Articles | Volume 23, issue 15
https://doi.org/10.5194/acp-23-8531-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-8531-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimating nitrogen and sulfur deposition across China during 2005 to 2020 based on multiple statistical models
Kaiyue Zhou
State Key Laboratory of Pollution Control and Resource Reuse, School
of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
Key Laboratory of Plant-Soil Interactions of MOE, College of Resources
and Environmental Sciences, National Academy of Agriculture Green
Development, China Agricultural University, Beijing 100193, China
Lin Zhang
Laboratory for Climate and Ocean-Atmosphere Sciences, Department of
Atmospheric and Oceanic Sciences, School of Physics, Peking University,
Beijing 100871, China
Mingrui Ma
State Key Laboratory of Pollution Control and Resource Reuse, School
of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
Xuejun Liu
Key Laboratory of Plant-Soil Interactions of MOE, College of Resources
and Environmental Sciences, National Academy of Agriculture Green
Development, China Agricultural University, Beijing 100193, China
Yu Zhao
CORRESPONDING AUTHOR
State Key Laboratory of Pollution Control and Resource Reuse, School
of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
Jiangsu Cooperative Innovation Center of Atmospheric Environment and
Equipment Technology (CICAEET), Nanjing University of Information Science
and Technology, Nanjing, Jiangsu 210044, China
Related authors
No articles found.
Jinya Yang, Yutong Wang, Lei Zhang, and Yu Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2713, https://doi.org/10.5194/egusphere-2024-2713, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We develop a modeling framework to predict future ozone concentrations (till 2060s) in China following an IPCC scenario. We further evaluate and separate the contributions of climatic, anthropogenic, and biogenic factors by season and region. We find persistent emission controls will alter the nonlinear response of ozone to its precursors, and dominate the declining ozone level. The outcomes highlight the importance of human actions even with a climate penalty on air quality in the future.
Mingrui Ma, Jiachen Cao, Dan Tong, Bo Zheng, and Yu Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-1769, https://doi.org/10.5194/egusphere-2024-1769, 2024
Short summary
Short summary
We combined two global climate change pathways and three national emission control scenarios to analyze the future evolution of Nr deposition till 2060s in China with air quality modeling. We demonstrate China’s clean air and carbon neutrality policies would overcome the adverse effect of climate change and efficiently reduce Nr deposition. The outflow of Nr fluxes from mainland China to West Pacific would also be clearly reduced from continuous stringent emission controls.
Nana Wu, Guannan Geng, Ruochong Xu, Shigan Liu, Xiaodong Liu, Qinren Shi, Ying Zhou, Yu Zhao, Huan Liu, Yu Song, Junyu Zheng, Qiang Zhang, and Kebin He
Earth Syst. Sci. Data, 16, 2893–2915, https://doi.org/10.5194/essd-16-2893-2024, https://doi.org/10.5194/essd-16-2893-2024, 2024
Short summary
Short summary
The commonly used method for developing large-scale air pollutant emission datasets for China faces challenges due to limited availability of detailed parameter information. In this study, we develop an efficient integrated framework to gather such information by harmonizing seven heterogeneous inventories from five research institutions. Emission characterizations are analyzed and validated, demonstrating that the dataset provides more accurate emission magnitudes and spatiotemporal patterns.
Wenxin Zhao, Yu Zhao, Yu Zheng, Dong Chen, Jinyuan Xin, Kaitao Li, Huizheng Che, Zhengqiang Li, Mingrui Ma, and Yun Hang
Atmos. Chem. Phys., 24, 6593–6612, https://doi.org/10.5194/acp-24-6593-2024, https://doi.org/10.5194/acp-24-6593-2024, 2024
Short summary
Short summary
We evaluate the long-term (2000–2020) variabilities of aerosol absorption optical depth, black carbon emissions, and associated health risks in China with an integrated framework that combines multiple observations and modeling techniques. We demonstrate the remarkable emission abatement resulting from the implementation of national pollution controls and show how human activities affected the emissions with a spatiotemporal heterogeneity, thus supporting differentiated policy-making by region.
