Articles | Volume 24, issue 1
https://doi.org/10.5194/acp-24-631-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-24-631-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of urban land use on mean and heavy rainfall during the Indian summer monsoon
Renaud Falga
CORRESPONDING AUTHOR
Laboratoire d'Aérologie, University of Toulouse III – Paul Sabatier, Toulouse, France
Chien Wang
Laboratoire d'Aérologie, University of Toulouse III – Paul Sabatier, Toulouse, France
Related authors
No articles found.
Marie Taufour, Jean-Pierre Pinty, Christelle Barthe, Benoît Vié, and Chien Wang
Geosci. Model Dev., 17, 8773–8798, https://doi.org/10.5194/gmd-17-8773-2024, https://doi.org/10.5194/gmd-17-8773-2024, 2024
Short summary
Short summary
We have developed a complete two-moment version of the LIMA (Liquid Ice Multiple Aerosols) microphysics scheme. We have focused on collection processes, where the hydrometeor number transfer is often estimated in proportion to the mass transfer. The impact of these parameterizations on a convective system and the prospects for more realistic estimates of secondary parameters (reflectivity, hydrometeor size) are shown in a first test on an idealized case.
Lambert Delbeke, Chien Wang, Pierre Tulet, Cyrielle Denjean, Maurin Zouzoua, Nicolas Maury, and Adrien Deroubaix
Atmos. Chem. Phys., 23, 13329–13354, https://doi.org/10.5194/acp-23-13329-2023, https://doi.org/10.5194/acp-23-13329-2023, 2023
Short summary
Short summary
Low-level stratiform clouds (LLSCs) appear frequently over southern West Africa during the West African monsoon. Local and remote aerosol sources (biomass burning aerosols from central Africa) play a significant role in the LLSC life cycle. Based on measurements by the DACCIWA campaign, large-eddy simulation (LES) was conducted using different aerosol scenarios. The results show that both indirect and semi-direct effects can act individually or jointly to influence the life cycles of LLSCs.
Azusa Takeishi and Chien Wang
Atmos. Chem. Phys., 22, 4129–4147, https://doi.org/10.5194/acp-22-4129-2022, https://doi.org/10.5194/acp-22-4129-2022, 2022
Short summary
Short summary
Nanometer- to micrometer-sized particles in the atmosphere, namely aerosols, play a crucial role in cloud formation as cloud droplets form on aerosols. This study uses a weather forecasting model to examine the impacts of a large emission of aerosol particles from biomass burning activities over Southeast Asia. We find that additional cloud droplets brought by fire-emitted particles can lead to taller and more reflective convective clouds with increased rainfall.
Chien Wang
Atmos. Chem. Phys., 21, 13149–13166, https://doi.org/10.5194/acp-21-13149-2021, https://doi.org/10.5194/acp-21-13149-2021, 2021
Short summary
Short summary
Haze caused by abundant atmospheric aerosols has become a serious environmental issue in many countries. An innovative deep-learning machine has been developed to forecast the occurrence of hazes in two Asian megacities (Beijing and Shanghai) and has achieved good overall accuracy. Using this machine, typical regional meteorological and hydrological regimes associated with haze and non-haze events in the two cities have also been, arguably for the first time, successfully categorized.
Cited articles
Arnfeild, A. J.: Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island, Int. J. Climatol., 23, 1–26, https://doi.org/10.1002/joc.859, 2003.
Baik, J. J., Kim, Y. H., and Chun, H. Y.: Dry and Moist Convection Forced by an Urban Heat Island, J. Appl. Meteorol., 40,1462-1475, https://doi.org/10.1175/1520-0450(2001)040<1462:DAMCFB>2.0.CO;2, 2001.
Bisht, D. S., Chatterjee, C., Raghuwanshi, N. S., and Venkataramana, S.: Spatio-temporal trends of rainfall across Indian river basins, Theor. Appl. Climatol., 132, 419–436, https://doi.org/10.1007/s00704-017-2095-8, 2018.
