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Abstract. Ground-level ozone is a significant air pollutant that detrimentally affects human health and agri-
culture. Global ground-level ozone concentrations have been estimated using chemical reanalyses, geostatistical
methods, and machine learning, but these datasets have not been compared systematically. We compare six global
ground-level ozone datasets (three chemical reanalyses, two machine learning, one geostatistics) relative to ob-
servations and against one another, for the ozone season daily maximum 8 h average mixing ratio, for 2006 to
2016. Comparing with global ground-level observations, most datasets overestimate ozone, particularly at lower
observed concentrations. In 2016, across all stations, grid-to-grid R? ranges from 0.50 to 0.75 and RMSE 4.25
to 12.22 ppb. Agreement with observed distributions is reduced at ozone concentrations above 50 ppb. Results
show significant differences among datasets in global average ozone, as large as 5—10 ppb, multi-year trends,
and regional distributions. For example, in Europe, the two chemical reanalyses show an increasing trend while
other datasets show no increase. Among the six datasets, the share of population exposed to over 50 ppb varies
from 61 % [28 %, 94 %] to 99 % [62 %, 100 %] in East Asia, 17 % [4 %, 72 %] to 88 % [53 %, 99 %] in North
America, and 9 % [0 %, 58 %] to 76 % [22 %, 96 %] in Europe (2006-2016 average). Although sharing some of
the same input data, we found important differences, likely from variations in approaches, resolution, and other
input data, highlighting the importance of continued research on global ozone distributions. These discrepancies
are large enough to impact assessments of health impacts and other applications.
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1 Introduction

Tropospheric ozone is a secondary pollutant that signifi-
cantly impacts human health, plant life, and the climate
system. Past studies have shown that ozone exposure can
cause health effects ranging from mild subclinical symp-
toms to mortality (Balmes, 2022). The Global Burden of Dis-
ease 2021 (GBD) study estimated that ground-level ozone
contributed to approximately 490000 (95 % UI: 107 000-
837000) global deaths in 2021, representing 0.72 % (95 %
UL 0.16 %—1.18 %) of all deaths that year (Brauer et al.,
2024). Ozone exposure is harmful not only to humans but
also to plants. Ozone can enter plants through their stom-
ata and cause oxidative damage, which reduces the global
yields of major crops such as soybean, wheat, rice, and maize
(Ainsworth, 2017; Mills et al., 2018a). Ozone is also an im-
portant greenhouse gas, ranking third behind carbon diox-
ide and methane in its contribution to anthropogenic climate
change (Masson-Delmotte et al., 2021). Gaudel et al. find
that since the mid-1990s, tropospheric ozone above the sur-
face has increased across all 11 study regions in the Northern
Hemisphere that they defined and analyzed (Western North
America, Eastern North America, Southeast North America,
Northern South America, Northeast China/Korea, Persian
Gulf, India, Southeast Asia, Malaysia/Indonesia, Europe,
Gulf of Guinea) (Gaudel et al., 2020). In the United States,
although extreme ground-level ozone concentrations have
declined, winter ground-level ozone concentrations have in-
creased in the Southwest and Midwest regions since 1990s
(Chang et al., 2025). Using one global ozone dataset, from
data fusion of ground observations and chemical model out-
puts, it is estimated that in 2017 21 % of the global popula-
tion was exposed to ozone concentrations above 65 ppb, and
96 % lived in areas where concentrations exceeded the WHO
guideline (30 ppb for annual metric) (Becker et al., 2023; De-
Lang et al., 2021). Despite existing assessments, substantial
uncertainties remain due to observational gaps, especially in
remote and developing regions. The lack of knowledge of the
ground-level ozone distribution in these regions limits our
ability to accurately assess ozone impacts on human health
and crops.

The Tropospheric Ozone Assessment Report (TOAR) ag-
gregates ozone observations from thousands of monitoring
stations worldwide, forming the most extensive ground-level
ozone monitoring data compilation to date (Schultz et al.,
2017). Using the TOAR dataset, researchers have analyzed
the global distribution, trends, and impacts of surface level
ozone (Gaudel et al., 2018). Currently, the second phase of
the Tropospheric Ozone Assessment Report (TOAR-II) aims
to include additional ground-based stations, especially new
networks in China and India. However, despite significant
progress, there remain large regions with limited ground-
based monitoring, and a gap in understanding ground-level
ozone variations over time and space. To bridge gaps in re-
gions lacking ozone monitors, various methods, including
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chemical reanalysis based long-term data assimilation, ma-
chine learning, and geostatistical methods have been em-
ployed. Chemical reanalysis is an approach that integrates
observations from various sources including satellites us-
ing data assimilation and chemical transport models (CTMs)
to reconstruct historical atmospheric chemical composition
and understand long-term changes and trends in air quality
and climate forcing (Miyazaki et al., 2020b). Tropospheric
ozone records have been provided in recent chemical reanal-
yses including the Tropospheric Chemistry Reanalysis Ver-
sion 2 (TCR-2; Miyazaki et al., 2020b), the Copernicus At-
mosphere Monitoring Service (CAMS; Inness et al., 2019),
and data assimilation using the GEOS-Chem adjoint model
(GEOS-Chem; Qu et al., 2020b). In addition, two machine
learning estimates of global ground-level ozone have been
produced to date: one using a space-time Bayesian neural
network trained on TOAR observations and CMIP6 simula-
tions (Sun et al., 2022), and another with a cluster-enhanced
ensemble learning method that utilizes various data sources
(Liu et al., 2022a). Finally, geostatistical methods were ap-
plied by DeLang et al. who used Bayesian Maximum En-
tropy (BME) to estimate ozone through a data fusion of
TOAR observations and output from multiple CTMs (De-
Lang et al., 2021). This approach was further enhanced by
incorporating the Regionalized Air Quality Model Perfor-
mance (RAMP) framework to correct model biases (Becker
et al., 2023). These estimates of global ozone distributions
and trends have supported analyses of health impacts. For
example, ozone estimates of DelLang et al. (2021) were used
in both the GBD 2021 study (Murray et al., 2020), and
in a study of ozone health effects in urban areas globally
(Malashock et al., 2022). However, there remains a lack of
knowledge regarding the consistency of ground-level ozone
estimates, distributions, and long-term trends across these
global ozone mapping products.

Inconsistencies in these datasets could significantly im-
pact public health research, especially in assessing the risks
of ozone-related health impacts, and may impede the devel-
opment of effective environmental policies and ozone man-
agement strategies (Post et al., 2012). Although each dataset
incorporates a considerable amount of observational infor-
mation and model simulations through various methodolo-
gies, each inherently incorporates biases from these input
data sources during the fusion processes. While satellite mea-
surements of precursor species can be used to constrain sur-
face and lower tropospheric ozone in chemical reanalysis
(Miyazaki et al., 2012), the performance of chemical reanal-
ysis surface ozone is limited in part by the low sensitivities
of satellite ozone measurements near the surface, as well as
model simulation errors. Data fusion methods integrate out-
puts from multiple models with inherent biases, potentially
propagating these biases to the final estimates (DeLang et
al., 2021). Furthermore, machine learning methods trained
on observation data may yield inaccuracies in rural and re-
mote areas due to the uneven distribution of ground-level
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ozone monitoring stations (Liu et al., 2022a; Betancourt et
al., 2022). Therefore, conducting comparisons and evalua-
tions of various types of ground-level ozone mapping prod-
ucts is essential to understand the inconsistencies and biases
in these datasets, ultimately benefiting global health studies.

This study aims to compare ground-level ozone concentra-
tions estimated by six datasets, and to evaluate their accuracy
over the 2006-2016 period, with a particular emphasis on
their capacity to represent long-term ozone trends across dif-
ferent regions. The comparison and evaluation include three
chemical reanalysis datasets, two machine-learning datasets,
and one geostatistical dataset. The period 2006-2016 is cho-
sen as the period over which the six datasets all produce
ozone estimates. The ozone seasonal daily maximum 8 h av-
erage mixing ratio (OSDMAS) was selected as the health-
relevant metric for annual ozone evaluation (Turner et al.,
2016). Our study specifically utilizes the OSDMAS metric
because we focus on evaluating long-term ozone exposure,
an aspect not comprehensively compared previously among
global ozone mapping products. We employed a comprehen-
sive set of indicators to assess the congruence between these
datasets, globally and regionally, including for long-term
population weighted ozone outdoor exposure. Relative to the
latest TOAR-II observational dataset, this study also exam-
ines the six datasets’ ability to estimate ground-level ozone
concentrations across various regions for the years 2006—
2016. This research endeavors to characterize differences
among ground-level ozone datasets, including discrepancies
in ozone estimates, distributions, and trends, that could hin-
der evaluation of ozone’s effects on health and agriculture,
as well as impede the formulation of effective environmental
policies. Although the primary focus of this study is on health
impacts, the results are also largely applicable to agricultural
and ecosystem impacts.

