Articles | Volume 24, issue 7
https://doi.org/10.5194/acp-24-4511-2024
https://doi.org/10.5194/acp-24-4511-2024
Research article
 | 
17 Apr 2024
Research article |  | 17 Apr 2024

The Antarctic stratospheric nitrogen hole: Southern Hemisphere and Antarctic springtime total nitrogen dioxide and total ozone variability as observed by Sentinel-5p TROPOMI

Adrianus de Laat, Jos van Geffen, Piet Stammes, Ronald van der A, Henk Eskes, and J. Pepijn Veefkind

Related authors

Assessment of satellite observation-based wildfire emissions inventories using TROPOMI data and IFS-COMPO model simulations
Adrianus de Laat, Vincent Huijnen, Niels Andela, and Matthias Forkel
EGUsphere, https://doi.org/10.5194/egusphere-2024-732,https://doi.org/10.5194/egusphere-2024-732, 2024
Short summary
Analysis of properties of the 19 February 2018 volcanic eruption of Mount Sinabung in S5P/TROPOMI and Himawari-8 satellite data
Adrianus de Laat, Margarita Vazquez-Navarro, Nicolas Theys, and Piet Stammes
Nat. Hazards Earth Syst. Sci., 20, 1203–1217, https://doi.org/10.5194/nhess-20-1203-2020,https://doi.org/10.5194/nhess-20-1203-2020, 2020
Short summary
Analysis of geostationary satellite-derived cloud parameters associated with environments with high ice water content
Adrianus de Laat, Eric Defer, Julien Delanoë, Fabien Dezitter, Amanda Gounou, Alice Grandin, Anthony Guignard, Jan Fokke Meirink, Jean-Marc Moisselin, and Frédéric Parol
Atmos. Meas. Tech., 10, 1359–1371, https://doi.org/10.5194/amt-10-1359-2017,https://doi.org/10.5194/amt-10-1359-2017, 2017
Short summary
Tracing the second stage of ozone recovery in the Antarctic ozone-hole with a "big data" approach to multivariate regressions
A. T. J. de Laat, R. J. van der A, and M. van Weele
Atmos. Chem. Phys., 15, 79–97, https://doi.org/10.5194/acp-15-79-2015,https://doi.org/10.5194/acp-15-79-2015, 2015
Short summary
Validation of nine years of MOPITT V5 NIR using MOZAIC/IAGOS measurements: biases and long-term stability
A. T. J. de Laat, I. Aben, M. Deeter, P. Nédélec, H. Eskes, J.-L. Attié, P. Ricaud, R. Abida, L. El Amraoui, and J. Landgraf
Atmos. Meas. Tech., 7, 3783–3799, https://doi.org/10.5194/amt-7-3783-2014,https://doi.org/10.5194/amt-7-3783-2014, 2014

