radiometrically derived AOD, ALH can be
derived geometrically from the parallax in the MISR hyper-
stereo imagery. The MISR Interactive Explorer (MINX) soft-
ware performs this task interactively, on a case-by-case basis,
and retrieves plume heights at 1.1 km horizontal resolution
and between 250 and 500 m vertical resolution (Nelson et al.,
2013). The MISR ALH retrievals identify the layer of maxi-
mum spatial contrast in the plume imagery, so the results are
often skewed lower than CALIPSO, which is also sensitive to
thin, less distinct aerosol layers above dense plume features
(Flower and Kahn, 2017).

3 Evaluation of cross-sensor and cross-algorithm
consistency

Table 1 summarizes the satellite products and parameters
considered in this study. These products were chosen based

on the data availability and similar overpass times over the
Aralkum Desert, ensuring minimal scene differences be-
tween the sensors. While some products have duplicated pa-
rameters (e.g., the UVAI products report total and absorb-
ing AOD), we focus on the primary and most widely used
aerosol parameters from each product. The UVAI and mid-
visible AOD products report particle property retrievals over
desert surfaces, such as the Ångström exponent and single-
scattering albedo (SSA); however, they are subject to larger
uncertainties than AOD retrievals and generally not recom-
mended for scientific studies.

3.1 Horizontal and vertical dust distributions

On 27 May 2018, MODIS/Aqua observed an extensive
whitish dust plume originating from Aralkum and moving
southeast towards Iran and Afghanistan (Fig. 2a). Although
CALIOP missed the Aralkum event, it detected a shallow
dust layer at an altitude of 0–1 km at the southeastern coast
of the Caspian Sea (Fig. 2d). This dust likely originated from
the dry channel of the ancient River Uzboy, a highly active
dust source in western Turkmenistan (Nobakht et al., 2021).

On 28 May 2018, a high-pressure system developed just
south of Aralkum. As shown in the nighttime SEVIRI dust
RGB composite (Fig. 2b), the anticyclonic flow carried the
lofted dust across the Ustyurt Plateau towards the Caspian
Sea, while simultaneously lifting dust from Aralkum that dis-
persed eastward. CALIOP detected an extensive dust layer
stretching from Aralkum to the Kopet-Dag Range (Fig. 2e).
The Kopet-Dag Range acted as a physical barrier, causing
dust to accumulate along the foothills. Overall, the airborne
dust resided below 2 km with a sharp upper boundary, prob-
ably due to large-scale subsidence and the shallow night-
time boundary layer (e.g., due to temperature inversion). The
lofted dust was concentrated within an elevated layer at 1–
2 km altitude near Aralkum but extended to the ground by
the gently sloping foothills. The variation of dust layer height
may explain the contrasting color signatures observed in the
SEVIRI imagery: the elevated dust near Aralkum displays a
rich magenta hue, whereas the low-lying dust near the Kopet-
Dag Range is less discernible, possibly due to reduced tem-
perature contrast between the surface and dust aloft.

On 29 May 2018, remnants of the Aralkum dust plume
continued to affect western Uzbekistan and Turkmenistan
(Fig. 2c). The suspended dust was only partially detected
by CALIOP due to extensive cloud cover (Fig. 2f). The dust
layer extended to an altitude of 3.5 km, likely resulting from
the daytime convective mixing and increased vertical motion
ahead of an approaching cold front.

3.2 Comparison of UVAI products

Figure 3 compares multiple UVAI products in detecting the
freshly emitted dust plume on 27 May 2018, including the
OMPS, TROPOMI, and EPIC Mie-based UVAI products de-
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Table 1. List of satellite aerosol products considered in this study.

Sensor Algorithm/product Resolution Data reference

UV aerosol index (UVAI)

OMPS/SNPP NMMIEAI v2 50× 50 km2 Torres (2019a)

EPIC/DSCOVR AER v3 12× 12 km2 Torres (2019b)

TROPOMI/S5P
TROPOMAER v1 7.5× 3 km2 Torres (2021)
AER_AI v2 7.5× 3 km2 ESA (2021)

Mid-visible aerosol optical depth (AOD)

MODIS/Terra, Aqua

DT C6.1 10× 10 km2 Levy and Hsu (2015a)
DT3K C6.1 3× 3 km2 Levy and Hsu (2015b)
DB C6.1 10× 10 km2 Levy and Hsu (2015a)
MAIAC C6.1 1× 1 km2 Lyapustin and Wang (2022)

VIIRS/SNPP, NOAA20
DT v2 6× 6 km2 Levy et al. (2023)
DB v2 6× 6 km2 Hsu (2022)
EPS v3r0 0.75× 0.75 km2 Kondragunta et al. (2023)

MISR/Terra
v23 (operational) 4.4× 3 km2 ASDC (1999)
research algorithm 1.1× 1.1 km2 Limbacher et al. (2022)

Thermal infrared AOD (AOD10)

IASI/METOP-A

LMD v2.2 1°× 1° C3S CDS (2019)
MAPIR v5.1 1°× 1° C3S CDS (2019)
ULB v9 1°× 1° C3S CDS (2019)
IMARS v7 1°× 1° C3S CDS (2019)

Aerosol layer height (ALH)

CALIOP/CALIPSO 05kmAPro v4.51 5 km ASDC (2023)

EPIC/DSCOVR AOCH v1 30× 30 km2 ASDC (2018)

IASI/METOP-A LMD v2.2 12 km C3S CDS (2019)

MISR/Terra Plume height 1.1 km This study

veloped by NASA and the TROPOMI LER-based UVAI de-
veloped by the ESA. The sensor scan times over Aralkum
(45° N, 60° E), as shown in each panel, are less than 20 min
apart. The UVAI products display similar spatial patterns, but
with significant differences in the dynamic range and statis-
tical distributions.