2 Data

As shown in Table 1, this study compares and evaluates
ground-level ozone estimates from six global ozone mapping
products in three categories. We utilized ozone seasonal daily
maximum 8 h average mixing ratio (OSDMAS) as the yearly
ozone metric across all datasets. OSDMAS is defined here as
the maximum of the six-month running monthly mean daily
maximum 8h ozone (DMAS) from January of the current
year wrapping to March of the following year (DeLang et
al., 2021). OSDMAS is GBD’s ozone metric for quantifying
health effect from long-term ozone exposure (Brauer et al.,
2024), and it is the metric used in the World Health Organi-
zation’s air quality guidelines, with values of 30 ppb for the
guideline and 50 ppb for the interim target (World-Health-
Organization, 2021). All observations and model estimates
are converted to OSDMAS using the same algorithm. Details
on the input data used to construct each dataset are available
in the Supplement.
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2.1 Geostatistical ozone dataset

The BME dataset uses geostatistical methods to provide
high-resolution global ground-level ozone estimates. First,
M3Fusion (Measurement and Multi-Model Fusion) is a sta-
tistical method developed to improve estimates of global sur-
face ozone distributions by integrating observational data
from TOAR and outputs from multiple chemistry models.
Specifically, the method assigns weights to multiple global
atmospheric chemistry models based on their regional accu-
racy compared to observed ozone values (Chang et al., 2019),
creating a composite of multiple global atmospheric chem-
istry models by weights. The details of input data can be
found in Table S1 in the Supplement. Then BME data fusion
integrates this multi-model composite with observations in
space and time, and finally BME estimates are refined from
0.5° x 0.5° to 0.1° x 0.1° (DeLang et al., 2021). The obser-
vations are from TOAR-I for 1990 to 2017, complemented
by data from the Chinese National Environmental Monitor-
ing Center (CNEMC) for 2013 to 2017. The latest version of
this dataset employs RAMP for bias correction of M3Fusion
inputs (Becker et al., 2023). The BME ozone estimates are
more accurate than the average outputs from multiple mod-
els, achieving an R? of 0.63 at 0.1° x 0.1° resolution, as
evaluated against observations through cross-validation (De-
Lang et al., 2021). Furthermore, incorporating RAMP into
the BME process significantly improves R? by 0.15, espe-
cially in areas far from monitoring stations, as demonstrated
through checkerboard cross-validation (Becker et al., 2023).

2.2 Machine learning ozone datasets

We utilized two machine learning global ground-level ozone
datasets from the University of Cambridge, and Nanjing
University. The University of Cambridge’s machine learn-
ing (UKML) dataset was developed using a space-time
Bayesian neural network, fusing various data sources includ-
ing historical observations, CMIP6 multi-model simulations
(AerChemMIP historical simulations and ScenarioMIP pro-
jections), population distributions, land cover properties, and
emission inventories (Sun et al., 2022) (input data summa-
rized in Table S2). The UKML model categorized TOAR-I
monthly ozone observations from 1990 to 2014 into urban
and rural areas, and used these as labels for supervised learn-
ing. This model generates monthly global gridded ozone es-
timates from 1990 to 2019, downscaled to a 0.125° x 0.125°
spatial resolution. It exhibited great performance in predict-
ing urban and rural surface ozone concentrations, with R2
values ranging from 0.89 to 0.97 and RMSE values between
1.97 and 3.42 ppb (Sun et al., 2022).

Nanjing University’s machine learning (NJML) dataset
was created using a cluster-enhanced ensemble machine
learning method. This dataset integrates various data sources,
including satellite observations, atmospheric reanalysis, land
cover properties, emission inventories and meteorological
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Table 1. Overview of six global ozone mapping products.

H. Wang et al.: Intercomparison of global ground-level ozone datasets for health-relevant metrics

Global ozone dataset Model type Resolution Period Temporal Resolution
Bayesian Maximum Entropy Data Fusion Geostatistics 0.1°x 0.1° 1990-2017 OSDMAS
(BME) (Becker et al., 2023)

Cluster-Enhanced Ensemble Learning Machine Learning 0.5°x 0.5° 2003-2019  Monthly DMAS
(NJML) (Liu et al., 2022a)

Space-Time Bayesian Neural Network Machine Learning 0.125° x 0.125°  1990-2019 Monthly DMAS
Downscaler (UKML) (Sun et al., 2022)

Copernicus Atmosphere Monitoring Chemical Reanalysis  0.75° x 0.75° 2003-2020  3-Hourly
Service (CAMS) (Inness et al., 2019)

GEOS-Chem (GEOS) (Qu et al., 2020b) Chemical Reanalysis ~ 2° x 2.5° 2005-2016 DMAS
Tropospheric Chemistry Reanalysis Chemical Reanalysis  1.125° x 1.125°  2005-2020  2-Hourly

Version 2 (TCR-2) (Miyazaki et al., 2020b)

features (Liu et al., 2022a). The main input data for NJML
include meteorological parameters from ERAS, atmospheric
chemistry from the CAMS chemical reanalysis, aerosol
concentrations from MERRA-2, satellite observations from
OMI/Aura, and emissions data from CEDS, spanning 2003-
2019 with varying spatial resolutions (input data summarized
in Table S3). It utilizes the monthly mean of daily maxi-
mum 8 h average (DMAS) data from TOAR-I and CNEMC
observations from 2003-2019 as training data. The NJML
dataset produces monthly global gridded ozone estimates
from 2003 to 2019 with a 0.5° x 0.5° spatial resolution. The
model demonstrates robust performance in both spatial and
temporal predictions of ground-level ozone, with R? values
of 0.909 and 0.925, respectively (Liu et al., 2022a).

2.3 Chemical reanalysis products

We utilized surface ozone analysis fields from three chemi-
cal reanalysis products: the Tropospheric Chemistry Reanal-
ysis Version 2 (TCR-2; Miyazaki et al., 2020b), the Coperni-
cus Atmosphere Monitoring Service reanalysis (CAMS; In-
ness et al., 2019), and the GEOS-Chem reanalysis (GEOS;
Qu et al., 2020b). Different from the machine learning and
geostatistical ozone datasets, the chemical reanalysis prod-
ucts utilized satellite observations of atmospheric compo-
sition to produce three-dimensional profiles of atmospheric
composition. In situ surface observations were not included
in the global chemical reanalysis data assimilation. Because
of the lack of direct observational constraints, challenges
remain in estimating surface ozone in the current reanal-
ysis products (Huijnen et al., 2020). Detailed comparisons
of these reanalyses for ozone over the entire troposphere at
finer timescales have been conducted by the TOAR-II chem-
ical reanalysis working group (Sekiya et al., 2025; Jones et
al., 2024; Miyazaki et al., 2025), but without a focus on the
ground level and long-term metric as analyzed here.
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TCR-2 was generated by assimilating multiple satellite ob-
servations into the MIROC-Chem model, that was developed
as a part of the multi-model multi-constituent data assim-
ilation (Miyazaki et al., 2020a). The meteorological fields
were nudged to the European Centre for Medium-Range
Weather Forecasts (ECMWF) Interim Reanalysis meteorol-
ogy. The data assimilation employed is an ensemble Kalman
filter technique, which was used to effectively correct the
emissions and concentrations of various chemical species
(Miyazaki et al., 2020b). The assimilated data include ozone,
CO, NO,, HNOj3 and SO, from satellite instruments such
as OMI, MLS, GOME-2, SCIAMACHY and MOPITT over
the period from 2005 to 2021 (input satellite data summa-
rized in Table S4). TCR-2 provides 2-hourly global ozone
profiles at a 1.1° x 1.1° spatial resolution, with the regional
mean ozone bias against global ozonesonde measurements
ranging from —0.4 to 4.2 ppb in the lower troposphere (850—
500 hPa) (Miyazaki et al., 2020b).

CAMS, operated by the European Centre for Medium-
Range Weather Forecasts (ECMWF) on behalf of the Eu-
ropean Commission, provides the global reanalysis dataset
on atmospheric composition developed by ECMWE. The
main inputs for the CAMS ECMWF Atmospheric Composi-
tion Reanalysis 4 (EAC4) chemical reanalysis are retrievals
of CO, ozone, NO, and aerosol optical depth (AOD) from
multiple satellite instruments including MLS, OMI, GOME-
2, SCIAMACHY, MIPAS, SBUV/2 and MOPITT, covering
various periods ranging from 2003 (input satellite data sum-
marized in Table S5). CAMS employed the four-dimensional
variational data assimilation (4D-Var) method to integrate the
satellite measurements under ECMWEF’s Integrated Forecast-
ing System (IFS) CB05 model (Inness et al., 2019). It pro-
vides 3-hourly global profiles of ozone and other species at a
0.75° x 0.75° spatial resolution. While CAMS generally im-
proves over previous analyses, challenges and biases remain,
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particularly at high latitudes and in accurately capturing sea-
sonal variations (Inness et al., 2019).