Bollasina, M. A., Ming, Y., and Ramaswamy, V.: Anthropogenic aerosols and the weakening of the South Asian summer monsoon, Science, 334, 502–505, https://doi.org/10.1126/science.1204994, 2011.
Bornstein, R. and Lin, Q. L.: Urban heat islands and summertime convective thunderstorms in Atlanta: three case studies, Atmos. Environ., 34, 507–516, https://doi.org/10.1016/S1352-2310(99)00374-X, 2000.
Chapman, S., Thatcher, M., Salazar, A., Watson, J. E. M., and McAlpine, C. A.: The effect of urban density and vegetation cover on the heat island of a subtropical city, J. Appl. Meteorol., 2531–2550, https://doi.org/10.1175/JAMC-D-17-0316.1, 2018.
Dash, S. K., Kulkarni, M. A., Mohanty, U. C., and Prasad, K.: Changes in the characteristics of rain events in India, J. Geophys. Res., 114, D10109, https://doi.org/10.1029/2008JD010572, 2009.
Dixon, P. G. and Mote, T. L.: Patterns and causes of Atlanta's urban heat island-initiated precipitation, J. Appl. Meteorol., 1273–1284, https://doi.org/10.1175/1520-0450(2003)042<1273:PACOAU>2.0.CO;2, 2003.
ECMWF: IFS Documentation CY47R3 – Part IV Physical processes, European Center for Medium-Range Weather Forecasts, https://doi.org/10.21957/eyrpir4vj, 2021 (data available at: https://www.ecmwf.int/en/forecasts/dataset/operational-archive, last access: May 2023).
Falga, R. and Wang, C.: The rise of Indian summer monsoon precipitation extremes and its correlation with long-term changes of climate and anthropogenic factors, Sci. Rep.-UK, 12, 11985, https://doi.org/10.1038/s41598-022-16240-0, 2022.
Fan, Y., Li, Y., Bejan, A., Wang, Y., and Yang, X. Y.: Horizontal extent of the urban heat dome flow, Sci. Rep.-UK, 7, 11681, https://doi.org/10.1038/s41598-017-09917-4, 2017.
Faroux, S., Kaptué Tchuenté, A. T., Roujean, J.-L., Masson, V., Martin, E., and Le Moigne, P.: ECOCLIMAP-II/Europe: a twofold database of ecosystems and surface parameters at 1 km resolution based on satellite information for use in land surface, meteorological and climate models, Geosci. Model Dev., 6, 563–582, https://doi.org/10.5194/gmd-6-563-2013, 2013 (data available at: https://opensource.umr-cnrm.fr/projects/ecoclimap/wiki, last access: 15 January 2024).
Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M. S., and Xavier, P. K.: Increasing trends of extreme rain events over India in a warming environment, Science, 314, 1442–1445, https://doi.org/10.1126/science.1132027, 2006.
Han, J. Y. and Baik, J. J.: A theoretical and numerical study of urban heat island–induced circulation and convection, J. Atmos. Sci., 65, 1859–1877, https://doi.org/10.1175/2007JAS2326.1, 2008.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2023.
Hildebrand, P. H. and Ackerman, B.: Urban effects on the convective boundary layer, J. Atmos. Sci., 42, 76–91, https://doi.org/10.1175/1520-0469(1984)041<0076:UEOTCB>2.0.CO;2, 1984.
Hogan, R. J. and Bozzo, A.: A flexible and efficient radiation scheme for the ECMWF model, J. Adv. Model Earth Sy., 10, 1990–2008, https://doi.org/10.1029/2018MS001364, 2018.
Jin, Q. and Wang, C.: A revival of Indian summer monsoon rainfall since 2002, Nat. Clim. Change, 7, 587–594, https://doi.org/10.1038/nclimate3348, 2017.
Kishtawal, C. M., Niyogi, D., Tewari, M., Pielke, R. A., and Shepherd, J. M.: Urbanization signature in the observed heavy rainfall climatology over India, Int. J. Climatol., 30, 1908–1916, https://doi.org/10.1002/joc.2044, 2010.