Among the three NASA products (Fig. 3b–d), OMPS
yields markedly lower UVAI (e.g., mean= 0.5, maxi-
mum= 3.2) compared to EPIC (1.1 and 11.4) and TROPOMI
(0.6 and 5.2), likely due to its coarser spatial resolution and
cloud interference. EPIC exhibits significantly higher val-
ues over dusty scenes, partly because the 340–388 nm pair
is more sensitive to absorbing aerosols. Nonetheless, cloudy
scenes in EPIC appear more noisy, most likely due to EPIC
L1 calibration issues (personal communications with Karin
Blank). Statistically, both OMPS and TROPOMI reveal a bi-
modal distribution with a prominent peak near zero and a
secondary peak near 1. EPIC displays a unimodal distribu-

tion with a larger spread, as indicated by its standard devia-
tion (SD), median absolute deviation (MAD), and interquar-
tile range (IQR).

Compared to the TROPOMI 354–388 nm Mie-based
UVAI from NASA, the ESA LER-based product exhibits
more negative values over cloudy and dust-free scenes and
consequently greater dispersion, as indicated by a trimodal
distribution (Fig. 3d). The choice of the 354–388 nm versus
the 340–380 nm wavelength pair in the ESA product has mi-
nor effects on the regional means, extremes, and dispersion.
In contrast, the 335–367 nm pair produces significantly lower
UVAI and less dispersion, indicating reduced sensitivity to
aerosol absorption.

Dust detection using UVAI products often employs fixed
thresholds to isolate the dust signal. For example, Prospero
et al. (2002) used a UVAI threshold of 1 for North Africa
and 0.7 elsewhere; Schepanski et al. (2012) used a threshold
of 2 to detect major dust plumes over the Sahara. As shown
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Figure 2. (a–c) CALIPSO ground tracks superimposed on coincident MODIS/Aqua true color (27 and 29 May 2018) and SEVIRI dust RGB
composite (28 May 2018) imagery. The ground track start and end times are labeled. MODIS and SEVIRI scan times over Aralkum (45° N,
60° E) are shown at the top right corner. (d–f) Corresponding CALIOP 532 nm total attenuated backscatter profile. Black lines indicate the
ground surface.

in Fig. 3g, EPIC yields more than 18 % of pixels exceeding
a threshold of 2 – over 3 times those observed in OMPS and
TROPOMI. This disparity suggests that using a fixed UVAI
threshold may lead to inconsistent detection of dust plumes.
In contrast, adopting a percentile-based threshold can more
effectively capture the dynamic range of each product, re-
sulting in more coherent dust detection. As demonstrated in
Fig. 3, using the 95th percentile produces a consistent de-
lineation of the plume extent and captures three clusters of
elevated UVAI values separated by clouds (see Fig. 3a).

A persistent feature in all UVAI products is the occur-
rence of large positive values along the eastern coast of
the Caspian Sea, particularly over the northern Caspian Sea
and Garabogazköl Gulf. To determine whether airborne dust
was responsible for these anomalies, we compared multiple
UVAI products with coincident CALIOP AOD0.53 measure-
ments along the CALIPSO overpass shown in Fig. 3. To ac-
count for the along-track scan time differences (< 30 min

apart) between the sensors, we shifted the UVAI products to
match the UVAI and AOD0.53 maxima observed at the south-
eastern coast of the Caspian Sea (see Fig. 2d). Next, we ap-
plied a 5 s moving averaging to smooth the co-located data,
which are shown in Fig. 4.

Apparently, CALIOP detected only a very thin aerosol
layer over the northern Caspian Sea and Garabogazköl Gulf.
The large positive UVAI in these regions also remained sta-
tionary and persisted on dust-free days, indicating that they
were unlikely caused by dust and likely related to time-
invariant surface features. Due to influx of sediment-rich wa-
ter from the Volga and Ural rivers (Modabberi et al., 2019;
Moradi, 2022), the northern Caspian Sea displays persistent
discoloration, as seen in Fig. 3a. This shallow, sediment-rich
water strongly absorbs in the near-UV, producing enhanced
absorption at shorter wavelengths that resembles the spectral
signature of airborne dust (He et al., 2012; Lee et al., 2013).
Similarly, the shallow, saline waters of Garabogazköl Gulf
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Figure 3. Comparison of UVAI products on 27 May 2018: (a) MODIS/Aqua true color composite; (b–f) five UVAI products from OMPS,
EPIC, and TROPOMI; and (g) violin plots and summary statistics of six UVAI products. The sensor scan times over Aralkum and the
CALIPSO ground track are indicated in panels (a)–(f). Black contours in (b)–(f) indicate the 95 % percentile of UVAI values. Summary
statistics in panel (g) are pixel count (N ), mean, median (Med), standard deviation (SD), median absolute deviation (MAD), minimum
(Min), maximum (Max), 95 % percentile (Q95), interquartile range (IQR), and proportion of UVAI≥ 2 pixels (F2).

(with a salinity of ∼ 35 %) cause strong near-UV absorption
and yield a dust-like UVAI signal, in contrast to the deep
water of the Caspian Sea, which has a much lower salinity
(∼ 1.3 %) and yields near-zero UVAI. Large positive UVAI
values are also observed over the Sor Kaydak salt marsh due
to enhanced UV absorption by salt minerals and organisms
(Fig. 3). In summary, enhanced UV absorption by turbid and
saline waters and salt flats causes the water-leaving UV radi-
ances to deviate from those for a pure scattering atmosphere,
thereby generating large positive UVAI that resembles the ef-
fects of airborne dust. This surface-feature-related UVAI sig-
nal may be common over ephemeral and dried lakes, which

constitutes a potential source of error in using UVAI prod-
ucts for dust plume detection and source mapping in these
regions.

3.3 Comparison of mid-visible AOD products

3.3.1 AOD retrieval over desert surfaces

Table 2 summarizes the statistics of eight AOD products
based on the best-quality over-land retrievals between 27 and
29 May 2018. The number of pixels differs greatly among
the products, indicating inconsistent sampling due to differ-
ences in spatial resolutions, screening of irretrievable scenes
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Figure 4. Coincident measurements of CALIOP 532 nm AOD and various UVAI products along the eastern coast of the Caspian Sea on
27 May 2018. The CALIPSO ground track is shown in Fig. 3. Shaded areas represent the Garabogazköl Gulf and northern Caspian Sea.

