Articles | Volume 23, issue 15
https://doi.org/10.5194/acp-23-8531-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-8531-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimating nitrogen and sulfur deposition across China during 2005 to 2020 based on multiple statistical models
Kaiyue Zhou
State Key Laboratory of Pollution Control and Resource Reuse, School
of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
Key Laboratory of Plant-Soil Interactions of MOE, College of Resources
and Environmental Sciences, National Academy of Agriculture Green
Development, China Agricultural University, Beijing 100193, China
Lin Zhang
Laboratory for Climate and Ocean-Atmosphere Sciences, Department of
Atmospheric and Oceanic Sciences, School of Physics, Peking University,
Beijing 100871, China
Mingrui Ma
State Key Laboratory of Pollution Control and Resource Reuse, School
of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
Xuejun Liu
Key Laboratory of Plant-Soil Interactions of MOE, College of Resources
and Environmental Sciences, National Academy of Agriculture Green
Development, China Agricultural University, Beijing 100193, China
Yu Zhao
CORRESPONDING AUTHOR
State Key Laboratory of Pollution Control and Resource Reuse, School
of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
Jiangsu Cooperative Innovation Center of Atmospheric Environment and
Equipment Technology (CICAEET), Nanjing University of Information Science
and Technology, Nanjing, Jiangsu 210044, China
Related authors
No articles found.
Ruize Sun, Xiao Lu, Haipeng Lin, Tongwen Wu, Xingpei Ye, Lu Shen, Xuan Wang, Haolin Wang, Jingyu Li, Ni Lu, Jiayin Su, Jie Zhang, Fang Zhang, Xiaoge Xin, Xiong Liu, and Lin Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-3829, https://doi.org/10.5194/egusphere-2025-3829, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We present the development of a global chemistry-climate coupled model BCC-GEOS-Chem v2.0, with improved representation of comprehensive troposphere-stratosphere chemistry and new capability to account for radiative-cloud feedbacks from short-lived climate forcers. The development of the BCC-GEOS-Chem v2.0 provides a powerful tool to study climate-chemistry interactions and for future projection of global atmospheric chemistry and regional air quality.
Xiao Lu, Yiming Liu, Jiayin Su, Xiang Weng, Tabish Ansari, Yuqiang Zhang, Guowen He, Yuqi Zhu, Haolin Wang, Ganquan Zeng, Jingyu Li, Cheng He, Shuai Li, Teerachai Amnuaylojaroen, Tim Butler, Qi Fan, Shaojia Fan, Grant L. Forster, Meng Gao, Jianlin Hu, Yugo Kanaya, Mohd Talib Latif, Keding Lu, Philippe Nédélec, Peer Nowack, Bastien Sauvage, Xiaobin Xu, Lin Zhang, Ke Li, Ja-Ho Koo, and Tatsuya Nagashima
Atmos. Chem. Phys., 25, 7991–8028, https://doi.org/10.5194/acp-25-7991-2025, https://doi.org/10.5194/acp-25-7991-2025, 2025
Short summary
Short summary
This study analyzes summertime ozone trends in East and Southeast Asia derived from a comprehensive observational database spanning from 1995 to 2019, incorporating aircraft observations, ozonesonde data, and measurements from 2500 surface sites. Multiple models are applied to attribute to changes in anthropogenic emissions and climate. The results highlight that increases in anthropogenic emissions are the primary driver of ozone increases both in the free troposphere and at the surface.
Jinya Yang, Yutong Wang, Lei Zhang, and Yu Zhao
Atmos. Chem. Phys., 25, 2649–2666, https://doi.org/10.5194/acp-25-2649-2025, https://doi.org/10.5194/acp-25-2649-2025, 2025
Short summary
Short summary
We develop a modeling framework to predict future ozone concentrations (till the 2060s) in China following an IPCC scenario. We evaluate the contributions of climatic, anthropogenic, and biogenic factors by season and region. We find persistent emission controls will alter the nonlinear response of ozone to its precursors and dominate the declining ozone level. The outcomes highlight the importance of human actions, even with a climate penalty on air quality.
Mingrui Ma, Jiachen Cao, Dan Tong, Bo Zheng, and Yu Zhao
Atmos. Chem. Phys., 25, 2147–2166, https://doi.org/10.5194/acp-25-2147-2025, https://doi.org/10.5194/acp-25-2147-2025, 2025
Short summary
Short summary
We combined two global climate change pathways and three national emission control scenarios to analyze the future evolution of reactive nitrogen (Nr) deposition till the 2060s in China with air quality modeling. We show China’s clean air and carbon neutrality policies would overcome the adverse effects of climate change and efficiently reduce Nr deposition. The outflow of Nr fluxes from mainland China to the west Pacific would also be clearly reduced from continuous stringent emission controls.
Nana Wu, Guannan Geng, Ruochong Xu, Shigan Liu, Xiaodong Liu, Qinren Shi, Ying Zhou, Yu Zhao, Huan Liu, Yu Song, Junyu Zheng, Qiang Zhang, and Kebin He
Earth Syst. Sci. Data, 16, 2893–2915, https://doi.org/10.5194/essd-16-2893-2024, https://doi.org/10.5194/essd-16-2893-2024, 2024
Short summary
Short summary
The commonly used method for developing large-scale air pollutant emission datasets for China faces challenges due to limited availability of detailed parameter information. In this study, we develop an efficient integrated framework to gather such information by harmonizing seven heterogeneous inventories from five research institutions. Emission characterizations are analyzed and validated, demonstrating that the dataset provides more accurate emission magnitudes and spatiotemporal patterns.
Wenxin Zhao, Yu Zhao, Yu Zheng, Dong Chen, Jinyuan Xin, Kaitao Li, Huizheng Che, Zhengqiang Li, Mingrui Ma, and Yun Hang
Atmos. Chem. Phys., 24, 6593–6612, https://doi.org/10.5194/acp-24-6593-2024, https://doi.org/10.5194/acp-24-6593-2024, 2024
Short summary
Short summary
We evaluate the long-term (2000–2020) variabilities of aerosol absorption optical depth, black carbon emissions, and associated health risks in China with an integrated framework that combines multiple observations and modeling techniques. We demonstrate the remarkable emission abatement resulting from the implementation of national pollution controls and show how human activities affected the emissions with a spatiotemporal heterogeneity, thus supporting differentiated policy-making by region.
Jiachen Cao, Xu Yue, and Mingrui Ma
Atmos. Chem. Phys., 24, 3973–3987, https://doi.org/10.5194/acp-24-3973-2024, https://doi.org/10.5194/acp-24-3973-2024, 2024
Short summary
Short summary
We implemented two widely used ozone damage schemes into a same regional model. Although the two schemes yielded distinct ozone vegetation damages, they predicted similar feedbacks to surface air temperature and ozone air quality in China. Our results highlighted the significance of ozone pollution control given its detrimental impacts on ecosystem functions, contributions to global warming, and amplifications of ozone pollution through ozone–vegetation coupling.