Lac, C., Chaboureau, J.-P., Masson, V., Pinty, J.-P., Tulet, P., Escobar, J., Leriche, M., Barthe, C., Aouizerats, B., Augros, C., Aumond, P., Auguste, F., Bechtold, P., Berthet, S., Bielli, S., Bosseur, F., Caumont, O., Cohard, J.-M., Colin, J., Couvreux, F., Cuxart, J., Delautier, G., Dauhut, T., Ducrocq, V., Filippi, J.-B., Gazen, D., Geoffroy, O., Gheusi, F., Honnert, R., Lafore, J.-P., Lebeaupin Brossier, C., Libois, Q., Lunet, T., Mari, C., Maric, T., Mascart, P., Mogé, M., Molinié, G., Nuissier, O., Pantillon, F., Peyrillé, P., Pergaud, J., Perraud, E., Pianezze, J., Redelsperger, J.-L., Ricard, D., Richard, E., Riette, S., Rodier, Q., Schoetter, R., Seyfried, L., Stein, J., Suhre, K., Taufour, M., Thouron, O., Turner, S., Verrelle, A., Vié, B., Visentin, F., Vionnet, V., and Wautelet, P.: Overview of the Meso-NH model version 5.4 and its applications, Geosci. Model Dev., 11, 1929–1969, https://doi.org/10.5194/gmd-11-1929-2018, 2018 (code available at: http://mesonh.aero.obs-mip.fr/mesonh55, last access: May 2023).
Lei, M., Niyogi, D., Kishtawal, C., Pielke Sr., R. A., Beltrán-Przekurat, A., Nobis, T. E., and Vaidya, S. S.: Effect of explicit urban land surface representation on the simulation of the 26 July 2005 heavy rain event over Mumbai, India, Atmos. Chem. Phys., 8, 5975–5995, https://doi.org/10.5194/acp-8-5975-2008, 2008.
Lemonsu, A. and Masson, V.: Simulation of a summer urban breeze over Paris, Bound.-Lay. Meteorol., 104, 463–490, https://doi.org/10.1023/A:1016509614936, 2002.
Li, X., Mitra, C., Dong, L., and Yang, Q. C.: Understanding land use change impacts on microclimate using Weather Research and Forecasting (WRF) model, Phys. Chem. Earth, 103, 115–126, https://doi.org/10.1016/j.pce.2017.01.017, 2017.
Liu, J. and Niyogi, D.: Meta-analysis of urbanization impact on rainfall modification, Sci. Rep.-UK, 9, 7301, https://doi.org/10.1038/s41598-019-42494-2, 2019.
Liu, Y., Huang, J., Wang, T., Li., J., Yan, H., and He, Y.: Aerosol-cloud interactions over the Tibetan Plateau: An overview, Earth Sci. Rev., 234, 104216, https://doi.org/10.1016/j.earscirev.2022.104216, 2022.
Masson, V.: A physically-based scheme for the urban energy balance in atmospheric models, Bound.-Lay. Meteorol., 94, 357–397, https://doi.org/10.1023/A:1002463829265, 2000.
Masson, V., Le Moigne, P., Martin, E., Faroux, S., Alias, A., Alkama, R., Belamari, S., Barbu, A., Boone, A., Bouyssel, F., Brousseau, P., Brun, E., Calvet, J.-C., Carrer, D., Decharme, B., Delire, C., Donier, S., Essaouini, K., Gibelin, A.-L., Giordani, H., Habets, F., Jidane, M., Kerdraon, G., Kourzeneva, E., Lafaysse, M., Lafont, S., Lebeaupin Brossier, C., Lemonsu, A., Mahfouf, J.-F., Marguinaud, P., Mokhtari, M., Morin, S., Pigeon, G., Salgado, R., Seity, Y., Taillefer, F., Tanguy, G., Tulet, P., Vincendon, B., Vionnet, V., and Voldoire, A.: The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes, Geosci. Model Dev., 6, 929–960, https://doi.org/10.5194/gmd-6-929-2013, 2013.
