Articles | Volume 25, issue 7
https://doi.org/10.5194/acp-25-3889-2025
https://doi.org/10.5194/acp-25-3889-2025
Research article
 | 
07 Apr 2025
Research article |  | 07 Apr 2025

Hygroscopic aerosols amplify longwave downward radiation in the Arctic

Denghui Ji, Mathias Palm, Matthias Buschmann, Kerstin Ebell, Marion Maturilli, Xiaoyu Sun, and Justus Notholt

Related authors

Reconstructing the Full-Physics Model with Machine Learning for Aerosol Composition Retrieval
Denghui Ji, Xiaoyu Sun, Christoph Ritter, and Justus Notholt
EGUsphere, https://doi.org/10.5194/egusphere-2025-3289,https://doi.org/10.5194/egusphere-2025-3289, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Evidence of tropospheric uplift into the stratosphere via the tropical western Pacific cold trap
Xiaoyu Sun, Katrin Müller, Mathias Palm, Christoph Ritter, Denghui Ji, Tim Balthasar Röpke, and Justus Notholt
Atmos. Chem. Phys., 25, 6881–6902, https://doi.org/10.5194/acp-25-6881-2025,https://doi.org/10.5194/acp-25-6881-2025, 2025
Short summary
Giant Cloud Condensation Nuclei enhanced Ice Sublimation Process: A potential mechanism in mixed phase clouds
Denghui Ji, Christoph Ritter, Xiaoyu Sun, Manuel Moser, Christiane Voigt, Mathias Palm, and Justus Notholt
EGUsphere, https://doi.org/10.5194/egusphere-2025-1932,https://doi.org/10.5194/egusphere-2025-1932, 2025
Short summary
Ground-based remote sensing of aerosol properties using high-resolution infrared emission and lidar observations in the High Arctic
Denghui Ji, Mathias Palm, Christoph Ritter, Philipp Richter, Xiaoyu Sun, Matthias Buschmann, and Justus Notholt
Atmos. Meas. Tech., 16, 1865–1879, https://doi.org/10.5194/amt-16-1865-2023,https://doi.org/10.5194/amt-16-1865-2023, 2023
Short summary

Related subject area

Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Source-dependent optical properties and molecular characteristics of atmospheric brown carbon
Jinghao Zhai, Yin Zhang, Pengfei Liu, Yujie Zhang, Antai Zhang, Yaling Zeng, Baohua Cai, Jingyi Zhang, Chunbo Xing, Honglong Yang, Xiaofei Wang, Jianhuai Ye, Chen Wang, Tzung-May Fu, Lei Zhu, Huizhong Shen, Shu Tao, and Xin Yang
Atmos. Chem. Phys., 25, 7959–7972, https://doi.org/10.5194/acp-25-7959-2025,https://doi.org/10.5194/acp-25-7959-2025, 2025
Short summary
Multi-year black carbon observations and modeling close to the largest gas flaring and wildfire regions in the Western Siberian Arctic
Olga B. Popovicheva, Marina A. Chichaeva, Nikolaos Evangeliou, Sabine Eckhardt, Evangelia Diapouli, and Nikolay S. Kasimov
Atmos. Chem. Phys., 25, 7719–7739, https://doi.org/10.5194/acp-25-7719-2025,https://doi.org/10.5194/acp-25-7719-2025, 2025
Short summary
Pollution affects Arabian and Saharan dust optical properties in the eastern Mediterranean
Marilena Teri, Josef Gasteiger, Katharina Heimerl, Maximilian Dollner, Manuel Schöberl, Petra Seibert, Anne Tipka, Thomas Müller, Sudharaj Aryasree, Konrad Kandler, and Bernadett Weinzierl
Atmos. Chem. Phys., 25, 6633–6662, https://doi.org/10.5194/acp-25-6633-2025,https://doi.org/10.5194/acp-25-6633-2025, 2025
Short summary
Phase matrix characterization of long-range-transported Saharan dust using multiwavelength-polarized polar imaging nephelometry
Elena Bazo, Daniel Pérez-Ramírez, Antonio Valenzuela, J. Vanderlei Martins, Gloria Titos, Alberto Cazorla, Fernando Rejano, Diego Patrón, Arlett Díaz-Zurita, Francisco José García-Izquierdo, David Fuertes, Lucas Alados-Arboledas, and Francisco José Olmo
Atmos. Chem. Phys., 25, 6325–6352, https://doi.org/10.5194/acp-25-6325-2025,https://doi.org/10.5194/acp-25-6325-2025, 2025
Short summary
Measurement report: The influence of particle number size distribution and hygroscopicity on the microphysical properties of cloud droplets at a mountain site
Xiaojing Shen, Quan Liu, Junying Sun, Wanlin Kong, Qianli Ma, Bing Qi, Lujie Han, Yangmei Zhang, Linlin Liang, Lei Liu, Shuo Liu, Xinyao Hu, Jiayuan Lu, Aoyuan Yu, Huizheng Che, and Xiaoye Zhang
Atmos. Chem. Phys., 25, 5711–5725, https://doi.org/10.5194/acp-25-5711-2025,https://doi.org/10.5194/acp-25-5711-2025, 2025
Short summary