Table 2. Summary statistics of eight AOD products in observing the Aralkum dust aerosol during 27–29 May 2018 based on the best-quality
over-land retrievals. SD: standard deviation. MAD: median absolute deviation. IQR: interquartile range. Sk: skewness. 90th: 90th percentile.

Product N Mean SD Median MAD IQR Sk 90th Max

MODIS/Terra DB 21 338 0.49 0.73 0.25 0.17 0.38 3.0 1.0 3.5
MODIS/Aqua DB 21 659 0.46 0.55 0.31 0.18 0.37 3.4 0.9 3.5
MODIS/Terra MAIAC 5 223 130 0.35 0.54 0.18 0.11 0.26 4.7 0.7 6
MODIS/Aqua MAIAC 5 070 926 0.37 0.69 0.17 0.10 0.24 4.3 0.7 6
VIIRS/SNPP DB 110 726 0.44 0.76 0.15 0.10 0.39 3.6 1.0 5
VIIRS/NOAA20 DB 110 286 0.56 0.85 0.26 0.19 0.55 3.2 1.2 5
VIIRS/SNPP EPS 5 295 908 0.49 0.62 0.26 0.19 0.54 2.3 1.2 5
VIIRS/NOAA20 EPS 3 996 574 0.37 0.53 0.19 0.16 0.39 2.8 1.0 5

(e.g., clouds, snow/ice, sun glint, ocean color), and/or QA
definitions. The inconsistent sampling, along with algorithm
differences as discussed in Sect. 2.2, contributes to dispari-
ties in the AOD statistics. In addition, the NOAA EPS prod-
uct uses L1b data from the NOAA VIIRS calibration/vali-
dation group, while the NASA DT and DB products use the
L1b data from the NASA VIIRS Calibration Support Team,
which may further contribute to product inconsistency.

The MODIS-retrieved AOD appears more consistent be-
tween Terra and Aqua platforms than between DB and MA-
IAC algorithms. In particular, the mean AOD differs by less
than 10 % between Terra and Aqua but exceeds 20 % be-
tween DB and MAIAC. Compared to MAIAC, DB produces
a larger upper tail, as indicated by a higher 90th percentile,
and consequently a broader distribution (higher SD, MAD
and IQR). MAIAC produces a narrower distribution (lower
MAD and IQR) despite more extreme high values (i.e., up-
per limit of 6 versus 3.5 for DB).

VIIRS DB and EPS algorithms employ the same upper
AOD limit (5) but display more complex patterns compared
to MODIS. For VIIRS/SNPP, EPS yields a higher mean and

median as well as more extreme values, while DB produces
a larger SD and skewness, indicating a broader upper tail.
For VIIRS/NOAA20, DB yields a larger spread (higher SD
and IQR) and a larger upper tail (higher 90th percentile) than
EPS, suggesting that DB captures more frequent high AOD
values.

Next, we focus on comparing the MODIS/Aqua DB versus
MAIAC products and VIIRS/NOAA20 DB versus EPS prod-
ucts. By comparing AOD retrieved from the same sensor, we
can attribute the disparity to the choice of algorithms. The in-
struments are hereafter referred to simply as MODIS and VI-
IRS unless otherwise noted. Due to different spatial resolu-
tions, the L2 products are gridded onto a uniform 0.2°×0.2°
resolution by computing the mean value of all pixels within
each grid cell. We only use the best-quality retrievals based
on the QA rules recommended in each product.

Figure 5 displays the daily gridded AODs, along with VI-
IRS true color composites to help attribute missing retrievals
to either clouds or incorrect cloud screening. None of the
products captured the full extent of the fresh dust plume on
27 May 2018. The retrieved AOD over the dust scene also
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Figure 5. Over-land AOD retrievals on 27–29 May 2018. (a–c) VIIRS/NOAA20 true color images, (d–f) MODIS/Aqua DB product, (g–i)
MODIS/Aqua MAIAC product, (j–l) VIIRS/NOAA20 DB product, (m–o) VIIRS/NOAA20 EPS product, and (p–r) VIIRS/NOAA20 EPS
product using the dust optical model as a test case.

reached the upper limit defined in each algorithm. There are
several reasons for defining an upper AOD limit. First, set-
ting an upper AOD limit is necessary to minimize the ef-
fect of residual cloud contamination. Second, AOD retrieval
from reflected sunlight relies on scene brightening by aerosol
scattering (primarily the forward scattering of surface reflec-
tion) against a relatively dark background. At high aerosol
loadings, the TOA reflectance becomes less sensitive to ad-
ditional AOD increases, hence making AOD retrieval less ac-
curate during heavy aerosol events. Lastly, AOD retrieval is
performed by matching observed TOA reflectances against
pre-computed values within a specific AOD range. A poor
fit may result, if the aerosol burden exceeds the predefined
range. Retrievals under such scenarios are often flagged as
marginal quality and consequently excluded from our screen-
ing for the best-quality data. Thus, heavy dust scenes may be
either retrieved but with low confidence in clear sky or clas-
sified as clouds and not retrieved.

To check whether the freshly emitted dust on 27 May was
erroneously classified as clouds, Fig. 6 displays the cloud
fraction or cloud masks reported in selected granules from
each product. Figure 6 reveals that the thick dust plume is
mostly flagged as clouds in all products. For MODIS, DB
detected parts of the plume fringes, where the retrieved AOD
reached the algorithm limit (3.5). MAIAC classifies the ma-
jority of the dust scene as “cloudy”. For VIIRS, DB does not
report cloud masking or fraction; instead it reports an Un-
suitable_Pixel_Fraction_Land_Ocean parameter, which in-
dicates that the dust pixels near Aralkum were not retrieved.
Similarly, EPS flags the dust scene as “confidently cloudy”.