Chen Gu, Lei Zhang, Zidie Xu, Sijia Xia, Yutong Wang, Li Li, Zeren Wang, Qiuyue Zhao, Hanying Wang, and Yu Zhao
Atmos. Chem. Phys., 23, 4247–4269, https://doi.org/10.5194/acp-23-4247-2023, https://doi.org/10.5194/acp-23-4247-2023, 2023
Short summary
Short summary
We demonstrated the development of a high-resolution emission inventory and its application to evaluate the effectiveness of emission control actions, by incorporating the improved methodology, the best available data, and air quality modeling. We show that substantial efforts for emission controls indeed played an important role in air quality improvement even with worsened meteorological conditions and that the contributions of individual measures to emission reduction were greatly changing.
Chuanhua Ren, Xin Huang, Tengyu Liu, Yu Song, Zhang Wen, Xuejun Liu, Aijun Ding, and Tong Zhu
Geosci. Model Dev., 16, 1641–1659, https://doi.org/10.5194/gmd-16-1641-2023, https://doi.org/10.5194/gmd-16-1641-2023, 2023
Short summary
Short summary
Ammonia in the atmosphere has wide impacts on the ecological environment and air quality, and its emission from soil volatilization is highly sensitive to meteorology, making it challenging to be well captured in models. We developed a dynamic emission model capable of calculating ammonia emission interactively with meteorological and soil conditions. Such a coupling of soil emission with meteorology provides a better understanding of ammonia emission and its contribution to atmospheric aerosol.
Pu Liu, Jia Ding, Lei Liu, Wen Xu, and Xuejun Liu
Atmos. Chem. Phys., 22, 9099–9110, https://doi.org/10.5194/acp-22-9099-2022, https://doi.org/10.5194/acp-22-9099-2022, 2022
Short summary
Short summary
Ammonia (NH3) is the important alkaline gas and the key component of fine particulate matter. We used satellite-based observations to analyze the changes in hourly NH3 concentrations and estimated surface NH3 concentrations and NH3 emissions in China. This study shows enormous potential for using satellite data to estimate surface NH3 concentrations and NH3 emissions and provides an important reference for understanding NH3 variation in China.
Fanlei Meng, Yibo Zhang, Jiahui Kang, Mathew R. Heal, Stefan Reis, Mengru Wang, Lei Liu, Kai Wang, Shaocai Yu, Pengfei Li, Jing Wei, Yong Hou, Ying Zhang, Xuejun Liu, Zhenling Cui, Wen Xu, and Fusuo Zhang
Atmos. Chem. Phys., 22, 6291–6308, https://doi.org/10.5194/acp-22-6291-2022, https://doi.org/10.5194/acp-22-6291-2022, 2022
Short summary
Short summary
PM2.5 pollution is a pressing environmental issue threatening human health and food security globally. We combined a meta-analysis of nationwide measurements and air quality modeling to identify efficiency gains by striking a balance between controlling NH3 and acid gas emissions. Persistent secondary inorganic aerosol pollution in China is limited by acid gas emissions, while an additional control on NH3 emissions would become more important as reductions in SO2 and NOx emissions progress.
Dianyi Li, Drew Shindell, Dian Ding, Xiao Lu, Lin Zhang, and Yuqiang Zhang
Atmos. Chem. Phys., 22, 2625–2638, https://doi.org/10.5194/acp-22-2625-2022, https://doi.org/10.5194/acp-22-2625-2022, 2022
Short summary
Short summary
In this study, we applied chemical transport model simulation with the latest annual anthropogenic emission inventory to study the long-term trend of ozone-induced crop production losses from 2010 to 2017 in China. We find that overall the ozone-induced crop production loss in China is significant and the annual average economic losses for wheat, rice, maize, and soybean in China are USD 9.55 billion, USD 8.53 billion, USD 2.23 billion, and USD 1.16 billion respectively, over the 8 years.
Haiyue Tan, Lin Zhang, Xiao Lu, Yuanhong Zhao, Bo Yao, Robert J. Parker, and Hartmut Boesch
Atmos. Chem. Phys., 22, 1229–1249, https://doi.org/10.5194/acp-22-1229-2022, https://doi.org/10.5194/acp-22-1229-2022, 2022
Short summary
Short summary
Methane is the second most important anthropogenic greenhouse gas. Understanding methane emissions and concentration growth over China in the past decade is important to support its mitigation. This study analyzes the contributions of methane emissions from different regions and sources over the globe to methane changes over China in 2007–2018. Our results show strong international transport influences and emphasize the need of intensive methane measurements covering eastern China.
Ruqian Miao, Qi Chen, Manish Shrivastava, Youfan Chen, Lin Zhang, Jianlin Hu, Yan Zheng, and Keren Liao
Atmos. Chem. Phys., 21, 16183–16201, https://doi.org/10.5194/acp-21-16183-2021, https://doi.org/10.5194/acp-21-16183-2021, 2021
Short summary
Short summary
We apply process-based and observation-constrained schemes to simulate organic aerosol in China and conduct comprehensive model–observation comparisons. The results show that anthropogenic semivolatile and intermediate-volatility organic compounds (SVOCs and IVOCs) are the main sources of secondary organic aerosol (SOA) in polluted regions, for which the residential sector is perhaps the predominant contributor. The hydroxyl radical level is also important for SOA modeling in polluted regions.
Yadong Lei, Xu Yue, Hong Liao, Lin Zhang, Yang Yang, Hao Zhou, Chenguang Tian, Cheng Gong, Yimian Ma, Lan Gao, and Yang Cao
Atmos. Chem. Phys., 21, 11531–11543, https://doi.org/10.5194/acp-21-11531-2021, https://doi.org/10.5194/acp-21-11531-2021, 2021
Short summary
Short summary
We present the first estimate of ozone enhancement by fire emissions through ozone–vegetation interactions using a fully coupled chemistry–vegetation model (GC-YIBs). In fire-prone areas, fire-induced ozone causes a positive feedback to surface ozone mainly because of the inhibition effects on stomatal conductance.
Zixun Chen, Xuejun Liu, Xiaoqing Cui, Yaowen Han, Guoan Wang, and Jiazhu Li
Biogeosciences, 18, 2859–2870, https://doi.org/10.5194/bg-18-2859-2021, https://doi.org/10.5194/bg-18-2859-2021, 2021
Short summary
Short summary
δ13C in plants is a sensitive long-term indicator of physiological acclimatization. The present study suggests that precipitation change and increasing atmospheric N deposition have little impact on δ13C of H. ammodendron, a dominant plant in central Asian deserts, but affect its gas exchange. In addition, this study shows that δ13C of H. ammodendron could not indicate its water use efficiency (WUE), suggesting that whether δ13C of C4 plants indicates WUE is species-specific.