Cited articles

Asmi, E., Kondratyev, V., Brus, D., Laurila, T., Lihavainen, H., Backman, J., Vakkari, V., Aurela, M., Hatakka, J., Viisanen, Y., Uttal, T., Ivakhov, V., and Makshtas, A.: Aerosol size distribution seasonal characteristics measured in Tiksi, Russian Arctic, Atmos. Chem. Phys., 16, 1271–1287, https://doi.org/10.5194/acp-16-1271-2016, 2016. a
Beer, E. and Eisenman, I.: Revisiting the role of the water vapor and lapse rate feedbacks in the Arctic amplification of climate change, J. Climate, 35, 2975–2988, https://doi.org/10.1175/JCLI-D-21-0814.1, 2022. a
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J.,Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C. S.: Bounding the role of black carbon in the climate system: a scientific assessment, J. Geophys. Res.-Atmos., 118, 5380–5552, https://doi.org/10.1002/jgrd.50171, 2013. a
Bony, S., Colman, R., Kattsov, V. M., Allan, R. P., Bretherton, C. S., Dufresne, J.-L., Hall, A., Hallegatte, S., Holland, M. M., Ingram, W., Randall, D. A., Soden, B. J., Tselioudis, G., and Webb, M. J.: How well do we understand and evaluate climate change feedback processes?, J. Climate, 19, 3445–3482, https://doi.org/10.1175/JCLI3819.1, 2006. a
Boyer, M., Aliaga, D., Pernov, J. B., Angot, H., Quéléver, L. L. J., Dada, L., Heutte, B., Dall'Osto, M., Beddows, D. C. S., Brasseur, Z., Beck, I., Bucci, S., Duetsch, M., Stohl, A., Laurila, T., Asmi, E., Massling, A., Thomas, D. C., Nøjgaard, J. K., Chan, T., Sharma, S., Tunved, P., Krejci, R., Hansson, H. C., Bianchi, F., Lehtipalo, K., Wiedensohler, A., Weinhold, K., Kulmala, M., Petäjä, T., Sipilä, M., Schmale, J., and Jokinen, T.: A full year of aerosol size distribution data from the central Arctic under an extreme positive Arctic Oscillation: insights from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition, Atmos. Chem. Phys., 23, 389–415, https://doi.org/10.5194/acp-23-389-2023, 2023. a
Download
Short summary
Our study explores how certain aerosols, like sea salt, affect infrared heat radiation in the Arctic, potentially speeding up warming. We used advanced technology to measure aerosol composition and found that these particles grow with humidity, significantly increasing their heat-trapping effect in the infrared region, especially in winter. Our findings suggest these aerosols could be a key factor in Arctic warming, emphasizing the importance of understanding aerosols for climate prediction.
Share
Altmetrics
Final-revised paper
Preprint