On 28 May 2018, a high-pressure system produced cloud-
free conditions, providing an optimal sky condition for
aerosol retrieval (Fig. 5b). All products successfully captured
the extensive dust layer; however, there are large differences
in the AOD magnitudes. Notably, VIIRS EPS yields signif-
icantly lower (by more than 50 %) AOD than other prod-
ucts over dust-affected areas. As described in Sect. 2, satel-
lite algorithms use predefined aerosol optical models (in-
cluding coarse-mode dust models) to represent location- and
season-dependent aerosol microphysical properties. To de-
termine whether the dust optical model was successfully se-
lected, Fig. 7 displays the aerosol optical model selected for
retrieval in each product. MODIS DB does not report this in-
formation and is thus not shown. Both MODIS MAIAC and
VIIRS DB successfully selected their respective dust models
for the dust scene over western Turkmenistan. VIIRS EPS
selected the urban aerosol model, presumably because the
urban model produced a closer match between observed and
simulated TOA reflectances.

According to Laszlo and Liu (2022), EPS first retrieves
AOD in the blue channel (0.41 µm) and then scales it to
longer wavelengths using the normalized spectral extinc-
tion coefficients associated with the aerosol optical model.
The normalized extinction coefficient exhibits much stronger
wavelength dependence in the urban model than the dust
model (see Figs. 3–4 in Laszlo and Liu, 2022). For the same
AOD0.41 value, the dust model would yield more than 40 %
higher AOD compared to the urban model. In other words,
had the dust model been selected, EPS would have retrieved
higher AOD that aligns more closely with DB and MAIAC.
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Figure 6. Misclassification of freshly emitted dust as clouds on 27 May 2018. (a) Cloud fraction from MODIS/Aqua DB product, (b) cloud
mask from the MODIS/Aqua MAIAC product, (c) unsuitable pixel fraction from the VIIRS/NOAA20 DB product, and (d) cloud mask from
the VIIRS/NOAA20 EPS product. Red contours indicate the 95th percentile (2.1) of the TROPOMI TropOMAER UVAI product.

Figure 7. Aerosol optical model used for over-land retrievals on 28 May 2018 in the (a) MODIS/Aqua MAIAC, (b) VIIRS/NOAA20 DB,
and (c) VIIRS/NOAA20 EPS products.

Indeed, when we forced EPS to use the dust model, its agree-
ment with DB and MAIAC improved, although the retrieved
AODs were still lower and had more marginal-quality re-
trievals that were excluded from our screening procedure
(Fig. 5p–r).

Using the gridded AOD products in Fig. 5, we con-
ducted a regression analysis to further examine the consis-
tency between aerosol algorithms. The results are shown in
Fig. 8. The choice of algorithms for both MODIS and VI-
IRS introduces a nonlinear response in the retrieved AOD.
For MODIS, MAIAC produces lower AOD than DB un-
der low aerosol loadings (e.g., 36 % lower for AOD< 1)
but higher AOD under heavy loadings (22 % higher for
2<AOD< 3). This nonlinearity may be partly explained by
MAIAC’s higher spatial resolution, which yields more ex-
treme retrievals (either very clean or heavily polluted). The
higher AOD limit in MAIAC (6 vs. 3.5 for DB) may fur-
ther exacerbate the discrepancies at heavy aerosol loadings,
as shown in Fig. 8a. For VIIRS, EPS produces generally
lower AODs than DB under all aerosol loadings, with the
EPS–DB difference increasing from 37 % for AOD< 1 to
51 % for 4<AOD< 5 (Fig. 8b). Indeed, Fig. 5m–o show that

EPS yields approximately 50 % lower AODs than other algo-
rithms over the dust scene.

Figure 9 displays MISR AOD retrievals on 28 May 2018
(orbit 98092) based on the standard operational product and
MISR research algorithms. The standard product exhibits
several limitations. First, an outdated land/water mask was
used and marked the Aral Sea as “shallow water”; as a result,
no retrievals were performed over the Aralkum Desert. Sec-
ond, the lofted dust over the Kopet-Dag foothills was mis-
classified as clouds. Lastly, the retrieved AOD is substan-
tially lower than those from single-view sensors (Fig. 5).
Kahn et al. (2010) noted that MISR tends to underestimate
AOD under heavy aerosol loadings, as the weak surface re-
flection signal leads to poor surface–atmosphere separation
and overestimation of the surface contribution to TOA radi-
ances. Additionally, the standard product selected spherical
non-absorbing aerosol mixtures for the dust scene, resulting
in underestimation of the nonspherical fraction and overesti-
mation of FMF and SSA. A key factor for the biased particle
property retrieval is the lack of appropriate aerosol optical
models for saline dust in the MISR standard algorithm; con-
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Figure 8. Comparison of over-land AOD retrievals during 27–
29 May 2018: (a) MODIS/Aqua MAIAC vs. DB and (b) VI-
IRS/NOAA20 EPS vs. DB. Black lines indicate the linear model
fits. Red squares indicate bin-averaged AODs every 0.1 increment.
RMSD: root mean square difference.

sequently, the particle property retrievals are of low confi-
dence.

To explore the particle property information content of
MISR observations, we ran the MISR research algorithm in
three modes: (a) with the surface retrieved self-consistently
with the atmosphere using only MISR data, (b) with the sur-
face reflectance prescribed from the MODIS MAIAC prod-
uct (Limbacher et al., 2022), and (c) with a modified algo-
rithm based on an AI/ML approach. Initial statistics indi-
cate that these models do well in the regional means. AOD
is retrieved fairly consistently with all three approaches, ex-
cept in the highest- and lowest-AOD regions. The agreement
with single-view AOD products (Fig. 5, second row) is im-
proved substantially. The prescribed surface results appear
to perform better for extremely high AOD conditions and
capture the increasing AOD gradient towards the Kopet-Dag
Range. The retrieved nonspherical fraction and FMF show

large discrepancies among the three approaches. The AI/ML
approach performs closest to expectation in this case (i.e.,
NonSph> 0.8), whereas the retrieved and prescribed surface
results may have underestimated the nonspherical fraction.
Results for SSA are generally consistent, with SSA> 0.95
for the dust scene, except for low-AOD regions where the
AI/ML SSA results are probably too low.