Jiachen Cao, Xu Yue, and Mingrui Ma
Atmos. Chem. Phys., 24, 3973–3987, https://doi.org/10.5194/acp-24-3973-2024, https://doi.org/10.5194/acp-24-3973-2024, 2024
Short summary
Short summary
We implemented two widely used ozone damage schemes into a same regional model. Although the two schemes yielded distinct ozone vegetation damages, they predicted similar feedbacks to surface air temperature and ozone air quality in China. Our results highlighted the significance of ozone pollution control given its detrimental impacts on ecosystem functions, contributions to global warming, and amplifications of ozone pollution through ozone–vegetation coupling.
Chen Gu, Lei Zhang, Zidie Xu, Sijia Xia, Yutong Wang, Li Li, Zeren Wang, Qiuyue Zhao, Hanying Wang, and Yu Zhao
Atmos. Chem. Phys., 23, 4247–4269, https://doi.org/10.5194/acp-23-4247-2023, https://doi.org/10.5194/acp-23-4247-2023, 2023
Short summary
Short summary
We demonstrated the development of a high-resolution emission inventory and its application to evaluate the effectiveness of emission control actions, by incorporating the improved methodology, the best available data, and air quality modeling. We show that substantial efforts for emission controls indeed played an important role in air quality improvement even with worsened meteorological conditions and that the contributions of individual measures to emission reduction were greatly changing.
Chuanhua Ren, Xin Huang, Tengyu Liu, Yu Song, Zhang Wen, Xuejun Liu, Aijun Ding, and Tong Zhu
Geosci. Model Dev., 16, 1641–1659, https://doi.org/10.5194/gmd-16-1641-2023, https://doi.org/10.5194/gmd-16-1641-2023, 2023
Short summary
Short summary
Ammonia in the atmosphere has wide impacts on the ecological environment and air quality, and its emission from soil volatilization is highly sensitive to meteorology, making it challenging to be well captured in models. We developed a dynamic emission model capable of calculating ammonia emission interactively with meteorological and soil conditions. Such a coupling of soil emission with meteorology provides a better understanding of ammonia emission and its contribution to atmospheric aerosol.
Pu Liu, Jia Ding, Lei Liu, Wen Xu, and Xuejun Liu
Atmos. Chem. Phys., 22, 9099–9110, https://doi.org/10.5194/acp-22-9099-2022, https://doi.org/10.5194/acp-22-9099-2022, 2022
Short summary
Short summary
Ammonia (NH3) is the important alkaline gas and the key component of fine particulate matter. We used satellite-based observations to analyze the changes in hourly NH3 concentrations and estimated surface NH3 concentrations and NH3 emissions in China. This study shows enormous potential for using satellite data to estimate surface NH3 concentrations and NH3 emissions and provides an important reference for understanding NH3 variation in China.
Fanlei Meng, Yibo Zhang, Jiahui Kang, Mathew R. Heal, Stefan Reis, Mengru Wang, Lei Liu, Kai Wang, Shaocai Yu, Pengfei Li, Jing Wei, Yong Hou, Ying Zhang, Xuejun Liu, Zhenling Cui, Wen Xu, and Fusuo Zhang
Atmos. Chem. Phys., 22, 6291–6308, https://doi.org/10.5194/acp-22-6291-2022, https://doi.org/10.5194/acp-22-6291-2022, 2022
Short summary
Short summary
PM2.5 pollution is a pressing environmental issue threatening human health and food security globally. We combined a meta-analysis of nationwide measurements and air quality modeling to identify efficiency gains by striking a balance between controlling NH3 and acid gas emissions. Persistent secondary inorganic aerosol pollution in China is limited by acid gas emissions, while an additional control on NH3 emissions would become more important as reductions in SO2 and NOx emissions progress.