The GEOS-Chem dataset is developed through 4D-Var
data assimilation of NO; column densities using the GEOS-
Chem adjoint model that includes updates in stratospheric
and halogen chemistry (Henze et al., 2007). The GEOS-
Chem model is driven by the Modern-Era Retrospective anal-
ysis for Research and Applications, Version 2 (MERRA-2)
meteorological fields from the NASA Global Modeling and
Assimilation Office (GMAO). Prior anthropogenic emissions
of NO,, SO,, NH3, CO, NMVOCs (non-methane volatile or-
ganic compounds), and primary aerosols were obtained from
the HTAP 2010 inventory version 2 (Janssens-Maenhout et
al., 2015) (input data summarized in Table S6). Operating
at a 2° x 2.5° resolution, the assimilation estimates global
ozone more accurately than the forward model from 2006
to 2016 by deriving emissions of NO, through inverse mod-
elling. The GEOS-Chem dataset exhibits a small bias across
all ozone metrics, and among metrics it has the best spa-
tial consistency for DMAS (R?=0.88) (Qu et al., 2020b).
However, the model has limitations in accurately capturing
regional variations and seasonal trends in ozone concentra-
tions.

2.4 Ground-level ozone observations

For the evaluation in this project, we utilized both ur-
ban and non-urban ground-level ozone observations for
the yearly OSDMAS metric from the updated TOAR-II
dataset, covering 2006 to 2016 (Schroder et al., 2021). This
dataset represents the most extensive collection of tropo-
spheric ozone measurements available globally. Compared
to TOAR-I (Schultz et al., 2017), TOAR-II incorporates an
expanded dataset of ozone observations, notably including
monitoring data from approximately 1400 stations across
China for the years 2015 to 2016 that are included in TOAR-
II (https://toar-data.fz-juelich.de/gui/v2/dashboard/, last ac-
cess: 15 November 2024). We require that at least 75 % of
the days in a month must have valid DMAS values for that
month to be included in the annual data calculations. The to-
tal number of observation sites used in our assessment varied
from a minimum of 3715 in 2006 to a maximum of 7013 in
2016. Given that three ozone products in this study utilize
the TOAR-I dataset for training or input, evaluations using
the latest TOAR-II dataset for sites not included in TOAR-I
can provide more objective results. Figure S1 illustrates the
spatial distribution of TOAR-II monitoring stations in 2016.
We use the TOAR-II database as it existed in May 2025. Be-
cause of possible errors in measurement units, we omit all
data from France in 2014.

2.5 Population data

We analyzed ozone population exposures for each dataset us-
ing the globally gridded population data for the year 2019
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from the Global Burden of Disease (GBD) 2019, which has
aresolution of 0.1° x 0.1° (Lloyd et al., 2019). Since we use
the same gridded population data for all years of the project,
we focus on differences in exposure attributable to changes
in ozone levels rather than changes in population. Therefore,
population-weighted ozone over 2006 to 2016 can be biased
even if the ozone data are unbiased.

3 Methodology

3.1 Evaluation with ground-level observation

Previous research created 1° x 1° grid-cell-averaged hourly
ozone data from surface observations to evaluate global
chemistry model performance over North America and Eu-
rope, which is suitable for analyzing extremes and validating
seasonal and diel ozone cycles (Schnell and Prather, 2017;
Schnell et al., 2015). We utilized OSDMAS from TOAR-
IT observations covering 2006 to 2016 to evaluate the six
datasets. During the evaluation process, we retained the orig-
inal resolution of the six datasets (Table 1).

Considering that the six datasets have different resolutions
and are designed for different applications, we adopted a
dual evaluation strategy to provide a comprehensive assess-
ment of their performance. The first method is a grid-to-grid
evaluation. Similar to the approach of Schnell et al. (2015),
we re-gridded TOAR-II observations to a 0.1° x 0.1° resolu-
tion by an inverse distance weighted method and then aggre-
gated them to match the native resolution of each of the six
datasets. In this approach, the sample size for each evalua-
tion varies reflecting the varying resolution of the datasets;
for 2016, BME had 173 718 grid cell pairs, NJML had 7099,
UKML had 162419, CAMS had 4614, GEOS-Chem had
782, and TCR-2 had 2195. We also adopted the grid-to-grid
evaluation method for regional evaluations, as it provides
better spatial representativeness over large areas. To quantify
the uncertainty of the six datasets’ estimates, we determined
the lower and upper bounds (95 % confidence interval), de-
rived from the grid-to-grid regression analysis performed be-
tween the TOAR-II observations and each of the six datasets
at their native resolutions.

The second method is a standard grid-to-point evaluation.
This approach ensures a consistent sample size across all
datasets by comparing each dataset’s estimate at the grid cell
containing an observation location. For grid cells containing
a TOAR-II site but no valid estimate (NA value), we used
the nearest valid estimate instead. This method captures a
penalty for missing data and coarse resolution, only BME,
NJML, and UKML had a small number of missing estimates
at TOAR-II locations. The grid-to-point method was used to
evaluate model bias, as it ensures a consistent sample size
across all datasets when performing evaluations on different
quantiles of the TOAR-II observations. For both methods,
we assessed the performance of each dataset using the co-
efficient of determination (R?) between ozone estimates and
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observations, and root mean square error (RMSE) as the pri-
mary metrics. We selected the 50 ppb as the threshold for
high ozone concentration because it corresponds to the long-
term air quality interim target of WHO.

3.2 Pairwise spatial similarity comparison

Before comparing concentration estimates between datasets,
we converted all ozone estimates from each dataset to OS-
DMAZS, ensuring only one ozone estimate value per year for
each grid cell (see the original temporal resolution in Ta-
ble 1). The OSDMAS8 metric is used for long-term ozone
exposure given its utility and wide acceptance in health im-
pact studies, despite the inherent loss of shorter temporal dy-
namics. We employed two quantitative metrics to classify
how the datasets relate with one another: the Pearson cor-
relation coefficient (R) and the root mean square difference
(RMSD). The pairwise correlation R indicates the similarity
in geographical distribution of ozone concentrations, and the
RMSD quantifies the difference in ozone estimates between
datasets. A higher R value suggests greater similarity in the
spatial pattern between two datasets and a smaller RMSD
indicates a less significant discrepancy in ozone concentra-
tion estimates between two datasets. We then group the six
datasets, adopting a method that maximizes the difference
between the correlation R within and outside the groups. The
idea of this grouping is to distinguish the spatial similarity
between the datasets, which is based on the pairwise corre-
lation. For each grouping combination, 4 variables are com-
puted: the sum of pairwise correlations within groups (Cj),
the sum of pairwise correlations outside the groups (C,), the
number of dataset pairs within groups (), and the number
of dataset pairs outside the groups (N,). The objective is to
ascertain the grouping combination that maximizes the dif-
ference between C;/N; and C,/N,. More details of the cal-
culation can be found in Sect. S1.

3.3 Long-term exposure comparison

Subsequently, we re-gridded all datasets and TOAR-II ob-
servations to 0.1° x 0.1° resolution to facilitate comparison
at the same spatial scale. During re-gridding, we ensure that
the average value of the finer grid cells matches that of the
original coarse grid cell; for example, if a grid cell has a value
of 30 ppb, then after re-gridding to finer grid cells, the aver-
age value of these grid cells will still be 30 ppb. Data over
the ocean were excluded, retaining only land and populated
islands for analysis. We calculated the yearly ozone trend
using 50 % quantile regression for each dataset using both
population-weighted and area-weighted approaches, with de-
tails of the calculation methods provided in Sect. S2. In this
study, the trend is interpreted from the slope of the quan-
tile regression, and confidence in the trend is determined
by its p-value: p <0.01 is considered very high certainty;
0.01 < p <0.05, high certainty; 0.05 < p <0.1, medium cer-
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tainty; 0.1 < p <0.33, low certainty; and p > 0.33, no evi-
dence. We also regressed population-weighted mean ozone
concentrations in different world regions of each dataset
against the year to evaluate ozone long-term variations. For
each grid cell we calculated the mean and standard deviation
of the six OSDMAS values obtained from each dataset to
highlight regional differences and similarities. We also calcu-
lated the deviation from the ensemble mean for each dataset
to assess geographic distribution variations.

Furthermore, we compared ozone exposure differences in
various regions for each dataset to evaluate the potential for
health impacts. Here we estimate exposure as the ambient
concentration in 0.1° x 0.1° grid cells related to population
at their residences, not including other factors that affect hu-
man exposure such as time-activity patterns. To quantify the
uncertainty in our exposure analysis, we established lower
and upper bounds for all population exposure and share of
population estimates. The OSDMAS 95 % confidence inter-
val (CI) for each dataset is determined through a grid-to-grid
linear regression between each dataset and the re-gridded
TOAR-II observations based on 0.1° x 0.1° grid cells. We
use regional groupings defined by HTAP2 (Koffi et al., 2016),
as detailed in the Table S7.