3.3.2 AOD retrieval over the Caspian Sea

We further compared six AOD products in observing the
dust outflow to the Caspian Sea on 28 May 2018 based on
the best-quality retrievals from MODIS/Aqua (DT, DT3K,
and MAIAC) and VIIRS/NOAA20 (DT, DB, and EPS). All
Level-2 products were gridded to a 0.1°× 0.1° resolution by
averaging the pixels within each grid cell. Bilinear interpo-
lation was applied to the MODIS DT product to account for
reduced pixel resolutions near sensor swath edges. The grid-
ded AODs are displayed in Fig. 10.

All products capture the enhanced aerosol burden associ-
ated with dust outflow to the Garabogazköl Gulf and Caspian
Sea. Among the MODIS products, DT3K and MAIAC pro-
duce more extreme AOD than DT, resulting in higher means
and greater spread (indicated by higher SD and MAD). These
spurious AODs create unnatural discontinuities along coastal
regions, likely due to inaccurate surface reflectance charac-
terization. VIIRS DT retrieves very high AOD over the shal-
low waters and salt flats over northern Caspian Sea and to a
lesser extent over the coastal region of Garabogazköl Gulf.
The non-negligible surface signal from these areas deviated
from the dark water surface assumption in the DT algo-
rithm and was likely misinterpreted as aerosol signal, lead-
ing to spurious high AODs. As a result, VIIRS DT produces
a higher mean, more extreme upper tail values (indicated
by the 90th percentile and maximum), and a larger spread
(higher SD and IQR) than DB and EPS.

We further examined the aerosol optical models selected
during the retrieval, as shown in Fig. 11. The MAIAC
spheroidal dust model (“Model 6”) was applied to only
parts of the dust scene, resulting in discontinuous AOD pat-
terns. The VIIRS DT product reports the AOD partitions
among nine fine/coarse aerosol models in the “best solution”,
from which we computed the relative contributions of three
aerosol type: fine aerosol, sea salt, and coarse dust. The sea
salt type is a dominant contributor to the AOD, suggesting
that the sea salt aerosol model provides the closest fit to the
dust scene in the “best solution”. VIIRS DB successfully ap-
plied its spheroidal dust model for the full extent of the dust
scene and a maritime aerosol model for dust-free regions. VI-
IRS EPS selected its oceanic aerosol model for the full scene,
again failing to select the dust model similar to the over-land
retrieval. In summary, the aerosol algorithms showed varied
performance in selecting aerosol optical models for AOD re-
trieval over the Caspian Sea.
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Figure 9. MISR aerosol retrievals on 28 May 2018. Operational standard product (top row), research algorithm (RA) with retrieved surface
reflectances from MISR data (second row), research algorithm with prescribed surface reflectances from the MODIS MAIAC product(third
row), and research algorithm using an AI/ML approach (bottom row).
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Figure 10. Over-water AOD retrievals over the Caspian Sea on 28 May 2018. Top row panels are MODIS/Aqua (a) true color composite,
(b) DT AOD, (c) DT3K AOD, and (d) MAIAC AOD. Bottom row panels are VIIRS/NOAA20 (e) true color composite, (f) DT AOD, (g) DB
AOD, and (h) EPS AOD. All products are gridded to a 0.1°× 0.1° resolution.

Figure 11. Aerosol optical models used for AOD retrieval over the Caspian Sea on 28 May 2018 in the (a) MODIS/Aqua MAIAC, (b) VI-
IRS/NOAA20 DT, (c) VIIRS/NOAA20 DB, and (d) VIIRS/NOAA20 EPS products.

Figure 12 compares the gridded AOD products via lin-
ear regression to assess the consistency between algorithms.
Over-water retrievals exhibit stronger linear relationships
and better agreement than over-land retrievals (Fig. 8), with
R2 > 0.9 and RMSD< 0.1 in all cases. MODIS DT and

DT3K products show excellent agreement with a slope of
0.98 and R2 of 0.91, while other products show slightly
weaker slopes of∼ 0.8. In general, DT yields lower AOD un-
der clean marine conditions (AOD< 0.15) but higher AOD
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Figure 12. Comparison of AOD retrievals over the Caspian Sea on 28 May 2018: (a) MODIS/Aqua DT3K vs. DT, (b) MODIS/Aqua MAIAC
vs. DT, (c) VIIRS/NOAA20 DB vs. DT, and (d) VIIRS/NOAA20 EPS vs. DT. Black lines indicate the linear regression fits. Red squares
indicate bin-averaged AODs at 0.05 increments. RMSD: root mean square difference.

Figure 13. Same as Fig. 12 but for coarse-mode AOD.

in dusty conditions than the MAIAC, DB, and EPS algo-
rithms.

Compared to aerosol retrieval over land, over-water re-
trieval provides greater information content to constrain par-
ticle properties. As described in Sect. 2.2.1, over-water al-
gorithms represent the aerosol column as a sum of a fine
and a coarse mode and retrieves the total AOD and FMF.
Here, we use the total AOD and FMF to compute the coarse-
mode AOD from each product and perform a similar com-
parison as in Fig. 12. Figure 13 shows that the coarse-mode
AODs exhibit strong linear relationships, with R2 > 0.8 and
RMSD< 0.1, although the agreement is somewhat weaker
than for the total AOD. Overall, DT tends to yield higher
coarse-mode AOD under dust-laden conditions compared to
DT3K, MAIAC, DB, and EPS.

3.4 Comparison of infrared AOD (AOD10) products

This section compares the IASI AOD10 products from four
algorithms: LMD, MAPIR, ULB, and IMARS, based on
Level-3 daily 1°× 1° gridded products. Table 3 summarizes
the AOD10 statistics based on separate daytime (descend-
ing node) and nighttime (ascending node) retrievals on 27–
29 May 2018. Figure 14 displays the daily combined AOD10
by merging the daytime and nighttime observations. The
inclusion of both daytime and nighttime data substantially
improved the data coverage compared to mid-visible AOD
products, which rely solely on daytime observations (Fig. 5).