Youwen Sun, Hao Yin, Cheng Liu, Lin Zhang, Yuan Cheng, Mathias Palm, Justus Notholt, Xiao Lu, Corinne Vigouroux, Bo Zheng, Wei Wang, Nicholas Jones, Changong Shan, Min Qin, Yuan Tian, Qihou Hu, Fanhao Meng, and Jianguo Liu
Atmos. Chem. Phys., 21, 6365–6387, https://doi.org/10.5194/acp-21-6365-2021, https://doi.org/10.5194/acp-21-6365-2021, 2021
Short summary
Short summary
This study mapped the drivers of HCHO variability from 2015 to 2019 over eastern China. Hydroxyl (OH) radical production rates from HCHO photolysis were evaluated. The relative contributions of emitted and photochemical sources to the observed HCHO abundance were analyzed. Contributions of various emission sources and geographical regions to the observed HCHO summertime enhancements were determined.
Pooja V. Pawar, Sachin D. Ghude, Chinmay Jena, Andrea Móring, Mark A. Sutton, Santosh Kulkarni, Deen Mani Lal, Divya Surendran, Martin Van Damme, Lieven Clarisse, Pierre-François Coheur, Xuejun Liu, Gaurav Govardhan, Wen Xu, Jize Jiang, and Tapan Kumar Adhya
Atmos. Chem. Phys., 21, 6389–6409, https://doi.org/10.5194/acp-21-6389-2021, https://doi.org/10.5194/acp-21-6389-2021, 2021
Short summary
Short summary
In this study, simulations of atmospheric ammonia (NH3) with MOZART-4 and HTAP-v2 are compared with satellite (IASI) and ground-based measurements to understand the spatial and temporal variability of NH3 over two emission hotspot regions of Asia, the IGP and the NCP. Our simulations indicate that the formation of ammonium aerosols is quicker over the NCP than the IGP, leading to smaller NH3 columns over the higher NH3-emitting NCP compared to the IGP region for comparable emissions.
Yan Zhang, Yu Zhao, Meng Gao, Xin Bo, and Chris P. Nielsen
Atmos. Chem. Phys., 21, 6411–6430, https://doi.org/10.5194/acp-21-6411-2021, https://doi.org/10.5194/acp-21-6411-2021, 2021
Short summary
Short summary
We combined air quality and exposure response models to analyze the benefits for air quality and human health of China’s ultra-low emission policy in one of its most developed regions. Atmospheric observations and the air quality model were also used to demonstrate improvement of emission inventories incorporating online emission monitoring data. With implementation of the policy in both power and industrial sectors, the attributable deaths due to PM2.5 exposure are estimated to decrease 5.5 %.
Zhongjing Jiang, Jing Li, Xiao Lu, Cheng Gong, Lin Zhang, and Hong Liao
Atmos. Chem. Phys., 21, 2601–2613, https://doi.org/10.5194/acp-21-2601-2021, https://doi.org/10.5194/acp-21-2601-2021, 2021
Short summary
Short summary
This study demonstrates that the intensity of the western Pacific subtropical high (WPSH), a major synoptic pattern in the northern Pacific during summer, can induce a dipole change in surface ozone pollution over eastern China. Ozone concentration increases in the north and decreases in the south during the strong WPSH phase, and vice versa. The change in chemical processes associated with the WPSH change plays a decisive role, whereas the natural emission of ozone precursors accounts for ~ 30 %.
Yang Yang, Yu Zhao, Lei Zhang, Jie Zhang, Xin Huang, Xuefen Zhao, Yan Zhang, Mengxiao Xi, and Yi Lu
Atmos. Chem. Phys., 21, 1191–1209, https://doi.org/10.5194/acp-21-1191-2021, https://doi.org/10.5194/acp-21-1191-2021, 2021
Short summary
Short summary
We conducted new NOx emission estimation based on the satellite-derived NO2 column constraint and found reduced emissions compared to previous estimates for a developed region in east China. The subsequent improvement in air quality modeling was demonstrated based on available ground observations. With multiple emission reduction cases for various pollutants, we explored the effective control approaches for ozone and inorganic aerosol pollution.
Baozhu Ge, Syuichi Itahashi, Keiichi Sato, Danhui Xu, Junhua Wang, Fan Fan, Qixin Tan, Joshua S. Fu, Xuemei Wang, Kazuyo Yamaji, Tatsuya Nagashima, Jie Li, Mizuo Kajino, Hong Liao, Meigen Zhang, Zhe Wang, Meng Li, Jung-Hun Woo, Junichi Kurokawa, Yuepeng Pan, Qizhong Wu, Xuejun Liu, and Zifa Wang
Atmos. Chem. Phys., 20, 10587–10610, https://doi.org/10.5194/acp-20-10587-2020, https://doi.org/10.5194/acp-20-10587-2020, 2020
Short summary
Short summary
Performances of the simulated deposition for different reduced N (Nr) species in China were conducted with the Model Inter-Comparison Study for Asia. Results showed that simulated wet deposition of oxidized N was overestimated in northeastern China and underestimated in south China, but Nr was underpredicted in all regions by all models. Oxidized N has larger uncertainties than Nr, indicating that the chemical reaction process is one of the most importance factors affecting model performance.
Dong Chen, Yu Zhao, Jie Zhang, Huan Yu, and Xingna Yu
Atmos. Chem. Phys., 20, 10193–10210, https://doi.org/10.5194/acp-20-10193-2020, https://doi.org/10.5194/acp-20-10193-2020, 2020
Short summary
Short summary
We studied the characteristics and sources of aerosol scattering for Nanjing. The method of aerosol scattering estimation was optimized based on field measurements, and the impacts of aerosol size and composition were quantified. To explore the reasons for the reduced visibility, source apportionment of aerosol scattering was conducted by pollution level. This work stressed the linkage between aerosols and visibility and improved the understanding of emissions and their role in air quality.
Xiao Lu, Lin Zhang, Tongwen Wu, Michael S. Long, Jun Wang, Daniel J. Jacob, Fang Zhang, Jie Zhang, Sebastian D. Eastham, Lu Hu, Lei Zhu, Xiong Liu, and Min Wei
Geosci. Model Dev., 13, 3817–3838, https://doi.org/10.5194/gmd-13-3817-2020, https://doi.org/10.5194/gmd-13-3817-2020, 2020
Short summary
Short summary
This study presents the development and evaluation of a new climate chemistry model, BCC-GEOS-Chem v1.0, which couples the GEOS-Chem chemical transport model as an atmospheric chemistry component in the Beijing Climate Center atmospheric general circulation model. A 3-year (2012–2014) simulation of BCC-GEOS-Chem v1.0 shows that the model captures well the spatiotemporal distributions of tropospheric ozone, other gaseous pollutants, and aerosols.
Cited articles
Ahmad, I., Tang, D., Wang, T., Wang, M., and Wagan, B.: Precipitation trends over time using
Mann-Kendall and Spearman's rho tests in Swat River Basin, Pak. Adv.
Meteorol., 2015, 431860, https://doi.org/10.1155/2015/431860, 2015.