4 Evaluation against TOAR-Il observations

4.1 Evaluation of ground-level ozone in 2016

We conducted regression and bias analyses for each dataset
in comparison with TOAR-II observations for each year from
2006 to 2016. Figure la and c illustrates the scatterplot
from the linear regression analysis of each dataset against
the 7013 TOAR-II observations in 2016, accompanied by a
density core that visualizes the data point distribution. The
year 2016 is presented here because it has the highest num-
ber of TOAR-II observations from 2006 to 2016, and other
years can be found in Figs. S2 and S3. For 2016, BME out-
performs other datasets in both evaluation method, with the
highest R? (0.75 for grid-to-grid, 0.63 for grid-to-point) and
lowest RMSE (4.25 ppb for grid-to-grid, 5.28 ppb for grid-to-
point), its density cores intersecting the y = x line. BME has
an advantage in that its methods should nearly match the ob-
served values for locations used as inputs to the data fusion.
Consequently, we conduct another validation for TOAR-II
sites not used as input for BME in 2016 (Fig. S4). After
excluding all sites located at observation points previously
used as BME input, using 3911 observations for validation,
BME performs well compared to another datasets, though its
R? decreases significantly to 0.65 for grid-to-grid and 0.53
for grid-to-point. In Fig. la, all three chemical reanalysis
datasets exhibit a moderate R? ranging from 0.51 to 0.60
for grid-to-grid and 0.35 to 0.41 for grid-to-point, compa-
rable to the performance of the machine learning datasets,
which have R? values of 0.50 and 0.56 for grid-to-grid, 0.37
and 0.38 for grid-to-point. Among these five datasets, CAMS
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has the lowest RMSE (6.00 ppb for grid-to-grid and 7.59 ppb
for grid to point), which is better than other chemistry re-
analysis products but relatively low R? (0.51 for grid-to-
grid and 0.35 for grid-to-point). Its density cores slightly be-
low the y = x line suggests CAMS estimates are marginally
lower than TOAR-II observations. GEOS-Chem and TCR-2
demonstrate adequate performance, albeit with higher RMSE
values of 8.47 and 10.26 ppb for grid-to-grid, 10.27 and
13.23 ppb for grid-to-point, respectively. Their density cores
positioned above the y = x line indicate that these models
tend to produce higher estimates compared to the TOAR-
II observations. NJML shows acceptable performance with
higher R? (0.56 for grid-to-grid and 0.38 for grid-to-point)
than CAMS and lower RMSE (6.37 ppb for grid-to-grid and
8.63 ppb for grid-to-point) than TCR-2. UKML exhibits the
highest RMSE of 12.22 ppb for grid-to-grid and 13.49 ppb
for grid-to-point, and its density cores region are above the
y = x dashed line, indicating an overestimation. This is be-
cause the UKML algorithm emphasizes higher ozone pollu-
tion levels in rural and remote areas compared to adjacent ur-
ban districts, which consequently leads to an overestimation
especially in population-weighted metrics (Sun et al., 2024).

Figure 1b and d focuses only on TOAR-II grid cells or
sites with OSDMAS value above 50 ppb, showing that R? is
reduced compared to the comparison of all ozone measure-
ments (Fig. 1a and c) for all six datasets, suggesting over-
all weaker agreement between modeled and observed ozone
distributions at higher concentrations. All six datasets show
decreasing performance from BME, NJML, and UKML to
TCR-2, GEOS-Chem, and CAMS, with R? of 0.35, 0.33,
0.29, 0.25, 0.08, and 0.04 for grid-to-grid; 0.37, 0.30, 0.26,
0.25, 0.17, and 0.07 for grid-to-point, respectively. How-
ever, the change of biases varies among datasets at higher
concentrations. Specifically, overestimation is reduced in the
UKML, NJML, GEOS-Chem, and TCR-2 datasets when ob-
servations exceed 50 ppb in both evaluation methods. Con-
versely, we observe increased underestimation in the BME
and CAMS datasets at ozone levels above 50 ppb. This pro-
portional bias is consistent with the linear regression slope,
which is less than 1 for all six datasets in Fig. 1. Figure 2
shows the normalized mean bias for stratified concentration
intervals in 2016, which provides insights into the average
discrepancy between estimates and TOAR-II observations
across ozone concentration ranges. All six datasets overes-
timate TOAR-II observations below the 40 % concentration
interval. Only BME underestimates above the 40 % concen-
tration level, CAMS underestimates above the 80 % concen-
tration interval, and NJML underestimates above 90 % con-
centration interval, aligning with the density kernel presented
in Fig. 1. BME demonstrates the smallest mean bias, partic-
ularly below the 50 % concentration level and CAMS shows
the smallest mean bias in the 50 % to 90 % concentration in-
terval. In the 90 % to 100 % concentration interval, NJML
and GEOS-Chem have the smallest mean bias. In summary,
BME and CAMS perform better overall in terms of normal-
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ized mean bias, with other models tending to overestimate
ozone at almost all concentrations. Detailed plots of normal-
ized mean bias for stratified concentration intervals for each
year from 2006 to 2015 are shown in Fig. S5.

4.2 Evaluation of ground-level ozone in different
countries or regions

Figure 3 presents the distribution of population exposure cal-
culated from six datasets and the gridded TOAR-II observa-
tions in three world regions with a high density of observa-
tions, for 2016. Here we calculate the population-weighted
kernel density for population exposure to OSDMAS concen-
trations, based on the 0.1° x 0.1° resolution for each region,
only for grid cells where the re-gridded TOAR-II data have a
value. Corresponding plots for other years (2006 to 2015) are
shown in Fig. S6. Overall, the datasets are widely distributed,
and the estimated exposure peaks vary. In East Asia (EAS),
the population is exposed to high ozone concentrations. The
concentration distribution is broad and has multiple peaks
from TOAR-II observations, indicating a complex pollution
environment, with a large population exposed to concentra-
tions frequently exceeding 50 ppb, even 70 ppb. BME and
NIJML show a similar distribution as TOAR-II. Significant
differences exist between UKML, CAMS and GEOS-Chem
with the TOAR-II data for EAS. In Europe (EUR), expo-
sure is concentrated between 40 and 50 ppb, indicating a
more moderate and uniform exposure. The BME and CAMS
have the best fit with the TOAR-II. NJML, UKML, GEOS-
Chem, and TCR-2 show a peak at a higher ozone concentra-
tion range of 50—60 ppb. In North America (NAM), exposure
peaks sharply in the 40 to 50 ppb range, which is slightly
higher and more concentrated than in Europe. The NJML
dataset agrees best with the shape of the TOAR-II distribu-
tion, and GEOS-Chem and BME capture the overall shape of
the major exposure peaks well.

Table 2 presents the validation results for different coun-
tries or regions using re-gridded TOAR-II observations at
each dataset’s native resolution in 2016, focusing on the
countries with the highest number of sites. Here we use R?
to assess the strength of the spatial correlation and RMSE
to measure the bias across each country or region. The per-
formance of each dataset varies by region, indicating that a
dataset’s overall performance does not guarantee its effec-
tiveness in all regions. Reasonable R? and RMSE values are
seen across all 6 datasets in the United States; BME leads
with the highest R? (0.75) and lowest RMSE (3.48 ppb),
and TCR-2 has the lowest RZ (0.43) with highest RMSE
(9.43 ppb). In Japan, BME leads with an RMSE of 4.29 ppb,
followed by CAMS at 4.33 ppb, and UKML has the highest
RMSE (17.41 ppb).

The datasets also perform poorly in South Korea, where
GEOS-Chem has the highest RMSE (14.71 ppb) and NJML
has the lowest RMSE (2.68 ppb). Although Japan and South
Korea have a dense network of monitors, nearly all datasets
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Figure 1. Performance evaluations of six datasets with TOAR-II observations in 2016 for OSDMAS. The observation-prediction evaluations
are presented with densities estimated by a Gaussian kernel function. The coefficient of determination (R?) and root mean squared error
(RMSE) are shown for four scenarios: (a) a grid-to-grid evaluation at the native resolution of each dataset using re-gridded TOAR-II obser-
vations, (b) a grid-to-grid evaluation, same as panel (a), but only for grid cells with observations above 50 ppb, (c) a grid-to-point evaluation
using all TOAR-II sites, (d) a grid-to-point evaluation, same as panel (c), but only for sites with observations above 50 ppb. The dashed line
marks where TOAR-II observations equal estimates (y = x line), and the solid black line represents the best-fit line. Performance evaluations

for each year are shown in Figs. S7 and S8.

show a weak correlation with observations, with R? be-
low 0.2. Only the GEOS-Chem dataset has the highest R?
value of 0.37 in Japan and 0.81 in South Korea, this result
should be interpreted with caution, as the evaluation includes
fewer than 30 grid-to-grid pairs. The performance of datasets
within China exhibits significant variability, where BME and
NJML demonstrate relatively good performance, and CAMS
exhibits poor performance for R2, while for RMSE, CAMS
performs better than GEOS-Chem, TCR-2 and UKML. For
other countries, which serve as a test of model performance
in areas with sparse observations, nearly all datasets exhibit
better R? values than in South Korea and J apan, with TCR-
2 and NJML demonstrating particularly better performance
than others. Overall, BME demonstrates strong performance
in most countries, particularly in the United States, where
it achieves the highest R* and the lowest RMSE, suggest-
ing both strong spatial correlation with TOAR-II observa-
tions and high accuracy. NJML exhibits mixed performance,
with relatively high R? values indicating good correlation in
the United States and China, but it falls short in EU-27 with
high RMSE. UKML presents consistently high RMSE val-
ues across countries suggesting high bias. CAMS displays
variable performance with low R? values in China, indicat-
ing a lack of spatial correlation, yet its RMSE values are
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relatively small across all regions when compared to other
chemical reanalysis datasets. Compared to CAMS, GEOS-
Chem and TCR-2 exhibit better spatial correlations in Eu-
rope, the United States, China, and Canada. However, TCR-
2 also presents high RMSE values across all regions. Five
datasets except GEOS-Chem exhibit lower spatial correla-
tion compared to TOAR-II observations in countries with
high monitoring density, such as Japan and South Korea, than
in countries with lower monitoring densities. NJML, UKML,
GEOS-Chem and TCR-2 show overestimates compared to
the TOAR observations in every country in the Table 2. Ex-
tending the analysis to the period from 2006 to 2016 (see
tables in Table S8), the percentage of underestimates from 6
datasets compared to TOAR observations in all countries is
below 20 %.