Among the four algorithms, LMD has the best perfor-
mance in detecting the dust plume features both over deserts
and the Caspian Sea. On 27 May, LMD captured the exten-
sive plume stretching from the Aralkum Desert to the Kopet-
Dag Range (Fig. 14a), outperforming mid-visible techniques
in detecting the fresh dust plume. The highest AOD10 (1.2)
was observed downwind over Uzbekistan rather than in the
immediate vicinity of Aralkum, likely due to difficulty in
detecting the heavy dust near the source. Additionally, the
retrieved AOD10 reached the upper limit of the predefined
range in the LMD algorithm (0–1.4), indicating possible un-
derestimation. Unlike mid-visible retrievals which include
fine aerosol contributions, AOD10 is sensitive to coarse par-
ticles only. The AOD10-to-AOD ratio depends on the par-
ticle size distribution, particularly the relative fraction of
fine and coarse modes. Using an AOD10-to-AOD ratio of
0.6 for coarse-dominated dust would imply an AOD10 of
∼ 3, or more than twice the upper limit, based on the max-
imum VIIRS DB AOD observed on 27 May (Fig. 5j). On
28 May, LMD successfully retrieves the suspended dust by
the Kopet-Dag foothills and the dust outflow to the Caspian
Sea (Fig. 14b), resulting in a spatially continuous AOD10
pattern, in contrast to mid-visible retrievals which exhibited
unnatural discontinuities in coastal regions. The AOD10 on
29 May captures both the remnant dust from the previous
days and the new emission event from Aralkum, consistent
with VIIRS observation shown in Fig. 5c.

Compared to LMD, MAPIR yields generally higher back-
ground AOD10 over aerosol-free areas but lower AOD10 over
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Figure 14. IASI AOD10 retrievals from four algorithms on 27–29 May 2018. (a–c) LMD, (d–f) MAPIR, (g–i) ULB, and (j–l) IMARS.

Table 3. Summary statistics of four IASI AOD10 products in observing the Aralkum dust aerosol during 27–29 May 2018. SD: standard
deviation. MAD: median absolute deviation. IQR: interquartile range. Sk: skewness.

Algorithm N Mean SD Median MAD IQR Sk Max

LMD 1122 0.13 0.20 0.05 0.05 0.17 2.5 1.2
MAPIR 1380 0.11 0.11 0.08 0.03 0.07 6.0 1.7
ULB 1486 0.06 0.09 0.03 0.04 0.09 2.0 0.6
IMARS 365 0.08 0.07 0.07 0.05 0.10 1.4 0.4

dust-laden scenes, resulting in less distinct plume features
(Fig. 5g–i). The two products exhibit moderate correlations,
with R2 of 0.6 for daytime retrievals and 0.4 for nighttime
retrievals. MAPIR successfully retrieved the thick dust on
27 May, although with a smaller spatial extent than LMD.
MAPIR struggled in detecting dust over the complex ter-
rains of the Ustyurt Plateau and Kopet-Dag foothills on 28–
29 May, likely due to increased uncertainty in characteriz-
ing the surface properties (e.g., emissivity, temperature), to
which infrared retrievals are highly sensitive over elevated
terrains (Capelle et al., 2014).

Overall, ULB and IMARS exhibit poorer performance
compared to LMD and MAPIR. Specifically, ULB misclas-
sified the fresh dust plume as clouds on 27 May and retrieves
very low AOD10 on 28–29 May. IMARS reported substantial
missing data for dust-affected areas on all 3 d, likely due to
overly restrictive cloud masking and/or low confidence asso-
ciated with its probabilistic retrievals.

3.5 Comparison of ALH products

In this section, we compare four ALH products: CALIOP
aerosol-extinction-weighted height, EPIC AOCH product,

IASI LMD mean dust layer altitude, and MISR stereo-height
retrieval. The CALIOP ALH is derived from aerosol extinc-
tion vertical profiles at 532 and 1064 nm, while the EPIC and
IASI products retrieve an effective ALH using passive tech-
niques that rely on a priori assumptions about aerosol ver-
tical distributions (Sect. 2.4). Among the IASI products, we
focus on the LMD algorithm due to its better performance in
detecting the dust plume features (Fig. 14). Below, we first
examine the EPIC retrievals on 28 and 29 May 2018 and
use co-located CALIOP measurements for validation. The
dust plume on 27 May is misclassified as clouds in the EPIC
AOCH product and thus not discussed. Next, we compare the
coincident retrievals from EPIC and IASI to assess the con-
sistency between passive ALH retrievals. Finally, we present
results for MISR plume height retrieval on 28 May 2018.

Figure 15 displays the 0.68 µm surface reflectivity,
AOD0.68, and AOCH retrieved by EPIC. On 28 May, the
low surface reflectivity and enhanced aerosol loading (i.e.,
AOD0.68 > 0.5) over the Caspian Sea provided optimal con-
ditions for AOCH retrieval. The dust outflow was elevated
to an altitude of 1.5–2.5 km (Fig. 15e), likely enhanced by
orographic lifting as the lofted dust was transported over the
Ustyurt Plateau.
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Figure 15. EPIC AOCH retrievals at 09:01 Z on 28 May 2018 (a, c, e) and 08:47 Z on 29 May 2018 (b, d, f): (a, b) 680 nm surface reflectivity,
(c, d) 680 nm AOD, and (e, f) AOCH. The coincident CALIPSO ground track is shown in panel (f).

Figure 16. (a) Coincident retrievals of CALIOP extinction-weighted ALH and EPIC AOCH along the CALIPSO overpass on 29 May 2018
(ground track shown in Fig. 15f). Magenta triangles are EPIC-retrieved AOD0.68. The gray line indicates the CALIPSO-detected ground
surface. (b) Comparison between CALIOP 532 nm ALH and EPIC AOCH. (c) Comparison between CALIOP 1064 nm ALH and EPIC
AOCH. N : number of coincident retrievals. MB: mean bias. RMSE: root mean square error. EE: percentage of co-located retrievals within
expected errors of 0.5 and 1 km (shaded areas).