An, Z., Huang, R. J., Zhang, R., Tie, X., Li, G., Cao, J., Zhou, W., Shi,
Z., Han, Y., Gu, Z., and Ji, Y.: Severe haze in northern China: A synergy of
anthropogenic emissions and atmospheric processes, P. Natl. Acad. Sci. USA,
116, 8657–8666, https://doi.org/10.1073/pnas.1900125116, 2019.
Baker, L. A., Herlihy, A. T., Kaufmann, P. R., and Eilers, J. M.: Acidic
Lakes and Streams in the United States: The Role of Acidic Deposition,
Science, 252, 1151–1154, https://doi.org/10.1126/science.252.5009.1151,
1991.
Beachley, G., Puchalski, M., Rogers, C., and Lear, G.: A summary of
long-term trends in sulfur and nitrogen deposition in the United States:
1990–2013, JSM Environ. Sci. Ecol., 4, 1030–1034, 2016.
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore,
A. M., Li, Q. B., Liu, H. G. Y., Mickley, L. J., and Schultz, M. G.: Global
modeling of tropospheric chemistry with assimilated meteorology: Model
description and evaluation, J. Geophys. Res.-Atmos., 106, 23073–23095,
https://doi.org/10.1029/2001jd000807, 2001.
Breiman, L.: Random forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/a:1010933404324, 2001.
Burns, D. A., Aherne, J., Gay, D. A., and Lehmann, C. M. B.: Acid rain and
its environmental effects: Recent scientific advances, Atmos. Environ., 146,
1–4, https://doi.org/10.1016/j.atmosenv.2016.10.019, 2016.
Comero, S., Vaccaro, S., Locoro, G., De Capitani, L., and Gawlik, B. M.: Characterization of
the Danube River sediments using the PMF multivariate approach, Chemosphere,
95, 329–335, https://doi.org/10.1016/j.chemosphere.2013.09.028, 2014.
Chen, Y., Zhang, L., Henze, D. K., Zhao, Y., Lu, X., Winiwarter, W., Guo,
Y., Liu, X., Wen, Z., Pan, Y., and Song, Y.: Interannual variation of
reactive nitrogen emissions and their impacts on PM2.5 air pollution in
China during 2005 to 2015, Environ. Res. Lett., 16, 125004,
https://doi.org/10.1088/1748-9326/ac3695, 2021.
Cheng, M., Jiang, H., Guo, Z., Zhang, X., and Lu, X.: Estimating NO2 dry
deposition using satellite data in eastern China, Int. J. Remote Sens., 34,
2548–2565, https://doi.org/10.1080/01431161.2012.747019, 2012.
Cheng, I. and Zhang, L.: Long-term air concentrations, wet deposition, and
scavenging ratios of inorganic ions, HNO3 and SO2 and assessment of aerosol
and precipitation acidity at Canadian rural locations, Atmos. Chem. Phys.,
17, 4711–4730, https://doi.org/10.5194/acp-17-4711-2017, 2017.
Cheng, I., Zhang, L., He, Z., Cathcart, H., Houle, D., Cole, A., Feng, J.,
O'Brien, J., Macdonald, A. M., Aherne, J., and Brook, J.: Long-term declines
in atmospheric nitrogen and sulfur deposition reduce critical loads
exceedances at multiple Canadian rural sites, 2000–2018, Atmos. Chem.
Phys., 22, 14631–14656, https://doi.org/10.5194/acp-22-14631-2022, 2022.
Constantin, D. E., Bocaneala, C., Voiculescu, M., Rosu, A., Merlaud, A.,
Roozendael, M. V., and Georgescu, P. L.: Evolution of SO2 and NOX emissions
from several large combustion plants in Europe during 2005 to 2015, Int. J.
Environ. Res. Publ. Hlth., 17, 3630, https://doi.org/10.3390/ijerph17103630,
2020.
Du, E. and Liu, X.: High rates of wet nitrogen deposition in China: A
synthesis, in: Nitrogen deposition, critical loads and biodiversity, edited
by: Sutton, M. A., Mason, K. E., Sheppard, L. J., Sverdrup, H., Haeuber, R.,
and Hicks, W. K., Springer, the Netherlands, 49–56,
https://doi.org/10.1007/978-94-007-7939-6_6, 2014.
Eastham, S. D., Long, M. S., Keller, C. A., Lundgren, E., Yantosca, R. M.,
Zhuang, J., Li, C., Lee, C. J., Yannetti, M., Auer, B. M., Clune, T. L.,
Kouatchou, J., Putman, W. M., Thompson, M. A., Trayanov, A. L., Molod, A.
M., Martin, R. V., and Jacob, D. J.: GEOS-Chem High Performance (GCHP
v11-02c): a next-generation implementation of the GEOS-Chem chemical
transport model for massively parallel applications, Geosci. Model Dev., 11,
2941–2953, https://doi.org/10.5194/gmd-11-2941-2018, 2018.
Feng, J., Vet, R., Cole, A., Zhang, L., Cheng, I., O'Brien, J., and
Macdonald, A.-M.: Inorganic chemical components in precipitation in the
eastern U.S. and Eastern Canada during 1989–2016: Temporal and regional
trends of wet concentration and wet deposition from the NADP and CAPMoN
measurements, Atmos. Environ., 254, 118367,
https://doi.org/10.1016/j.atmosenv.2021.118367, 2021.
Flechard, C. R., Nemitz, E., Smith, R. I., Fowler, D., Vermeulen, A. T.,
Bleeker, A., Erisman, J. W., Simpson, D., Zhang, L., Tang, Y. S., and
Sutton, M. A.: Dry deposition of reactive nitrogen to European ecosystems: a
comparison of inferential models across the NitroEurope network, Atmos.
Chem. Phys., 11, 2703–2728, https://doi.org/10.5194/acp-11-2703-2011, 2011.
Fowler, D., Pyle, J. A., Raven, J. A., and Sutton, M. A.: The global
nitrogen cycle in the twenty-first century: introduction, Philos. T. R.
Soc., 368, 20130165, https://doi.org/10.1098/rstb.2013.0165, 2013.
Fu, B., Li, S., Yu, X., Yang, P., Yu, G., Feng, R., and Zhuang, X.: Chinese
ecosystem research network: Progress and perspectives, Ecol. Complex., 7,
225–233, https://doi.org/10.1016/j.ecocom.2010.02.007, 2010.
Fu, J. S., Carmichael, G. R., Dentener, F., Aas, W., Andersson, C., Barrie,
L. A., Cole, A., Galy-Lacaux, C., Geddes, J., Itahashi, S., Kanakidou, M.,
Labrador, L., Paulot, F., Schwede, D., Tan, J., and Vet, R.: Improving
Estimates of Sulfur, Nitrogen, and Ozone Total Deposition through
Multi-Model and Measurement-Model Fusion Approaches, Environ. Sci. Technol., 56, 2134–2142,
https://doi.org/10.1021/acs.est.1c05929, 2022.