4.3 Evaluation of ground-level ozone across different
years

Figure 4 presents time series plots of R?> and RMSE from
grid-to-grid and grid-to-point evaluations of each dataset
against TOAR-II observations from 2006 to 2016. It is im-
portant to note that the years 2015 and 2016 include ob-
servations from China. In Fig. 4a and ¢ BME consistently
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Table 2. Performance evaluation of six datasets for countries (and the EU) with the most monitors in 2016 against TOAR-II observations of
OSDMABS based on the gird-to-grid scenario. Number is the number of the TOAR-II monitor stations in each country. Density (per km?) is
the density of the TOAR-II monitors in each country based on land area. Estimate is the average of the grid estimates for each dataset at the
TOAR-II monitor locations in each country. Linear regression R? and root mean squared error (RMSE) against TOAR-II observations in each
country are based on a grid-to-grid evaluation at each dataset’s native resolution against re-gridded TOAR-II observations. The Lower and
Upper Bound represent the 95 % confidence interval for the Estimate, calculated from the linear regression of each dataset against TOAR-II
observations. Country names are United States of America (USA), China (CHN), Japan (JPN), South Korea (KOR), Canada (CAN). EU-
27 includes Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary,
Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden. Others is
all other countries in TOAR-II apart from those listed. Performance evaluations for other years in these countries, are shown in Table S8.

Dataset  Country EU-27 USA CHN JPN KOR CAN Others
Number 2170 1425 1405 1108 315 260 330
Density 543x107% 156x107% 150x10~% 3.04x1073 323x1073 296x 107> 1.07x107
TOAR 4321 47.03 53.10 43.84 51.50 37.39 40.55
BME  Estimate 42.42 44.30 48.84 43.00 51.67 35.94 39.62
R? 0.76 0.75 0.78 0.12 0.08 0.49 0.44
RMSE 2.72 3.48 4.97 4.29 372 3.49 7.45
Lower 35.66 37.55 42.08 36.25 44.91 29.18 32.87
Upper 49.17 51.05 55.59 49.76 58.42 42.69 46.37
NJML  Estimate 50.97 47.57 51.13 47.08 54.84 43.19 47.09
R? 0.63 0.74 0.72 0.11 0.14 0.38 0.55
RMSE 9.43 2.96 4.72 5.93 2.68 6.19 9.30
Lower 42.47 39.06 42.62 38.57 46.33 34.68 38.58
Upper 59.48 56.08 59.64 55.59 63.35 51.70 55.60
UKML  Estimate 53.71 53.27 64.81 60.63 65.44 48.40 49.62
R? 0.28 0.49 0.46 0.18 0.03 0.19 0.28
RMSE 12.17 7.82 15.05 17.41 13.01 11.14 12.50
Lower 42.52 42.08 53.62 49.44 54.25 37.21 38.43
Upper 64.90 64.47 76.00 71.82 76.63 59.59 60.82
CAMS  Estimate 41.93 47.12 52.83 45.65 53.60 39.03 39.91
R? 0.44 0.47 0.21 0.16 0.05 0.25 0.42
RMSE 4.92 4.64 7.99 4.33 4.35 3.47 8.09
Lower 31.17 36.36 42.07 34.89 42.84 28.26 29.15
Upper 52.69 57.88 63.59 56.41 64.37 49.79 50.66
GEOS  Estimate 48.01 48.94 58.54 54.58 65.41 44.83 43.25
R? 0.72 0.55 0.46 0.37* 0.81* 0.34 0.44
RMSE 7.62 5.65 10.19 11.87 14.71 8.76 9.11
Lower 37.39 38.33 47.92 4397 54.77 34.21 32.62
Upper 58.62 59.55 69.17 65.20 76.06 55.45 53.87
TCR-2  Estimate 49.60 53.50 61.24 53.56 62.46 43.76 45.47
R? 0.55 0.43 0.46 0.12 0.01 0.38 0.52
RMSE 9.33 9.43 12.56 12.63 11.39 7.48 9.33
Lower 37.77 41.67 49.40 41.72 50.62 31.92 33.63
Upper 61.44 65.34 73.08 65.39 74.30 55.60 57.31

* indicates the sample size of the comparison pair is less than 30.

shows the largest R2, indicating its robust performance near In grid-to-point evaluation, five datasets, excluding NJML,
the monitor locations due to the utilization of observational demonstrate a drop in R? in 2010, and all datasets show
data as input and the effective exploitation of spatiotemporal an increase in R? from 2015 to 2016. In grid-to-grid eval-

autocorrelation among stations. Apart from BME, for both uation, GEOS-Chem shows an overall better performance
evaluation scenarios NJML outperforms other datasets in R? in R? than CAMS, TCR-2 and UKML. For both scenarios,
from 2010 to 2014, and TCR-2 leads in 2007 and 2016. BME maintains the lowest RMSE throughout the period, in-
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Figure 2. Normalized mean bias of six databases against TOAR-
II observations (OSDMAR) at different quantiles in 2016, calcu-
lated based on the grid-to-point scenario. 0 %: 13.46 ppb; 10 %:
36.75 ppb; 20 %: 39.80 ppb; 30 %: 41.89 ppb; 40 %: 43.57 ppb;
50%: 45.06ppb; 60%: 46.82ppb; 70%: 48.93ppb; 80 %:
52.18 ppb; 90 %: 57.21 ppb; 100 %: 86.25 ppb. Normalized mean
bias for each year against TOAR-II observations are shown in
Fig. S5. Different quantiles of TOAR-II observations for other years
are shown in Table S11.

dicating the most accurate predictions. CAMS also performs
well in terms of RMSE. From 2006 to 2013, GEOS-Chem
consistently has lower RMSE than both TCR-2 and UKML.
Meanwhile, NJML exhibits a decreasing RMSE from 2006
to 2016. The clear differences in time series of RMSE corre-
spond with the yearly mean trends in Fig. 5. Datasets with
lower ozone values, BME and CAMS, also exhibit lower
RMSE, whereas those with higher estimates, specifically
TCR-2 and UKML, have higher RMSE. From 2006 to 2016,
the performance rankings derived from R? values varied sig-
nificantly between the two evaluation scenarios, whereas the
RMSE based rankings were nearly consistent.

5 Comparison between ozone mapping products

5.1 Temporal trends

Both the area-weighted and population-weighted mean
trends of global OSDMAS reveal substantial differences
among global ozone mapping datasets (Fig. 5). Notably,
BME and CAMS have lower ozone values than other
datasets, for both metrics, while UKML and NJML have
higher ozone estimates, with differences between these
datasets exceeding 5 ppb. The higher values in GEOS-Chem
and TCR-2 may be attributed to the remaining high bias in
the forecast models, which is commonly found in CTMs
(Travis and Jacob, 2019). The population-weighted mean
is higher than the area-weighted mean, by 5—10 ppb across
all datasets, and for UKML and BME, the disparity be-
tween population-weighted and area-weighted ozone con-
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centrations appears to widen over time. The faster increase
in the population-weighted mean compared to the area-
weighted mean appears to be driven by rising ozone levels
in highly populated regions. In Table 3, focusing on 2006
to 2016, we find that NJML was the only dataset to ex-
hibit a downward trend with very high certainty for both
area- and population-weighted mean ozone concentrations.
In contrast, TCR-2 and UKML only show increasing trends
in population-weighted mean ozone during this period with
very high certainty. However, while the BME dataset shows
a negative slope for the area-weighted mean, this downward
trend has only low certainty; for the population-weighted
mean, there is no evidence of a decreasing trend. Figure 6
illustrates regional ozone changes per decade, weighted by
population, across different regions in each dataset over 2006
to 2016. NJML, despite its overall decreasing trend in Ta-
ble 3, does not uniformly show declines across all regions.
The decrease in NJML is predominantly in North America,
notably over 8 ppb per decade in the US and Canada, while
Sub Saharan Africa and South America exhibit increases.
BME and UKML, with the longest duration, both display
decreasing trends in North America, and Europe, and in-
creases in Southeast Asia and Middle East. Both datasets
indicate greater decreases in North America than in Europe
and more significant increases in the Middle East than in
Southeast Asia. However, BME shows a downward trend in
East Asia, while UKML exhibits the reverse. CAMS and
TCR-2’s trends in Fig. 6 are less distinct, except for the
decrease in North America and the increase in East Asia,
mirroring those of GEOS-Chem, which exhibits the small-
est decadal ozone change, likely due to not directly assimi-
lating ozone from satellite observations. From Table S9, we
observe that some regions exhibit a clearer trend from 2006
to 2016, with very high certainty across six datasets. In East
Asia, BME and NJML observe decreasing trends, whereas
the other 4 datasets display increasing trends. In North Amer-
ica, all datasets display a downward trend, and in Europe,
BME, NJML, UKML and TCR-2 show a decline, contrasting
with increases in CAMS and GEOS-chem. Recent analyses
using TOAR observations indicate that from 2006 to 2016,
most sites in North America experienced decreasing ozone,
while many sites in East Asia exhibited significant positive
trends (Chang et al., 2025; Fleming et al., 2018; Chang et
al., 2017). These observed trends in North America, Europe
and East Asia seem to agree best with the trends estimated
by BME and UKML. Detailed plots of population weighted
and area weighted trends for each dataset in each region are
shown in Figs. S7 and S8.