Mitra, C., Shepherd, J. M., and Jordan, T.: On the relationship between the premonsoonal rainfall climatology and urban land cover dynamics in Kolkata city, India, Int. J. Climatol., 32, 1443–1454, https://doi.org/10.1002/joc.2366, 2011.
Mohajerani, A., Bakaric, J., and Jeffrey-Bailey, T.: The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete, J. Environ. Manage., 197, 522–538, https://doi.org/10.1016/j.jenvman.2017.03.095, 2017.
Nakamura, Y. and Oke, T. R.: Wind, temperature and stability conditions in an east-west oriented urban canyon, Atmos. Environ., 22, 2691–2700, https://doi.org/10.1016/0004-6981(88)90437-4, 1988.
Niyogi, D., Pyle, P., Lei, M., Pal Arya, S., Kishtawal, C. M., Shepherd, M., Chen, F., and Wolfe, B.: Urban modification of thunderstorms: an observational storm climatology and model case study for the Indianapolis urban region, J. Appl. Meteorol. Clim., 50, 1129–1144, https://doi.org/10.1175/2010JAMC1836.1, 2011.
Niyogi, D., Subramanian, S., Mohanty, U. C., Kishtawal, C. M., Ghosh, S., Nair, U. S., Ek, M., and Rajeevan, M.: The impact of land cover and land use change on the Indian monsoon region hydroclimate, Land-Atmospheric Research Applications in South and Southeast Asia, 553–575, https://doi.org/10.1007/978-3-319-67474-2_25, 2018.
Oke, T. R.: The energetic basis of the urban heat island, Q. J. Roy. Meteor. Soc., 108, 1–24, https://doi.org/10.1002/qj.49710845502, 1982.
Pergaud, J., Masson, V., Malardel, S., and Couvreux, F.: A Parameterization of dry thermals and shallow cumuli for mesoscale numerical weather prediction, Bound.-Lay. Meteorol., 132, 83–106, https://doi.org/10.1007/s10546-009-9388-0, 2009.
Pigeon, G., Moscicki, M. A., Voogt, J. A., and Masson, V.: Simulation of fall and winter surface energy balance over a dense urban area using the TEB scheme, Meteorol. Atmos. Phys., 102, 159–171, https://doi.org/10.1007/s00703-008-0320-9, 2008.
Qian, Y., Chakraborty, T. C., Li, J. F., Li, D., He, C. L., Sarangi, C., Chen, F., Yang, X. C., and Leung, L. R.: Urbanization impact on regional climate and extreme weather: current Understanding, uncertainties, and future research directions, Adv. Atmos. Sci., 39, 819–860, https://doi.org/10.1007/s00376-021-1371-9, 2022.
Roxy, M. K., Ghosh, S., Pathak, A., Athulya, R., Mujumdar, M., Murtugudde, R., Terray, P., and Rajeevan, M.: A threefold rise in widespread extreme rain events over central India, Nat. Commun., 8, 708, https://doi.org/10.1038/s41467-017-00744-9, 2017.
Shastri, H., Paul, S., and Ghosh, S.: Impacts of urbanization on Indian summer monsoon rainfall extremes, J. Geophys. Res., 120, 496–516, https://doi.org/10.1002/2014JD022061, 2015.
Sheehan, P. M. F., Matthews, A. J., Webber, B. G. M., Sanchez-Franks, A., Klingaman, N. P., and Vinayachandran, P. N.: On the Influence of the Bay of Bengal's Sea Surface Temperature Gradients on Rainfall of the South Asian Monsoon, J. Climate, 36, 6499–6513, https://doi.org/10.1175/JCLI-D-22-0288.1, 2023.
Shem, W. and Shepherd, M.: On the impact of urbanization on summertime thunderstorms in Atlanta: Two numerical model case studies, Atmos. Res., 92, 172–189, https://doi.org/10.1016/j.atmosres.2008.09.013, 2009.