He, H., Wang, Y., Ma, Q., Ma, J., Chu, B., Ji, D., Tang, G., Liu, C., Zhang,
H., and Hao, J.: Mineral dust and NOX promote the conversion of SO2 to
sulfate in heavy pollution days, Sci. Rep., 4, 4172,
https://doi.org/10.1038/srep04172, 2014.
Holland, E. A., Braswell, B. H., Sulzman, J., and Lamarque, J. F.: Nitrogen
deposition onto the United States and Western Europe: synthesis of
observations and models, Ecol. Appl., 15, 38–57, 2005.
Hou, Y., Wang, L., Zhou, Y., Wang, S., Liu, W., and Zhu, J.: Analysis of the
tropospheric column nitrogen dioxide over China based on satellite
observations during 2008–2017, Atmos. Pollut. Res., 10, 651–655,
https://doi.org/10.1016/j.apr.2018.11.003, 2019.
Jia, Y., Yu, G., Gao, Y., He, N., Wang, Q., Jiao, C., and Zuo, Y.: Global
inorganic nitrogen dry deposition inferred from ground- and space-based
measurements, Sci. Rep., 6, 19810, https://doi.org/10.1038/srep19810, 2016.
Kang, Y., Liu, M., Song, Y., Huang, X., Yao, H., Cai, X., Zhang, H., Kang,
L., Liu, X., Yan, X., He, H., Zhang, Q., Shao, M., and Zhu, T.:
High-resolution ammonia emissions inventories in China from 1980 to 2012,
Atmos. Chem. Phys., 16, 2043–2058, https://doi.org/10.5194/acp-16-2043-2016,
2016.
Karplus, V. J., Zhang, S., and Almond, D.: Quantifying coal power plant
responses to tighter SO2 emissions standards in China, P. Natl. Acad.
Sci. USA, 115, 7004–7009, https://doi.org/10.1073/pnas.1800605115, 2018.
Keller, C. A., Long, M. S., Yantosca, R. M., Da Silva, A. M., Pawson, S.,
and Jacob, D. J.: HEMCO v1.0: a versatile, ESMF-compliant component for
calculating emissions in atmospheric models, Geosci. Model Dev., 7,
1409–1417, https://doi.org/10.5194/gmd-7-1409-2014, 2014.
Keresztesi, Á., Birsan, M.-V., Nita, I.-A., Bodor, Z., and Szép, R.:
Assessing the neutralisation, wet deposition and source contributions of the
precipitation chemistry over Europe during 2000–2017, Environ. Sci. Eur.,
31, 50, https://doi.org/10.1186/s12302-019-0234-9, 2019.
Krotkov, N. A., McLinden, C. A., Li, C., Lamsal, L. N., Celarier, E. A.,
Marchenko, S. V., Swartz, W. H., Bucsela, E. J., Joiner, J., Duncan, B. N.,
Boersma, K. F., Veefkind, J. P., Levelt, P. F., Fioletov, V. E., Dickerson,
R. R., He, H., Lu, Z., and Streets, D. G.: Aura OMI observations of regional
SO2 and NO2 pollution changes from 2005 to 2015, Atmos. Chem. Phys., 16,
4605–4629, https://doi.org/10.5194/acp-16-4605-2016, 2016.
Krotkov, N. A., Lamsal, L. N., Marchenko, S. V., Celarier, E. A., Bucsela, E. J.,
Swartz, W. H., Joiner, J., and Team TOC: OMI/Aura NO2 Cloud-Screened Total
and Tropospheric Column L3 Global Gridded 0.25∘ × 0.25∘
V3. NASA Goddard Space Flight Center, Goddard Earth Sciences Data and
Information Services Center (GES DISC),
https://doi.org/10.5067/Aura/OMI/DATA/DATA3007, 2019.
Kuang, F., Liu, X., Zhu, B., Shen, J., Pan, Y., Su, M., and Goulding, K.:
Wet and dry nitrogen deposition in the central Sichuan Basin of China,
Atmos. Environ., 143, 39–50, https://doi.org/10.1016/j.atmosenv.2016.08.032,
2016.
Kuhn, M.: caret: Classification and Regression Training, R package version
6.0-90, https://CRAN.R-project.org/package=caret (last access: 29 July 2023), 2021.
Li, J.: Pollution trends in China from 2000 to 2017: A multi-sensor view
from space, Remote Sens., 12, 208, https://doi.org/10.3390/rs12020208, 2020.
Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B.,
Cui, H., Man, H., Zhang, Q., and He, K.: Anthropogenic emission inventories
in China: a review, Natl. Sci. Rev., 4, 834–866,
https://doi.org/10.1093/nsr/nwx150, 2017.
Li, M., Klimont, Z., Zhang, Q., Martin, R. V., Zheng, B., Heyes, C., Cofala,
J., Zhang, Y., and He, K.: Comparison and evaluation of anthropogenic
emissions of SO2 and NOX over China, Atmos. Chem. Phys., 18, 3433–3456,
https://doi.org/10.5194/acp-18-3433-2018, 2018.
Li, R., Cui, L., Meng, Y., Zhao, Y., and Fu, H.: Satellite-based prediction
of daily SO2 exposure across China using a high-quality random
forest-spatiotemporal Kriging (RF-STK) model for health risk assessment,
Atmos. Environ., 208, 10–19, https://doi.org/10.1016/j.atmosenv.2019.03.029,
2019.
Li, R., Cui, L., Fu, H., Zhao, Y., Zhou, W., and Chen, J.: Satellite-Based
Estimates of Wet Ammonium (NH4-N) Deposition Fluxes Across China during
2011–2016 Using a Space-Time Ensemble Model, Environ. Sci. Technol., 54,
13419–13428, https://doi.org/10.1021/acs.est.0c03547, 2020a.
Li, R., Cui, L., Liang, J., Zhao, Y., Zhang, Z., and Fu, H.: Estimating
historical SO2 level across the whole China during 1973–2014 using random
forest model, Chemosphere, 247, 125839,
https://doi.org/10.1016/j.chemosphere.2020.125839, 2020b.
Li, Y., Schichtel, B. A., Walker, J. T., Schwede, D. B., Chen, X., Lehmann,
C. M. B., Puchalski, M. A., Gay, D. A., and Collett Jr., J. L.: Increasing
importance of deposition of reduced nitrogen in the United States, P.
Natl. Acad. Sci. USA, 113, 5874–5879, https://doi.org/10.1073/pnas.1525736113,
2016.
Likens, G. E., Butler, T. J., Claybrooke, R., Vermeylen, F., and Larson, R.:
Long-term monitoring of precipitation chemistry in the U.S.: Insights into
changes and condition, Atmos. Environ., 245, 118031,
https://doi.org/10.1016/j.atmosenv.2020.118031, 2021.