5.2 Difference maps

Figure 7 shows the spatial maps of the 11-year (2006-2016)
average of the annual multi-model means of OSDMAS from
the six datasets, and the associated standard deviations. India,
China, and the Middle East are estimated to have the world’s
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Figure 3. Population-weighted exposure distributions for OSDMAS in 2016 in three regions: East Asia (EAS), Europe (EUR), and North
America (NAM) (regions defined in Table S7). Each panel compares the distribution derived from the TOAR-II observations (black line) with
estimates from six datasets (colored lines), calculating the population-weighted kernel density estimate, only for grid cells where TOAR-II

measurements exist.

Table 3. Yearly trends of area-weighted, and population-weighted global mean of ground-level ozone for six datasets with 95 % confidence

intervals (LowerCI and UpperCI) and p-values from 2006 to 2016.

Dataset Slope Lower CI Upper CI  p-value  Weighted
(epbyr™")  (epbyr™")  (ppbyrh)

BME —0.12 —0.33 0.10 0.25 area
NJML —-0.24 —-0.32 —0.16 0.00 area
UKML 0.04 —0.02 0.11 0.16 area
CAMS —0.05 —0.29 0.18 0.62 area
GEOS —0.02 —0.14 0.10 0.71 area
TCR-2 0.06 —0.03 0.15 0.18 area

BME —0.04 —0.30 0.23 0.76  population
NJML —0.26 —0.33 —0.19 0.00  population
UKML 0.26 0.20 0.32 0.00  population
CAMS 0.06 —-0.23 0.34 0.67 population
GEOS 0.05 —0.04 0.14 0.23  population
TCR-2 0.20 0.10 0.30 0.00 population

highest average ozone concentrations, exceeding 50 ppb in
the multi-model average. High ozone levels are also found in
parts of Europe and the eastern United States. Notably, re-
gions in southern Africa near the Atlantic Ocean emerge as
primary areas of ozone pollution, where some locations have
average concentrations exceeding 60 ppb. Conversely, the
Amazon Basin in South America, Central Africa, and Canada
exhibit relatively lower ozone concentrations, with some ar-

https://doi.org/10.5194/acp-25-15969-2025

eas below the WHO 30 ppb guideline. The six datasets show
greater variation (high standard deviations above 10 ppb) in
South America and Africa, particularly in rainforest regions,
compared to North America and Europe, notably since these
regions lack ozone monitors. The eastern coast of China also
exhibits significant discrepancies with standard deviations
above 15 ppb. Detailed plots of the annual multi-model mean
of OSDMAS from the six datasets, and the associated stan-
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Figure 4. (a) Time series of determination (R2) between each dataset and TOAR-II observations of OSDMAS from 2006 to 2016 based on
grid-to-grid evaluation at the native resolution of each dataset using re-gridded TOAR-II observations. (b) Time series of root mean squared
error (RMSE) between each dataset and TOAR-II from 2006 to 2016 based on grid-to-grid evaluation. (¢) Time series of determination (R2)
between each dataset and TOAR-II observations of OSDMAS from 2006 to 2016 based on grid-to-point evaluation using all TOAR-II sites.
(d) Time series of root mean squared error (RMSE) between each dataset and TOAR-II from 2006 to 2016 based on grid-to-point evaluation.

dard deviations for each year (2006 to 2016) are shown in
Fig. S9 and Fig. S10. Figure 8 compares the mean ozone
concentration for each dataset with the multi-dataset average
(Fig. 7a), showing wide variation in the magnitude and spa-
tial distributions of ozone concentrations among the datasets.
BME and CAMS display lower values than the average of six
datasets in most regions, consistent with Figs. 1 and 5. BME
records concentrations higher than average in central South
America and central Africa near the Atlantic, while CAMS
shows elevated levels in Southeast Asia and along the Middle
East coast, contrasting TCR-2’s lower coastal and higher in-
land concentrations. NJML and UKML report above-average
values, except for NJML in southern China and UKML near
the Sahara Desert and the Indian Ocean. Detailed plots of
difference between annual ensemble mean and each dataset
estimate for each year (2006 to 2016) are shown in Fig. S11.

Atmos. Chem. Phys., 25, 15969-15990, 2025

5.3 Pairwise spatial similarity

We calculated the correlation and RMSD between each pair
of datasets for each year from 2006 to 2016. Figure 9 dis-
plays the average correlation and RMSD values over these
11 years as heatmaps. Figure 9c presents a scatter plot of the
correlations and RMSD for each dataset pair. Using the cor-
relation heatmap (Fig. 9a), we categorized the six datasets
by the maximum difference method, identifying NJML as
a distinct group (Group B) and the other five datasets as
Group A. NJML’s separation indicates its significant diver-
gence in ozone geographic distribution compared to others.
The scatter distribution in Fig. 9c reveals that most Group
A data points cluster in regions of high correlation and low
RMSD, suggesting broadly consistent ozone geographic dis-
tribution and concentration estimates within this group. Nev-
ertheless, there is still substantial disagreement among the
reanalysis products, likely because of the differences in fore-
cast model performance and data assimilation configuration.
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with p-value 0.0011, GEOS-Chem 0.164 ppb yr_1 with p-value 0.5334, TCR-2 0.4 ppb yr_1 with p-value 0.0343.
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Conversely, Group B has lower correlations. Interestingly,
RMSD does not consistently decrease with increasing cor-
relation, indicating that similar geographic distribution pat-
terns can still yield significant differences in ozone concen-
tration estimates. This is particularly evident with CAMS and
GEOS-Chem, which exhibit the highest correlation with a
large RMSD, suggesting substantial differences in ozone es-
timation.

5.4 Long-term ozone exposure

Figure 10 illustrates the distribution of population in var-
ious regions exposed to average OSDMAS from 2006 to
2016, as per each dataset. We also calculated the distribu-
tion of population regarding the lower and upper bounds of
OSDMAS from 2006 to 2016 for each dataset, as shown in
Fig. S12. For the period 2006-2016, a majority of the popula-
tion in most datasets is exposed to concentrations above 40—
50 ppb. Populations in regions such as East Asia and South
Asia appear to be exposed to higher ozone concentrations in
all datasets compared to other regions, which supports our
findings from exposure based on TOAR-II observations in
Fig. 3. Conversely, populations in the Sub-Saharan Africa
and Southeast Asia regions typically experienced concen-
trations below 50 ppb. The different regions show different
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distributions of population ozone exposure, and comparisons
between datasets reveal considerable variations in the ozone
distribution for each region. Some datasets (e.g., CAMS and
TCR-2) show a wider distribution of population across ozone
concentrations compared to others (e.g., NJML). In BME and
CAMS, after South Asia, a significant fraction of the pop-
ulation in the East Asia region is exposed to levels above
50 ppb, while this proportion in North America, Europe, and
the Middle East is less than in the other four datasets. When
focusing on exposure above 70 ppb, South Asia dominates in
BME, CAMS, and NJML, while East Asia leads in GEOS-
Chem, UKML, and TCR-2. All six datasets clearly demon-
strate a higher impact of ozone pollution in Asia compared to
North America and Europe, aligning with previous findings
based on TOAR observations (Chang et al., 2017).

Table 4 elucidates each region’s population share above
30, 50 and 70 ppb thresholds from 2006 to 2016. Results are
presented as the estimate with the lower and upper bound
in parentheses (e.g., 42 % [24 %, 66 %]). Detailed table of
population share for each year (2006 to 2016) are shown
in Table S10. For BME and CAMS, the global average of
the population exposed to more than 50 ppb is 42 % [24 %,
66 %] and 48 % [18 %, 76 %], respectively, indicating that
more than half of the population us exposed to lower con-
centrations. Regional exposure estimates vary in East Asia,
where the proportion of the population exposed to more than
50 ppb ranges from 61 % [28 %, 94 %] in BME to 99 %
[62 %, 100 %] in UKML, 95% [58 %, 100 %] in GEOS-
Chem, and 94 % [63 %, 100 %] in TCR-2. The differences
are stark in Europe, with BME and CAMS showing only
16 % [0 %, 56 %] and 9 % [0 %, 58 %] exposure, respectively,
over 50 ppb, while NJML, UKML, and TCR-2 report much
higher exposures of 76 % [22 %, 96 %], 77 % [2 %, 100 %],
70 % [5 %, 100 %]. Focusing on the highest threshold, TCR-
2 and UKML project that 41 % [0 %, 79 %] and 31 % [13 %,
85 %] of the population in East Asia exposed to levels above
70 ppb, respectively. In the Middle East, TCR-2’s estimates
are significantly higher than other datasets, indicating that
38 % [0%, 86 %] of the population is exposed to average
concentrations above 70 ppb. Despite these regional differ-
ences, the six datasets agree that a large majority of the global
population is exposed to ozone above the WHO guideline for
OSDMAS (30 ppb) with percents ranging from 93 % [74 %,
99 %] (CAMS) to 99 % [96 %, 100 %] (NJML).