Related subject area

Subject: Gases | Research Activity: Remote Sensing | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
Ozone anomalies over the polar regions during stratospheric warming events
Guochun Shi, Witali Krochin, Eric Sauvageat, and Gunter Stober
Atmos. Chem. Phys., 24, 10187–10207, https://doi.org/10.5194/acp-24-10187-2024,https://doi.org/10.5194/acp-24-10187-2024, 2024
Short summary
No severe ozone depletion in the tropical stratosphere in recent decades
Jayanarayanan Kuttippurath, Gopalakrishna Pillai Gopikrishnan, Rolf Müller, Sophie Godin-Beekmann, and Jerome Brioude
Atmos. Chem. Phys., 24, 6743–6756, https://doi.org/10.5194/acp-24-6743-2024,https://doi.org/10.5194/acp-24-6743-2024, 2024
Short summary
Solar FTIR measurements of NOx vertical distributions – Part 1: First observational evidence of a seasonal variation in the diurnal increasing rates of stratospheric NO2 and NO
Pinchas Nürnberg, Markus Rettinger, and Ralf Sussmann
Atmos. Chem. Phys., 24, 3743–3757, https://doi.org/10.5194/acp-24-3743-2024,https://doi.org/10.5194/acp-24-3743-2024, 2024
Short summary
Emissions of Methane from Coal, Thermal power plants and Wetlands and its implications on Atmospheric Methane across the South Asian Region
Mahalakshmi D.Venkata, Mahesh Pathakoti, A. Lakshmi Kanchana, Sujatha Peethani, Ibrahim Shaik, Krishnan Sundara Rajan, Vijay Kumar Sagar, Pushpanathan Raja, Yogesh Kumar Tiwari, and Chauhan Prakash
EGUsphere, https://doi.org/10.5194/egusphere-2024-405,https://doi.org/10.5194/egusphere-2024-405, 2024
Short summary
Trends in polar ozone loss since 1989: potential sign of recovery in the Arctic ozone column
Andrea Pazmiño, Florence Goutail, Sophie Godin-Beekmann, Alain Hauchecorne, Jean-Pierre Pommereau, Martyn P. Chipperfield, Wuhu Feng, Franck Lefèvre, Audrey Lecouffe, Michel Van Roozendael, Nis Jepsen, Georg Hansen, Rigel Kivi, Kimberly Strong, and Kaley A. Walker
Atmos. Chem. Phys., 23, 15655–15670, https://doi.org/10.5194/acp-23-15655-2023,https://doi.org/10.5194/acp-23-15655-2023, 2023
Short summary

Cited articles

Adams, C., Strong, K., Zhao, X., Bourassa, A. E., Daffer, W. H., Degenstein, D., Drummond, J. R., Farahani, E. E., Fraser, A., Lloyd, N. D., Manney, G. L., McLinden, C. A., Rex, M., Roth, C., Strahan, S. E., Walker, K. A., and Wohltmann, I.: The spring 2011 final stratospheric warming above Eureka: anomalous dynamics and chemistry, Atmos. Chem. Phys., 13, 611–624, https://doi.org/10.5194/acp-13-611-2013, 2013. 
Appenzeller, C. and Holton, J. R.: Tracer lamination in the stratosphere: A global climatology, J. Geophys. Res., 102, 13555–13569, https://doi.org/10.1029/97JD00066​​​​​​​, 1997. 
Barbero, A., Savarino, J., Grilli, R., Blouzon, C., Picard, G., Frey, M. M., Huang, Y., and Caillon, N.: New estimation of the NOx snow-source on the Antarctic Plateau, J. Geophys. Res.-Atmos., 126, e2021JD035062, https://doi.org/10.1029/2021JD035062, 2021. 
Barré, J., Peuch, V.-H., Attié, J.-L., El Amraoui, L., Lahoz, W. A., Josse, B., Claeyman, M., and Nédélec, P.: Stratosphere-troposphere ozone exchange from high resolution MLS ozone analyses, Atmos. Chem. Phys., 12, 6129–6144, https://doi.org/10.5194/acp-12-6129-2012, 2012. 
Beirle, S., Hörmann, C., Jöckel, P., Liu, S., Penning de Vries, M., Pozzer, A., Sihler, H., Valks, P., and Wagner, T.: The STRatospheric Estimation Algorithm from Mainz (STREAM): estimating stratospheric NO2 from nadir-viewing satellites by weighted convolution, Atmos. Meas. Tech., 9, 2753–2779, https://doi.org/10.5194/amt-9-2753-2016, 2016. 
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Removal of stratospheric nitrogen oxides is crucial for the formation of the ozone hole. TROPOMI satellite measurements of nitrogen dioxide reveal the presence of a not dissimilar "nitrogen hole" that largely coincides with the ozone hole. Three very distinct regimes were identified: inside and outside the ozone hole and the transition zone in between. Our results introduce a valuable and innovative application highly relevant for Antarctic ozone hole and ozone layer recovery.
Altmetrics
Final-revised paper
Preprint