Articles | Volume 25, issue 22
https://doi.org/10.5194/acp-25-15969-2025
https://doi.org/10.5194/acp-25-15969-2025
Research article
 | 
18 Nov 2025
Research article |  | 18 Nov 2025

Intercomparison of global ground-level ozone datasets for health-relevant metrics

Hantao Wang, Kazuyuki Miyazaki, Haitong Zhe Sun, Zhen Qu, Xiang Liu, Antje Inness, Martin Schultz, Sabine Schröder, Marc Serre, and J. Jason West

Related authors

Drivers of change in peak-season surface ozone concentrations and impacts on human health over the historical period (1850–2014)
Steven T. Turnock, Dimitris Akritidis, Larry Horowitz, Mariano Mertens, Andrea Pozzer, Carly L. Reddington, Hantao Wang, Putian Zhou, and Fiona O'Connor
Atmos. Chem. Phys., 25, 7111–7136, https://doi.org/10.5194/acp-25-7111-2025,https://doi.org/10.5194/acp-25-7111-2025, 2025
Short summary
Applications of Machine Learning and Artificial Intelligence in Tropospheric Ozone Research
Sebastian H. M. Hickman, Makoto Kelp, Paul T. Griffiths, Kelsey Doerksen, Kazuyuki Miyazaki, Elyse A. Pennington, Gerbrand Koren, Fernando Iglesias-Suarez, Martin G. Schultz, Kai-Lan Chang, Owen R. Cooper, Alexander T. Archibald, Roberto Sommariva, David Carlson, Hantao Wang, J. Jason West, and Zhenze Liu
EGUsphere, https://doi.org/10.5194/egusphere-2024-3739,https://doi.org/10.5194/egusphere-2024-3739, 2025
Short summary

Cited articles

Ainsworth, E. A.: Understanding and improving global crop response to ozone pollution, The Plant Journal, 90, 886–897, https://doi.org/10.1111/tpj.13298, 2017. 
Balmes, J. R.: Long-Term Exposure to Ozone and Small Airways: A Large Impact?, American Journal of Respiratory and Critical Care Medicine, 205, 384–385, https://doi.org/10.1164/rccm.202112-2733ED, 2022. 
Becker, J. S., DeLang, M. N., Chang, K.-L., Serre, M. L., Cooper, O. R., Wang, H., Schultz, M. G., Schröder, S., Lu, X., Zhang, L., Deushi, M., Josse, B., Keller, C. A., Lamarque, J.-F., Lin, M., Liu, J., Marécal, V., Strode, S. A., Sudo, K., Tilmes, S., Zhang, L., Brauer, M., and West, J. J.: Using Regionalized Air Quality Model Performance and Bayesian Maximum Entropy data fusion to map global surface ozone concentration, Elementa: Science of the Anthropocene, 11, https://doi.org/10.1525/elementa.2022.00025, 2023. 
Becker, J. S., Delang, M. N., Chang, K.-L., Serre, M. L., Cooper, O. R., Wang, H., Schultz, M. G., Schroder, S., Lu, X., Zhang, L., Deushi, M., Josse, B., Keller, C. A., Lamarque, J.-F., Lin, M., Liu, J., Marecal, V., Strode, S. A., Sudo, K., Tilmes, S., Zhang, L., Brauer, M., and West, J. J.: Global Surface Ozone Concentration Dataset 1990–2017 Generated by Bayesian Maximum Entropy Data Fusion With RAMP Bias Correction (Version 3), Zenodo [data set], https://doi.org/10.5281/zenodo.14996361, 2025. 
Betancourt, C., Stomberg, T. T., Edrich, A.-K., Patnala, A., Schultz, M. G., Roscher, R., Kowalski, J., and Stadtler, S.: Global, high-resolution mapping of tropospheric ozone – explainable machine learning and impact of uncertainties, Geosci. Model Dev., 15, 4331–4354, https://doi.org/10.5194/gmd-15-4331-2022, 2022. 
Download
Short summary
We compare six datasets of global ground-level ozone, developed using geostatistical, machine learning, or reanalysis methods. The datasets show important differences from one another in ozone magnitude, greater than 5 ppb, and trends, globally and regionally. Compared with measurements, performance varies among datasets, and most overestimate ozone, particularly at lower concentrations. These differences among datasets highlight uncertainties for applications to health and other impacts.
Share
Altmetrics
Final-revised paper
Preprint