6 Discussion

When evaluating datasets against TOAR-II observations, dif-
ferences in performance are seen among six datasets. BME
performed well in the TOAR-II evaluation (Fig. 1), with
minimal mean bias below the 50 % concentration threshold
(Fig. 2). Unlike the other databases, BME tends not to over-
estimate over the range of concentration, with a small under-
estimation bias. After removing TOAR sites that were used
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Figure 8. The difference of OSDMAS in each grid cell between the 11-year (2006-2016) mean of each of six datasets and the ensemble
mean (Fig. 3). Positive values indicate that the average estimate of the dataset is higher than the ensemble mean. Negative values indicate that
the average estimate of the dataset is lower than the ensemble mean of the six datasets. Difference maps for each year are shown in Fig. S7.

as inputs to BME (Fig. S13), BME’s performance remains
robust in both evaluation scenarios. NJML and UKML, both
utilizing TOAR-I as a training set, showed overestimation
in most areas (Table 2). NJML exhibits a higher R? from
2010 onward, especially at high ground-level ozone concen-
trations (above 50 ppb), where prediction accuracy generally
declines across all datasets. However, NJML has missing
data in some coastal regions, particularly in European coastal
countries, which may contribute to its elevated RMSE in Eu-
rope compared to other datasets (Table 2), since missing data
are substituted with the nearest model grid cell. UKML’s per-
formance after 2010 is not as good as NJML and is worse
than the chemical reanalysis datasets. CAMS, GEOS-Chem
and TCR-2 primarily rely on satellite data, suggesting that
they might not compare favorably with other datasets that
used observations as input or training data. Despite this, the
three chemical reanalysis datasets unexpectedly outperform
the machine learning datasets in R? (TCR-2, GEOS-Chem)
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and in RMSE (CAMS) over the full year 2016. In addition,
for chemical reanalysis datasets, there is a clear trade-off
between capturing the spatial pattern and the accuracy. As
shown in Fig. 2, TCR-2, GEOS-Chem all have widespread
overestimation, but they often capture spatial patterns more
effectively (higher R?). Conversely, CAMS exhibits low bias
in RMSE but shows worse spatial correlation in China. All
six datasets show a reduced performance at higher ozone
concentrations (> 50 ppb), which may complicate their ac-
curacy for assessing long term high-pollution exposure. Fur-
thermore, most datasets perform better in regions with lower
monitoring density (e.g., the United States and China) than
in those with higher density (e.g., Japan and South Korea),
which suggests that resolving high-resolution local ozone
distributions remains challenging even with a good amount
of observational data. The performance of each dataset im-
pacts the accuracy of trend analysis (Figs. 5 and 6) and pop-
ulation exposure assessment (Fig. 10), shown as uncertainty

Atmos. Chem. Phys., 25, 15969-15990, 2025
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Figure 9. Heatmaps of similarity among the six datasets, including (a) heatmaps of average of pairwise correlation (Pearson R) between
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(c), and comparisons with the Group B dataset have lower correlation.

in these Figures, which may lead to different results when
compared to the WHO guideline and interim target.

From the comparison, the large disagreements among the
six datasets regarding ozone trends, population exposure, and
concentration estimates are a direct consequence of the sys-
tematic biases and performance issues identified in the evalu-
ation. Figure 5b illustrates that BME and CAMS report lower
ozone estimates compared to UKML and NJML, with dif-
ferences exceeding 5 ppb. NJML demonstrates a very high
certainty decreasing trend in global population-weighted
and area-weighted yearly mean over the 2006-2016 period.
While TCR-2 and UKML exhibit very high certainty increas-
ing trends in global population-weighted mean which relates
to their overestimation. Divergence among datasets becomes
even more evident in the analysis of regional ozone trends
(Fig. 6). Ozone concentrations decreased in Europe from
2006 to 2016 according to BME, NJML, UKML, and TCR-2,
yet increase in the other chemical reanalysis datasets. These
uncertainties critically undermine the reliability of popula-
tion exposure assessment. Among the six datasets, the popu-
lation exposed to more than 50 ppb of ozone in Europe from
2006 to 2016 spans a broad range, from as low as 9 % for
CAMS to over 70 % for NJML, UKML, and TCR-2. In East
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Asia, exposure levels are consistently higher, with the per-
centage of the population affected ranging from 61 % for
BME to more than 90 % for UKML, GEOS-Chem, and TCR-
2 based on average OSDMAS data over the same period.
Global average exposures also vary, with the proportion of
the population exposed to more than 50 ppb ranging from
42 % to 70 % across the six datasets. More importantly, the
evaluation reveals that all datasets perform poorly at high
ozone levels (> 50 ppb). This highlights the importance of
removing systematic biases from these data sets before ap-
plying them to exposure estimates.

Despite notable disparities in estimates, we still find some
regional and temporal similarities across the six datasets. In
Fig. 6, all datasets exhibit a downward trend in North Amer-
ica over 2006 to 2016. And from the evaluation, we find that
all datasets perform well in the United States, which makes
the downward trend more reliable. In Fig. 7a high ozone con-
centrations are predominantly found in regions with elevated
anthropogenic and industrial emissions, while forests and
sparsely populated areas have lower ozone concentrations,
consistent with findings based on observations (Mills et al.,
2018b; Fleming et al., 2018). In Fig. 7b the standard devia-
tion among six datasets is high in part of South America and
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Figure 10. Population exposed to 11-year average ozone (OSDMAS) from 2006 to 2016 in different regions. The horizontal axis represents
ozone concentrations, and the vertical axis represents population size. The definitions of different regions are included in Table S7. The
Lower and Upper Bound of population exposure, which represent the 95 % prediction interval for the estimate, are presented in Fig. S12.

Africa, especially in the rainforest areas, probably because
of the lack of observational data in these areas and uncertain-
ties in the emissions inventories (Pfister et al., 2019). How-
ever, for most regions it is low, such as North America and
South Asia, indicating a good level of agreement on ozone
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estimates. The high pairwise correlation in Fig. 9a supports
that the geographical distributions of ground-level ozone are
similar among most of datasets. The histograms of ground-
level ozone exposure among the population (Fig. 10) reveal

Atmos. Chem. Phys., 25, 15969-15990, 2025
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Table 4. The share of population in percentage (%) exposed to ozone above three particular thresholds (ppb) in each world region, for the
2006 to 2016 average OSDMAS for six ozone datasets. Each region shows the share of the population exposed at each threshold, calculated
using the estimate, the lower bound and the upper bound of the OSDMAS from each dataset, respectively. The bounds represent the 95 %
prediction interval for the estimate, derived from the linear regression of each dataset against TOAR-II observations. Population shares for
each year are shown in Table S10. The definitions of different regions are included in Table S7.

2006-2016 EAS EUR MDE NAM SAF SAS SEA GLO
BME >30 100 [100,100] 99 [87,100] 100 [99,100] 99 [93,100] 93 [71,100] 100 [99,100] 84 [52,93] 96 [85,99]
> 50 61 [28,94] 16 [0,56] 79 [43,92] 17 [4,72] 310,31] 89 [68,98] 01[0,16] 42 [24,66]
>70 01[0,5] 01[0,0] 010,6] 01[0,1] 010,0] 010,28] 010,0] 010,8]
NJML  >30 100[100,100] 100 [100,100] 100 [100,100] 100 [100,100] 99 [96,100] 100 [100,100] 89 [76,100] 99 [96,100]
>50 72 [37,98] 76 [22,96] 99 [81,100] 88 [53,99] 36 [5,78] 99 [77,100] 2710,63] 70 [41,90]
>70 3[2,12] 010,5] 5[1,58] 3[0,9] 010,1] 8[0,34] 010,0] 410,17]
UKML >30 100[100,100] 100 [100,100] 100 [99,100] 100 [99,100] 98 [46,100] 100 [100,100] 97 [74,100] 98 [83,100]
> 50 99 [62,100] 77 [2,100] 94 [42,100] 84 [3,100] 10 [0,67] 99 [64,100] 41 10,80] 69 [32,88]
> 70 31[13,85] 010,27] 010,791 010,24] 010,2] 40[1,82] 010,1] 16 [3,48]
CAMS >30 100[100,100] 98 [53,100] 100 [99,100] 100 [88,100] 86 [37,99] 100 [100,100] 88 [66,97] 93 [74,99]
> 50 67 [9,100] 9 [0,58] 88 [33,100] 40 [2,91] 8[0,41] 96 [58,100] 24 [8,71] 48 [18,76]
>70 01[0,12] 010,0] 81[4,37] 01[0,3] 010,0] 12 [0,62] 6 [5,8] 4[1,20]
GEOS  >30 100[100,100] 100 [100,100] 100 [100,100] 100 [100,100] 99 [72,100] 100 [100,100] 89 [49,98] 98 [85,100]
> 50 95 [58,100] 44 10,100] 99 [60,100] 55 [0,100] 14 [1,78] 95 [47,100] 0[0,56] 59 [26,87]
>70 410,62] 01[0,0] 410,69] 01[0,0] 010,2] 01[0,54] 01[0,0] 1[0,29]
TCR-2 >30 100 [99,100] 100 [96,100] 100 [100,100] 99 [99,100] 98 [67,100] 99199,100]  85[38,100] 97 [83,100]
>50 94 [63,100] 70 [5,100] 94 [79,100] 86 [31,100] 18 [4,85] 90 [62,99] 13 [1,51] 64 [35,89]
> 70 4110,79] 010,21] 38[0,86] 010,51] 110,7] 10 [0,79] 010,1] 13 [0,46]