Bright desert surfaces pose significant challenges for iso-
lating aerosol scattering contributions to EPIC measure-
ments. Radiative transfer simulations indicate that the sen-
sitivity to ALH in the O2 band spectral contrast diminishes
over bright surfaces, requiring high aerosol loadings to gen-
erate sufficient signal-to-noise ratios for reliable AOCH re-

trieval (Xu et al., 2019). As shown in Fig. 15, EPIC-retrieved
AOD0.68 and AOCH exhibit opposite spatial patterns: AOCH
displays unrealistically high values over low AOD0.68 areas
and reasonably low values over high AOD0.68 (up to 6) areas
that form a continuous pattern with the Caspian Sea retrieval.
Thus, AOD0.68 provides a practical means for screening
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marginal-quality AOCH retrievals. Focusing on dust scenes
where AOD0.68 exceeds 2, the AOCH over Turkmenistan in-
creased from 1–1.5 km on 28 May to 2–3 km on 29 May.
This temporal evolution can be explained by the evolution of
meteorological conditions: a prevailing high-pressure system
suppressed vertical aerosol mixing on 28 May, whereas en-
hanced upward motion ahead of a deepening cold front pro-
moted convective mixing on 29 May.

The EPIC AOCH retrievals are compared against coinci-
dent CALIOP extinction-weighted ALH, as shown in Fig. 16.
Generally, the CALIOP 532 nm channel is more prone to sig-
nal attenuation in the presence of dense absorbing aerosols,
resulting in lower ALH than the 1064 nm channel (Torres
et al., 2013). Our analysis reveals that the wavelength choice
has minor effects on the CALIOP-derived ALH, with a
mean difference of 0.05 km between the two channels. EPIC
AOCH exhibits significant positive biases under low aerosol
loadings. Using the CALIOP 532 nm ALH as a benchmark,
EPIC AOCH has a mean bias of 3.6 km and an RMSE of
4.3 km, with only 17 % (21 %) of co-located retrievals within
0.5 (1.0) km agreement. However, after applying an AOD0.68
threshold of 1.5 to isolate dust-laden scenes, the AOCH ac-
curacy significantly improved, with a much lower mean bias
(0.4 km) and RMSE (0.8 km), as well as 61 % (72 %) of co-
located retrievals within 0.5 (1.0) km agreement. In general,
the higher the AOD0.68 threshold, the better the agreement
between EPIC and CALIOP. The close agreement between
EPIC and CALIOP, as well as between the two CALIOP
channels, can be attributed to the well-defined upper bound-
ary of the dust layer (as seen in Fig. 2f) such that the different
techniques detected the strongest signal from the same alti-
tude.

To compare EPIC AOCH with IASI mean dust altitude, we
selected the EPIC scans closest in time (06:50 Z on 28 May
and 06:41 Z on 29 May) to the daytime IASI overpasses. We
applied an AOD0.68 threshold of 1.5 to EPIC AOCH over
land in order to exclude marginal-quality retrievals and en-
hance clarity. As shown in Fig. 17a–b, the AOD0.68 thresh-
old removes the majority of unrealistic AOCH values over
land. However, EPIC displays unrealistic retrievals over the
northern Caspian Sea. This bias resembles the surface-related
UVAI signal shown in Fig. 3, indicating that the water-
leaving radiance from shallow turbid waters may have been
mistreated as aerosol signal in the EPIC algorithm. The EPIC
AOCH retrievals at 06:50 and 09:01 Z on 28 May show minor
changes over time, likely due to a prevailing cold anticyclone
which trapped dust within the boundary layer. In contrast,
the AOCH increases by ∼ 0.4 km from 06:41 to 08:52 Z on
29 May due to the lifting by an approaching cold front.

Figure 17c–d show that IASI generally retrieves higher
ALH than EPIC in dust-laden scenes over both desert sur-
faces and the Caspian Sea. The EPIC and IASI Level-2 prod-
ucts are gridded onto a 1°× 1° resolution to further assess
their consistency as a function of aerosol loading. Figure 18
shows that EPIC and IASI have the poorest agreement un-

Figure 17. ALH retrievals in the (a, b) EPIC AOCH and (c, d)
IASI LMD products on 28–29 May 2018. Only the EPIC AOCH
retrievals with AOD0.68 > 1.5 are shown. The sensor scan times
over Aralkum (45° N, 60° E) are shown at the top right corner of
each panel.

der low aerosol loadings, wherein EPIC AOCH tends to be
overestimated as discussed earlier. As aerosol loading in-
creases, the ALH difference decreases rapidly and stabilizes
at AOD10 ≥ 0.3 (Fig. 18b). Retrievals for AOD10 ≥ 0.3 show
a mean EPIC–IASI difference of −0.4 km and an RMSD
of 1.4 km, with 79 % (85 %) of co-located retrievals falling
within 0.5 (1.0) km differences.

Finally, Fig. 19 shows the stereo-height retrieval from
MISR multi-angle images for two polygon regions lo-
cated near the Kopet-Dag foothills. The digitized pixels in
both regions indicate an elevated dust layer extending from
∼ 0.8 km above the ground to a sharp upper boundary at
∼ 1.3 km, with a median plume height of 1.1 km. This es-
timate is ∼ 1 km lower than the CALIOP-detected dust layer
top (Fig. 2f), consistent with expected differences in these
two techniques (Sect. 2.2.5). Overall, the MISR ALH re-
trieval aligns with CALIOP and EPIC in detecting the dust
layer height at the Kopet-Dag foothills (Fig. 16a).