Liu, F., Zhang, Q., Tong, D., Zheng, B., Li, M., Huo, H., and He, K. B.:
High-resolution inventory of technologies, activities, and emissions of
coal-fired power plants in China from 1990 to 2010, Atmos. Chem. Phys., 15,
13299–13317, https://doi.org/10.5194/acp-15-13299-2015, 2015.
Liu, L., Zhang, X., Xu, W., Liu, X., Lu, X., Wang, S., Zhang, W., and Zhao,
L.: Ground Ammonia Concentrations over China Derived from Satellite and
Atmospheric Transport Modeling, Remote Sens., 9, 467,
https://doi.org/10.3390/rs9050467, 2017a.
Liu, L., Zhang, X., Xu, W., Liu, X., Lu, X., Chen, D., Zhang, X., Wang, S.,
and Zhang, W.: Estimation of monthly bulk nitrate deposition in China based
on satellite NO2 measurement by the Ozone Monitoring Instrument, Remote
Sens. Environ., 199, 93–106, https://doi.org/10.1016/j.rse.2017.07.005,
2017b.
Liu, L., Xu, W., Lu, X., Zhong, B., Guo, Y., Lu, X., Zhao, Y., He, W., Wang,
S., Zhang, X., Liu, X., and Vitousek, P.: Exploring global changes in
agricultural ammonia emissions and their contribution to nitrogen deposition
since 1980, P. Natl. Acad. Sci. USA, 119, e2121998119,
https://doi.org/10.1073/pnas.2121998119, 2022.
Liu, M., Huang, X., Song, Y., Xu, T., Wang, S., Wu, Z., Hu, M., Zhang, L.,
Zhang, Q., Pan, Y., Liu, X., and Zhu, T.: Rapid SO2 emission reductions
significantly increase tropospheric ammonia concentrations over the North
China Plain, Atmos. Chem. Phys., 18, 17933–17943,
https://doi.org/10.5194/acp-18-17933-2018, 2018.
Liu, M., Lin, J., Boersma, K. F., Pinardi, G., Wang, Y., Chimot, J., Wagner, T., Xie, P., Eskes, H., Van Roozendael, M., Hendrick, F., Wang, P., Wang, T., Yan, Y., Chen, L., and Ni, R.: Improved aerosol correction for OMI tropospheric NO2 retrieval over East Asia: constraint from CALIOP aerosol vertical profile, Atmos. Meas. Tech., 12, 1–21, https://doi.org/10.5194/amt-12-1-2019, 2019.
Liu, X. J., Zhang, Y., Han, W. X., Tang, A. H., Shen, J. L., Cui, Z. L.,
Vitousek, P., Erisman, J. W., Goulding, K., Christie, P., Fangmeier, A., and
Zhang, F. S.: Enhanced nitrogen deposition over China, Nature, 494, 459–462,
https://doi.org/10.1038/nature11917, 2013.
Liu, X. J., Xu, W., Du, E. Z., Tang, A. H., Zhang, Y., Wen, Z., Hao, T. X.,
Pan, Y. P., Zhang, L., Zhao, Y., Shen, J. L., Zhou, F., Gao, Z. L., Chang,
Y. H., Goulding, K., Collett Jr., J. L., Vitousek, P. M., Zhang, F. S.,
Zhang, Y. Y., Gu, B. J., and Feng, Z. Z.: Environmental impacts of nitrogen
emissions in China and the role of policies in emission reduction, Philos.
T. R. Soc., 378, 20190324, https://doi.org/10.1098/rsta.2019.0324, 2020.
Lu, X., Ye, X., Zhou, M., Zhao, Y., Weng, H., Kong, H., Li, K., Gao, M.,
Zheng, B., Lin, J., Zhou, F., Zhang, Q., Wu, D., Zhang, L., and Zhang, Y.:
The underappreciated role of agricultural soil nitrogen oxide emissions in
ozone pollution regulation in North China, Nat. Commun., 12, 5021,
https://doi.org/10.1038/s41467-021-25147-9, 2021.
Luo, X., Pan, Y., Goulding, K., Zhang, L., Liu, X., and Zhang, F.: Spatial
and seasonal variations of atmospheric sulfur concentrations and dry
deposition at 16 rural and suburban sites in China, Atmos. Environ., 146,
79–89, https://doi.org/10.1016/j.atmosenv.2016.07.038, 2016.
Lye, C. and Tian, H.: Spatial and temporal patterns of nitrogen deposition
in China: Synthesis of observational data, J. Geophys. Res., 112, D22S05,
https://doi.org/10.1029/2006jd007990, 2007.
Pan, Y. P., Wang, Y. S., Tang, G. Q., and Wu, D.: Wet and dry deposition of
atmospheric nitrogen at ten sites in Northern China, Atmos. Chem. Phys., 12,
6515–6535, https://doi.org/10.5194/acp-12-6515-2012, 2012.
Park, R. J.: Natural and transboundary pollution influences on
sulfate-nitrate-ammonium aerosols in the United States: Implications for
policy, J. Geophys. Res., 109, D15204, https://doi.org/10.1029/2003jd004473, 2004.
Payne, R. J., Stevens, C. J., Dise, N. B., Gowing, D. J., Pilkington, M. G.,
Phoenix, G. K., Emmett, B. A., and Ashmore, M. R.: Impacts of atmospheric
pollution on the plant communities of British acid grasslands, Environ.
Pollut., 159, 2602–2608, https://doi.org/10.1016/j.envpol.2011.06.009, 2011.
Qin, K., Han, X., Li, D., Xu, J., Loyola, D., Xue, Y., Zhou, X., Li, D.,
Zhang, K., and Yuan, L.: Satellite-based estimation of surface NO2
concentrations over east-central China: A comparison of POMINO and OMNO2d
data, Atmos. Environ., 224, 117322,
https://doi.org/10.1016/j.atmosenv.2020.117322, 2020.
Qu, Z., Henze, D. K., Li, C., Theys, N., Wang, Y., Wang, J., Wang, W., Han,
J., Shim, C., Dickerson, R. R., and Ren, X.: SO2 Emission Estimates Using
OMI SO2 Retrievals for 2005–2017, J. Geophys. Res.-Atmos., 124,
8336–8359, https://doi.org/10.1029/2019jd030243, 2019.
Reuss, J. O., Cosby, B. J., and Wright, R. F.: Chemical processes governing
soil and water acidification, Nature, 329, 27–32,1987.
Simpson, D., Benedictow, A., Berge, H., Bergström, R., Emberson, L. D.,
Fagerli, H., Flechard, C. R., Hayman, G. D., Gauss, M., Jonson, J. E.,
Jenkin, M. E., Nyíri, A., Richter, C., Semeena, V. S., Tsyro, S.,
Tuovinen, J. P., Valdebenito, Á., and Wind, P.: The EMEP MSC-W chemical
transport model – technical description, Atmos. Chem. Phys., 12, 7825–7865,
https://doi.org/10.5194/acp-12-7825-2012, 2012.