the shared characteristic of widespread high ozone exposure
in East Asia and Southeast Asia (Fleming et al., 2018).
There are several possible explanations for the differ-
ences among the datasets, including several factors related
to the characteristics, methodologies and input data for each
dataset. BME has an unfair advantage in that it nearly
matches observations at a monitoring location. But as men-
tioned earlier, BME still shows superior performance after
removing its training data from the evaluation. BME’s use
of temporal autocorrelation to predict ozone in years where
measurements are missing may help its good performance
(DeLang et al., 2021). The differing yearly ozone population-
weighted mean trend in NJML compared to other datasets
may be due to its unique input data, including land cover
and satellite observations (Liu et al., 2022a). The missing
data near coastlines in NJML and relatively coarse resolution
likely contribute to poorer performance in EU-27. For three
chemical reanalysis datasets, previous studies have shown
that significant challenges remain, particularly with respect
to the representation of ozone in the lower troposphere, be-
cause of the limited sensitivity of satellite observations to
ozone in the lower layers (Huijnen et al., 2020). Because of
the lack of direct observational constraints at the surface in
the chemical reanalyses, the better performance of CAMS
may be attributable to the finer resolution that enables better
representation of small-scale ozone distribution features than
the other reanalysis datasets, and also to the better perfor-
mance of the forecast model to predict surface ozone. Never-
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theless, the assimilation of precursor measurements provides
important constraints, particularly with respect to the spa-
tial gradient and temporal variation of ground-level ozone.
The low RMSE of GEOS-Chem compared to UKML and
TCR-2 might be because it shares the same data assimi-
lation method with CAMS (Qu et al., 2020a). Moreover,
TCR-2, GEOS-Chem, and CAMS perform well in the United
States, Canada and EU27, which may be because these re-
gions have well-established emissions inventories for model-
ing (Schmedding et al., 2020) and because data assimilation
is used to estimate key precursor emissions from satellite
observations in TCR-2 and GEOS-Chem. Optimizing addi-
tional precursor emissions, such as VOCs, from satellite ob-
servations is considered to be important to better represent
surface ozone (Miyazaki et al., 2019; Sekiya et al., 2025;
Miyazaki et al., 2012). The poor performance in South Ko-
rea and Japan could be because the coarse resolution mod-
els may not accurately capture ozone gradients in a nation
with a high density of monitors (Punger and West, 2013;
Sekiya et al., 2021). This suggests a need for continued ef-
forts to improve the mapping resolution to capture spatial
variability in these regions. Since most of the current reanal-
ysis products still suffer from large systematic errors in their
surface ozone analysis, it might be important to apply bias
corrections while maintaining the detailed spatial and tem-
poral variability of the original data using methods such as
machine learning (Miyazaki et al., 2025) before performing
exposure estimates. While these factors may help to explain
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differences between the datasets, we have not systematically
tested them, and as discussed by Sekiya et al. (2025) and
Jones et al. (2024), further inter-comparisons of reanalysis
products and detailed discussions for improvement are re-
quired.

Although we conducted a comprehensive comparison and
evaluation, this study still has some limitations. First, the
comparison only focuses on land and inhabited islands, be-
cause of the focus on ground-level ozone impacts on health.
Our estimates of population exposure are based on ambi-
ent concentration in each grid cell, ignoring other factors
that impact ozone exposure, such as indoor ozone concentra-
tion. Also, using OSDMAS as the metric to evaluate datasets
might hide differences in model performance at hourly tem-
poral resolution, which would need to be analyzed in a sep-
arate study. In instances of missing model estimates, we de-
fault to the nearest valid estimate to evaluate with TOAR-II
observations or re-gridded grid cell. For datasets with coarse
spatial resolution, this method may increase or reduce bias
by double counting.

7 Conclusions

This study evaluates the consistency and accuracy of six
ground-level ozone mapping products, developed using dif-
ferent methods. Substantial discrepancies among datasets
are reflected in global and regional ozone trends, the spa-
tial distribution of ozone, population exposure estimates, and
model performance. Model performance evaluation based
on TOAR-II observations varied. BME performs well near
monitoring locations with good R? and small RMSE. All
five datasets, except for BME, exhibit similar R? values in
2016. NJML performs well after 2010 and shows robust per-
formance under high ozone concentrations. Machine learn-
ing datasets tend to overestimate. The chemical reanalysis
datasets perform comparably with the geostatistical and ma-
chine learning datasets, which is somewhat surprising given
that they were not designed to estimate ground-level ozone
accurately and do not use ground-level observations as in-
put. CAMS performs the best among the chemical reanaly-
sis datasets in term of RMSE, although CAMS has difficulty
capturing TOAR-II observations in China. In regions where
TOAR-II observations are sparse, all datasets show RMSE
values about 10 ppb, highlighting the difficulty in mapping
ground-level ozone magnitude in regions with little obser-
vational data. Conversely, in some regions with very dense
TOAR-II observations, all datasets show R? values below
0.2, highlighting the necessity for fine resolution mapping to
accurately capture spatial variability. The global population-
weighted average has a maximum span of 10 ppb among the
six datasets. In terms of population-weighted mean trends
over 2006 to 2016 period, UKML and TCR-2 show very high
certainty upward trends globally, while NJML shows a very
high certainty downward trend. Regionally, all datasets show
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a downward trend in North America, and the evaluation re-
sults make this trend more reliable. Only BME and NJML
datasets demonstrate a downward trend in East Asia, and they
also fit well with TOAR-II observations in population density
distribution. In Europe, BME, UKML, NJML and TCR-2 re-
port a downward trend, while the other two chemical reanal-
ysis datasets reveal an upward trend that is not seen in ob-
servations. These differences among datasets are sufficiently
large that assessments of health impacts of ozone would dif-
fer significantly when using different ozone datasets.

Given that some of the datasets used similar input data, it
is somewhat surprising to find the large discrepancies shown
here, suggesting that applications of these datasets to health
burden assessments, epidemiology or similar applications
for agricultural and ecosystem impacts may differ strongly
based on the dataset selected. The coarse-resolution datasets,
GEOS-Chem and TCR-2, perform well in grid-to-grid eval-
uations at their native resolutions, making them effective for
studying long-term regional ozone effects. However, because
of their coarser resolutions, these two datasets cannot cap-
ture site-level distributions and exhibit greater bias than the
higher-resolution BME, CAMS, and NJML datasets. UKML,
despite its relatively fine resolution (0.125°), shows larger bi-
ases and a lower R?. The superior performance of BME and
NJML should be noted with the fact that both datasets use
observational data for input or training, which gives them
an inherent advantage in these evaluations. More research
will be needed before different methods converge on sim-
ilar estimates. Such research can include more widespread
ground observations, improved used of satellite observations,
improved chemistry-climate modelling, and further develop-
ment of different data fusion methods. Also, it is not clear
whether differences among datasets are due mainly to the
methods used or to differences in input data. In addition,
establishing a formal benchmark test based on the evalua-
tion methods described in this study for the yearly OSDMAS
metric is essential. This would allow for new mapping prod-
ucts to be easily assessed. The general findings here of poor
agreement among datasets may also be applicable to other
air quality datasets or even datasets from other Earth system
domains. According to this study, there is no clear consen-
sus on the best 0zone mapping methods. To further improve
these ozone mapping products, researchers must update and
adjust their methods and input data regularly and iteratively.

Code and data availability. Observational data are publicly
available from the TOAR-II data portal (http://toar-data.org,
last access: 20 May 2025) (Schroder et al., 2021). The BME
dataset of global ground-level ozone estimates (Becker et al.,
2023) is publicly available at https://zenodo.org/records/14996361
(Becker et al., 2025). The NJML dataset is publicly available at
https://doi.org/10.5281/zenodo.6378092 (Liu et al., 2022b). The
CAMS reanalyses data (Inness et al., 2019) are publicly available
from https://doi.org/10.24381/d58bbf47 (Copernicus Atmosphere
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Monitoring Service, 2020). The TCR-2 reanalyses data are pub-
licly available from https://doi.org/10.5067/NN87W530VGUS
(Miyazaki, 2024). Other datasets of global ozone concentrations
can be obtained by contacting the creators of these datasets.

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/acp-25-15969-2025-supplement.
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