Shepherd, J. M.: Impacts of urbanization on precipitation and storms: physical insights and vulnerabilities, in: Climate Vulnerability: understanding and addressing threats to essential resources, Elsevier, 109–115, https://doi.org/10.1016/B978-0-12-384703-4.00503-7, 2013. .
Swain, M., Nadimpalli, R., Mohanty, U. C., Guhathakurta, P., Gupta, A., Kaginalkar, A., Chen, F., and Niyogi, D.: Delay in timing and spatial reorganization of rainfall due to urbanization-analysis over India's smart city Bhubaneswar, Comp. Urban Sci., 3, 8, https://doi.org/10.1007/s43762-023-00081-2, 2023a.
Swain, M., Nadimpalli, R., Das, A. K., Mohanty, U. C., and Niyogi, D.: Urban modification of heavy rainfall: a model case study for Bhubaneswar urban region, Comp. Urban Sci., 3, 2, https://doi.org/10.1007/s43762-023-00080-3, 2023b.
Taha, H.: Urban climates and heat islands: albedo, evapotranspiration, and anthropogenic heat, Energ. Buildings, 25, 99–103, https://doi.org/10.1016/S0378-7788(96)00999-1, 1997.
Tian, H., Banger, K., Tao, B., and Dadhwal, V. K.: History of land use in India during 1880–2010: Large-scale land transformation reconstructed from satellite data and historical achieves, Glob. Planet. Change, 121, 76–88, https://doi.org/10.1016/j.gloplacha.2014.07.005, 2014.
Twomey, S.: The influence of pollution on the shortwave albedo of clouds, J. Atmos. Sci., 34, 1149–1152, https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2, 1977.
Van Den Heever, S. and Cotton, W. R.: Urban Aerosol Impacts on Downwind Convective Storms, J. Appl. Meteorol. Clim., 46, 828–850, https://doi.org/10.1175/JAM2492.1, 2007.
Vié, B., Pinty, J.-P., Berthet, S., and Leriche, M.: LIMA (v1.0): A quasi two-moment microphysical scheme driven by a multimodal population of cloud condensation and ice freezing nuclei, Geosci. Model Dev., 9, 567–586, https://doi.org/10.5194/gmd-9-567-2016, 2016.
Vittal, H., Karmakar, S., and Ghosh, S.: Diametric changes in trends and patterns of extreme rainfall over India from pre-1950 to post-1950, Geophys. Res. Lett., 40, 1–6, https://doi.org/10.1002/grl.50631, 2013.
Wang, C., Kim, D., Ekman, A. M. L., Barth, M. C., and Rasch, P. J.: Impact of anthropogenic aerosols on Indian summer monsoon, Geophys. Res. Lett., 36, https://doi.org/10.1029/2009GL040114, 2009.
Weisman, M. L. and Klemp, J. B.: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy, Mon. Weather Rev., 110, 504–520, https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2, 1982.
Yu, H., Kaufman, Y. J., Chin, M., Feingold, G., Remer, L. A., Anderson, T. L., Balkanski, Y., Bellouin, N., Boucher, O., Christopher, S., DeCola, P., Kahn, R., Koch, D., Loeb, N., Reddy, M. S., Schulz, M., Takemura, T., and Zhou, M.: A review of measurement-based assessments of the aerosol direct radiative effect and forcing, Atmos. Chem. Phys., 6, 613–666, https://doi.org/10.5194/acp-6-613-2006, 2006.
Short summary
The impact of urban land use on regional meteorology and rainfall during the Indian summer monsoon has been assessed in this study. Using a cloud-resolving model centered around Kolkata, we have shown that the urban heat island effect led to a rainfall enhancement via the amplification of convective activity, especially during the night. Furthermore, the results demonstrated that the kinetic effect of the city induced the initiation of a nighttime storm.
The impact of urban land use on regional meteorology and rainfall during the Indian summer...
Altmetrics
Final-revised paper
Preprint