4 Conclusions

The Aralkum Desert has emerged as a prominent source of
saline dust aerosol. While satellite-based aerosol retrievals
remain the most practical means for monitoring the dust ac-
tivity from Aralkum, they face considerable challenges due
to the absence of local aerosol observational constraints and
the region’s heterogeneous and highly variable surface char-
acteristics. Although satellite algorithms are optimized for
global performance, they may exhibit greater inconsistency
and biases for regions with poor algorithm representations of
region-specific aerosol and surface properties. To date, the
performance and consistency of satellite techniques in char-
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Figure 18. (a) Comparison of co-located ALH retrievals by EPIC
and IASI.N : number of coincident retrievals. MD: mean difference.
RMSD: root mean square difference. ED: percentage of co-located
retrievals within expected differences of 0.5 and 1 km (shaded ar-
eas). (b) The EPIC− IASI difference as a function of IASI-retrieved
AOD10.

acterizing the saline dust from Aralkum remain poorly un-
derstood. We address this knowledge gap through two key
efforts.

First, we conducted a survey of satellite techniques and al-
gorithms capable of detecting the presence, column burden,
and vertical height of airborne dust from the Aralkum Desert,
focusing on four families of satellite aerosol products: UVAI,
mid-visible AOD, thermal infrared AOD, and ALH. The sur-
vey identifies the diverse approaches employed by various
algorithms and the differing a priori assumptions on surface
properties and aerosol optical models (e.g., refractive index,
particle shape, particle size distribution). In particular, the
dust optical models in these algorithms are primarily derived
from AERONET measurements from West Africa and the
Middle East. These models may deviate substantially from
the microphysical properties of Aralkum-derived aerosols,
which has been found to contain distinct chemical and miner-
alogical compositions compared to typical desert dust, such

as abundant sulfate- and carbonate-rich minerals and negli-
gible iron oxide content.

Currently, due to lack of in situ aerosol measurements
(e.g., AERONET) near Aralkum, the extent to which these
dust optical models deviate from actual conditions has yet
to be determined. The impact of inaccurate algorithm as-
sumptions on the aerosol product performance is also under-
explored. Addressing these knowledge gaps requires estab-
lishing routine aerosol monitoring near Aralkum, e.g., in the
downwind Karakalpakstan region. Such measurements are
essential not only for validating satellite products but also
for developing new or refining existing aerosol optical mod-
els for saline dust aerosol.

Second, we performed a case study to assess the cross-
sensor and cross-algorithm consistency in observing a saline
dust event from the Aralkum Desert during 27–29 May 2018.
We compared a broad range of aerosol products, including
UVAI from OMPS, TROPOMI, and EPIC; mid-visible AOD
from MODIS, MISR, and VIIRS; thermal infrared AOD
from IASI using four different algorithms; and ALH from
EPIC, CALIOP, IASI, and MISR. This synergistic, multi-
sensor analysis allowed us to identify the complementary
strengths of different techniques and uncover the product in-
consistency and potential limitations. The main findings are
as follows.

The UVAI products show similar spatial patterns associ-
ated with the fresh dust plume but exhibit notable differences
in magnitude and dynamic range. These discrepancies can be
attributed, at least in part, to the choice of wavelength pair
and the treatment of the cloud-scattering effect. Using the
95th percentile as a threshold for dust detection, we find over-
all agreement in delineating the dust plume extent between
the products. All UVAI products show large positive val-
ues over the northern Caspian Sea, Garabogazköl Gulf, and
Sor Kaydak salt marsh. These dust-like signals are primar-
ily caused by enhanced UV absorption by shallow, turbid,
and saline waters, which causes the water-leaving UV radi-
ance to deviate from a pure Rayleigh scattering atmosphere,
similar to the effect of absorbing aerosols. This presents an
important limitation for using UVAI to detect airborne dust
and dust sources over Central Asia due to interferences of
turbid/salty waters, salt marshes, and saline deserts. Caution
must be used to avoid misinterpreting these surface features
as dust signals.

Mid-visible AOD retrievals over desert surfaces exhibit
considerable inconsistency across different sensors and al-
gorithms. The choice of algorithms causes nonlinear rela-
tionships between the retrieved AOD from MODIS and VI-
IRS. Specifically, MAIAC retrieves lower AOD than DB un-
der low aerosol loadings but higher AOD under high aerosol
loadings. EPS generally produces lower AOD than DB, with
their divergence increasing as aerosol loading increases. In
the EPS product, an urban aerosol optical model was selected
for dust retrieval, leading to significantly lower AOD com-
pared to other algorithms. A test retrieval using the dust op-
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Figure 19. MINX-retrieved plume height profiles (middle and right panels) based on MISR multi-angle images on 28 May 2018 (orbit
98092) for two polygon areas denoted in the nadir-view RGB image (left panel). Surface elevation is represented in green, and retrieved
plume heights are represented in red.

tical model, however, shows better agreement between EPS
and other algorithms. The MISR operational product exhibits
significant missing data and AOD underestimation compared
to MODIS and VIIRS. In contrast, the MISR research al-
gorithm produces higher, more consistent AODs as well as
improved constraints on particle microphysical properties.
Over the Caspian Sea, mid-visible AOD retrievals show bet-
ter agreement between algorithms, despite the DT and EPS
algorithms failing to select their dust optical models dur-
ing their retrieval. Generally, DT retrieves lower AOD under
clean marine conditions but higher AOD under dust-laden
conditions compared to the MAIAC, DB, and EPS algo-
rithms. Among the four IASI infrared aerosol products, the
LMD product has the best performance in detecting the dust
plume extent.

The high reflectivity of desert surfaces and shallow or tur-
bid coastal waters pose a great challenge for passive ALH
retrieval. The EPIC AOCH product significantly overesti-
mates aerosol heights under low aerosol loading or back-
ground conditions. However, EPIC shows good agreement
with CALIOP in detecting the dust layer with a well-defined
upper boundary, resulting in a mean bias of 0.4 km and 61 %
(72 %) of co-located retrievals within 0.5 km (1.0 km) dif-
ferences. EPIC also shows reasonable agreement (with a
mean difference of −0.4 km) with IASI infrared-based mean
dust layer altitude over dust-laden scenes. The MISR plume
height retrieval, derived from parallax of multi-angle images,
aligns well with EPIC and CALIOP in detecting dust layer
height over the Kopet-Dag foothills.
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