Skyllakou, K., Rivera, P. G., Dinkelacker, B., Karnezi, E., Kioutsioukis,
I., Hernandez, C., Adams, P. J., and Pandis, S. N.: Changes in PM2.5;
concentrations and their sources in the US from 1990 to 2010, Atmos. Chem.
Phys., 21, 17115–17132, https://doi.org/10.5194/acp-21-17115-2021, 2021.
Song, L., Kuang, F., Skiba, U., Zhu, B., Liu, X., Levy, P., Dore, A., and
Fowler, D.: Bulk deposition of organic and inorganic nitrogen in southwest
China from 2008 to 2013, Environ. Pollut., 227, 157–166,
https://doi.org/10.1016/j.envpol.2017.04.031, 2017.
Theobald, M. R., Vivanco, M. G., Aas, W., Andersson, C., Ciarelli, G.,
Couvidat, F., Cuvelier, K., Manders, A., Mircea, M., Pay, M.-T., Tsyro, S.,
Adani, M., Bergström, R., Bessagnet, B., Briganti, G., Cappelletti, A.,
amp, apos, Isidoro, M., Fagerli, H., Mar, K., Otero, N., Raffort, V.,
Roustan, Y., Schaap, M., Wind, P., and Colette, A.: An evaluation of
European nitrogen and sulfur wet deposition and their trends estimated by
six chemistry transport models for the period 1990–2010, Atmos. Chem.
Phys., 19, 379–405, https://doi.org/10.5194/acp-19-379-2019, 2019.
Tørseth, K., Aas, W., Breivik, K., Fjæraa, A. M., Fiebig, M.,
Hjellbrekke, A. G., Lund Myhre, C., Solberg, S., and Yttri, K. E.:
Introduction to the European Monitoring and Evaluation Programme (EMEP) and
observed atmospheric composition change during 1972–2009, Atmos. Chem.
Phys., 12, 5447–5481, https://doi.org/10.5194/acp-12-5447-2012, 2012.
Totsuka, T., Sase, H., and Shimizu, H.: Major activities of acid deposition
monitoring network in East Asia (EANET) and related studies, in: Plant
responses to air pollution and global change, Springer, 251–259, https://doi.org/10.1007/4-431-31014-2_28, 2005.
Vet, R., Artz, R. S., Carou, S., Shaw, M., Ro, C.-U., Aas, W., Baker, A.,
Bowersox, V. C., Dentener, F., Galy-Lacaux, C., Hou, A., Pienaar, J. J.,
Gillett, R., Forti, M. C., Gromov, S., Hara, H., Khodzher, T., Mahowald, N.
M., Nickovic, S., Rao, P. S. P., and Reid, N. W.: A global assessment of
precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base
cations, organic acids, acidity and pH, and phosphorus, Atmos. Environ., 93,
3–100, https://doi.org/10.1016/j.atmosenv.2013.10.060, 2014.
Wang, J., Sha, Z., Zhang, J., Kang, J., Xu, W., Goulding, K., and Liu, X.:
Reactive N emissions from cropland and their mitigation in the North China
Plain, Environ. Res., 214, 114015,
https://doi.org/10.1016/j.envres.2022.114015, 2022.
Wen, Z., Xu, W., Li, Q. Q., Han, M. J., Tang, A. H., Zhang, Y., Luo, X. S.,
Shen, J. L., Wang, W., Li, K. H., Pan, Y. P., Zhang, L., Li, W. Q., Collett Jr.,
J. L., Zhong, B. Q., Wang, X. M., Goulding, K., Zhang, F. S., and Liu, X. J.:
Changes of nitrogen deposition in China from 1980 to 2018, Environ.
Int., 144, 106022, https://doi.org/10.1016/j.envint.2020.106022,
2020.
Wesely, M. L.: Parameterization of surface resistances to gaseous dry
deposition in regional-scale numerical models, Atmos. Environ., 23,
1293–1304, https://doi.org/10.1016/0004-6981(89)90153-4,
1989.
Whitburn, S., Van Damme, M., Clarisse, L., Bauduin, S., Heald, C. L.,
Hadji-Lazaro, J., Hurtmans, D., Zondlo, M. A., Clerbaux, C., and Coheur, P.
F.: A flexible and robust neural network IASI-NH3 retrieval algorithm, J.
Geophys. Res.-Atmos., 121, 6581–6599,
https://doi.org/10.1002/2016jd024828, 2016.
Wu, Y., Di, B., Luo, Y., Grieneisen, M. L., Zeng, W., Zhang, S., Deng, X.,
Tang, Y., Shi, G., Yang, F., and Zhan, Y.: A robust approach to deriving
long-term daily surface NO2 levels across China: Correction to substantial
estimation bias in back-extrapolation, Environ. Int., 154, 106576,
https://doi.org/10.1016/j.envint.2021.106576, 2021.
Xia, Y., Zhao, Y., and Nielsen, C. P.: Benefits of China's efforts in
gaseous pollutant control indicated by the bottom-up emissions and satellite
observations 2000–2014, Atmos. Environ., 136, 43–53,
https://doi.org/10.1016/j.atmosenv.2016.04.013, 2016.
Xu, W., Luo, X. S., Pan, Y. P., Zhang, L., Tang, A. H., Shen, J. L., Zhang,
Y., Li, K. H., Wu, Q. H., Yang, D. W., Zhang, Y. Y., Xue, J., Li, W. Q., Li,
Q. Q., Tang, L., Lu, S. H., Liang, T., Tong, Y. A., Liu, P., Zhang, Q.,
Xiong, Z. Q., Shi, X. J., Wu, L. H., Shi, W. Q., Tian, K., Zhong, X. H.,
Shi, K., Tang, Q. Y., Zhang, L. J., Huang, J. L., He, C. E., Kuang, F. H.,
Zhu, B., Liu, H., Jin, X., Xin, Y. J., Shi, X. K., Du, E. Z., Dore, A. J.,
Tang, S., Collett, J. L., Goulding, K., Sun, Y. X., Ren, J., Zhang, F. S.,
and Liu, X. J.: Quantifying atmospheric nitrogen deposition through a
nationwide monitoring network across China, Atmos. Chem. Phys., 15,
12345–12360, https://doi.org/10.5194/acp-15-12345-2015, 2015.
Xu, W., Liu, L., Cheng, M., Zhao, Y., Zhang, L., Pan, Y., Zhang, X., Gu, B.,
Li, Y., Zhang, X., Shen, J., Lu, L., Luo, X., Zhao, Y., Feng, Z., Collett
Jr., J. L., Zhang, F., and Liu, X.: Spatial–temporal patterns of inorganic
nitrogen air concentrations and deposition in eastern China, Atmos. Chem.
Phys., 18, 10931–10954, https://doi.org/10.5194/acp-18-10931-2018, 2018.
Xu, W., Zhang, L., and Liu, X.: A database of atmospheric nitrogen
concentration and deposition from the nationwide monitoring network in
China, Sci. Data, 6, D15204, https://doi.org/10.1038/s41597-019-0061-2, 2019.
Xu, X.: China's GDP and POP spatial distribution kilometer grid dataset,
Resources and environment science data registration and publication system,
http://www.resdc.cn/DOI (last access: 29 July 2023), 2017.
Yamaga, S., Ban, S., Xu, M., Sakurai, T., Itahashi, S., and Matsuda, K.:
Trends of sulfur and nitrogen deposition from 2003 to 2017 in Japanese
remote areas, Environ. Pollut., 289, 117842,
https://doi.org/10.1016/j.envpol.2021.117842, 2021.
Ye, C., Lu, K., Song, H., Mu, Y., Chen, J., and Zhang, Y.: A critical review
of sulfate aerosol formation mechanisms during winter polluted periods, J.
Environ. Sci., 123, 387–399,
https://doi.org/10.1016/j.jes.2022.07.011, 2023.
Yu, G., Jia, Y., He, N., Zhu, J., Chen, Z., Wang, Q., Piao, S., Liu, X., He,
H., Guo, X., Wen, Z., Li, P., Ding, G., and Goulding, K.: Stabilization of
atmospheric nitrogen deposition in China over the past decade, Nat.
Geosci., 12, 424–431, https://doi.org/10.1038/s41561-019-0352-4, 2019.
Zhan, X., Yu, G., He, N., Jia, B., Zhou, M., Wang, C., Zhang, J., Zhao, G.,
Wang, S., Liu, Y., and Yan, J.: Inorganic nitrogen wet deposition: Evidence
from the North-South Transect of Eastern China, Environ. Pollut., 204, 1–8,
https://doi.org/10.1016/j.envpol.2015.03.016, 2015.
Zhang, G., Pan, Y., Tian, S., Cheng, M., Xie, Y., Wang, H., and Wang, Y.:
Limitations of passive sampling technique of rainfall chemistry and wet
deposition flux characterization, Res. Environ., 28, 684–690,
https://doi.org/10.13198/j.issn.1001-6929.2015.05.03, 2015.
Zhang, L., Gong, S., Padro, J., and Barrie, L.: A size-segregated particle
dry deposition scheme for an atmospheric aerosol module, Atmos. Environ.,
35, 549–560, https://doi.org/10.1016/S1352-2310(00)00326-5, 2001.
Zhang, Q., Zheng, Y., Tong, D., Shao, M., Wang, S., Zhang, Y., Xu, X., Wang,
J., He, H., Liu, W., Ding, Y., Lei, Y., Li, J., Wang, Z., Zhang, X., Wang,
Y., Cheng, J., Liu, Y., Shi, Q., Yan, L., Geng, G., Hong, C., Li, M., Liu,
F., Zheng, B., Cao, J., Ding, A., Gao, J., Fu, Q., Huo, J., Liu, B., Liu,
Z., Yang, F., He, K., and Hao, J.: Drivers of improved PM2.5 air quality in
China from 2013 to 2017, P. Natl. Acad. Sci. USA, 116, 24463–24469,
https://doi.org/10.1073/pnas.1907956116, 2019.
Zhang, T., Chen, H. Y. H., and Ruan, H.: Global negative effects of nitrogen
deposition on soil microbes, ISME J., 12, 1817–1825,
https://doi.org/10.1038/s41396-018-0096-y, 2018a.
Zhang, X. Y., Chuai, X. W., Liu, L., Zhang, W. T., Lu, X. H., Zhao, L. M.,
and Chen, D. M.: Decadal trends in wet sulfur deposition in China estimated
from OMI SO2 columns, J. Geophys. Res.-Atmos., 123, 10796–10811,
https://doi.org/10.1029/2018jd028770, 2018b.
Zhang, Y., Liu, X. J., Fangmeier, A., Goulding, K. T. W., and Zhang, F. S.:
Nitrogen inputs and isotopes in precipitation in the North China Plain,
Atmos. Environ., 42, 1436–1448,
https://doi.org/10.1016/j.atmosenv.2007.11.002, 2008.
Zhang, Y., Zhao, J., and Yin, H.: European Union agricultural policy
transformation trend and enlightenment, World Agriculture, 5, https://doi.org/10.13856/j.cn11-1097/s.2020.05.001, 2020 (in
Chinese).
Zhao, S. and Qiao, G.: The shadow prices of CO2, SO2 and NOX for U.S. coal
power industry 2010–2017: a convex quantile regression method, J.
Prod. Anal., 57, 243–253, https://doi.org/10.1007/s11123-022-00629-0,
2022.
Zhao, Y.: Gridded deposition of N and S for China 2005–2020, Air Quality Nju [data set], http://www.airqualitynju.com/En/Data/List/Datadownload, last access: 29 July 2023.
Zhao, Y., Xi, M., Zhang, Q., Dong, Z., Ma, M., Zhou, K., Xu, W., Xing, J.,
Zheng, B., Wen, Z., Liu, X., Nielsen, C. P., Liu, Y., Pan, Y., and Zhang,
L.: Decline in bulk deposition of air pollutants in China lags behind
reductions in emissions, Nat. Geosci., 15, 190–195,
https://doi.org/10.1038/s41561-022-00899-1, 2022.
Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X.,
Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and
Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the
consequence of clean air actions, Atmos. Chem. Phys., 18, 14095–14111,
https://doi.org/10.5194/acp-18-14095-2018, 2018a.
Zheng, X. D., Liu, X. Y., Song, W., Sun, X. C., and Liu, C. Q.: Nitrogen
isotope variations of ammonium across rain events: Implications for
different scavenging between ammonia and particulate ammonium, Environ.
Pollut., 239, 392–398, https://doi.org/10.1016/j.envpol.2018.04.015, 2018b.
Zhou, K., Zhao, Y., Zhang, L., and Xi, M.: Declining dry deposition of NO2
and SO2 with diverse spatiotemporal patterns in China from 2013 to 2018,
Atmos. Environ., 262, 118655,
https://doi.org/10.1016/j.atmosenv.2021.118655, 2021.
Zhu, J., He, N., Wang, Q., Yuan, G., Wen, D., Yu, G., and Jia, Y.: The
composition, spatial patterns, and influencing factors of atmospheric wet
nitrogen deposition in Chinese terrestrial ecosystems, Sci. Total Environ.,
511, 777–785, https://doi.org/10.1016/j.scitotenv.2014.12.038, 2015.
Short summary
We developed a dataset of the long-term (2005–2020) variabilities of China’s nitrogen and sulfur deposition, with multiple statistical models that combine available observations and chemistry transport modeling. We demonstrated the strong impact of human activities and national pollution control actions on the spatiotemporal changes in deposition and indicated a relatively small benefit of emission abatement on deposition (and thereby ecological risk) for China compared to Europe and the USA.
We developed a dataset of the long-term (2005–2020) variabilities of China’s nitrogen and...
Altmetrics
Final-revised paper
Preprint