Dianyi Li, Drew Shindell, Dian Ding, Xiao Lu, Lin Zhang, and Yuqiang Zhang
Atmos. Chem. Phys., 22, 2625–2638, https://doi.org/10.5194/acp-22-2625-2022, https://doi.org/10.5194/acp-22-2625-2022, 2022
Short summary
Short summary
In this study, we applied chemical transport model simulation with the latest annual anthropogenic emission inventory to study the long-term trend of ozone-induced crop production losses from 2010 to 2017 in China. We find that overall the ozone-induced crop production loss in China is significant and the annual average economic losses for wheat, rice, maize, and soybean in China are USD 9.55 billion, USD 8.53 billion, USD 2.23 billion, and USD 1.16 billion respectively, over the 8 years.
Haiyue Tan, Lin Zhang, Xiao Lu, Yuanhong Zhao, Bo Yao, Robert J. Parker, and Hartmut Boesch
Atmos. Chem. Phys., 22, 1229–1249, https://doi.org/10.5194/acp-22-1229-2022, https://doi.org/10.5194/acp-22-1229-2022, 2022
Short summary
Short summary
Methane is the second most important anthropogenic greenhouse gas. Understanding methane emissions and concentration growth over China in the past decade is important to support its mitigation. This study analyzes the contributions of methane emissions from different regions and sources over the globe to methane changes over China in 2007–2018. Our results show strong international transport influences and emphasize the need of intensive methane measurements covering eastern China.
Ruqian Miao, Qi Chen, Manish Shrivastava, Youfan Chen, Lin Zhang, Jianlin Hu, Yan Zheng, and Keren Liao
Atmos. Chem. Phys., 21, 16183–16201, https://doi.org/10.5194/acp-21-16183-2021, https://doi.org/10.5194/acp-21-16183-2021, 2021
Short summary
Short summary
We apply process-based and observation-constrained schemes to simulate organic aerosol in China and conduct comprehensive model–observation comparisons. The results show that anthropogenic semivolatile and intermediate-volatility organic compounds (SVOCs and IVOCs) are the main sources of secondary organic aerosol (SOA) in polluted regions, for which the residential sector is perhaps the predominant contributor. The hydroxyl radical level is also important for SOA modeling in polluted regions.
Yadong Lei, Xu Yue, Hong Liao, Lin Zhang, Yang Yang, Hao Zhou, Chenguang Tian, Cheng Gong, Yimian Ma, Lan Gao, and Yang Cao
Atmos. Chem. Phys., 21, 11531–11543, https://doi.org/10.5194/acp-21-11531-2021, https://doi.org/10.5194/acp-21-11531-2021, 2021
Short summary
Short summary
We present the first estimate of ozone enhancement by fire emissions through ozone–vegetation interactions using a fully coupled chemistry–vegetation model (GC-YIBs). In fire-prone areas, fire-induced ozone causes a positive feedback to surface ozone mainly because of the inhibition effects on stomatal conductance.
Zixun Chen, Xuejun Liu, Xiaoqing Cui, Yaowen Han, Guoan Wang, and Jiazhu Li
Biogeosciences, 18, 2859–2870, https://doi.org/10.5194/bg-18-2859-2021, https://doi.org/10.5194/bg-18-2859-2021, 2021
Short summary
Short summary
δ13C in plants is a sensitive long-term indicator of physiological acclimatization. The present study suggests that precipitation change and increasing atmospheric N deposition have little impact on δ13C of H. ammodendron, a dominant plant in central Asian deserts, but affect its gas exchange. In addition, this study shows that δ13C of H. ammodendron could not indicate its water use efficiency (WUE), suggesting that whether δ13C of C4 plants indicates WUE is species-specific.
Youwen Sun, Hao Yin, Cheng Liu, Lin Zhang, Yuan Cheng, Mathias Palm, Justus Notholt, Xiao Lu, Corinne Vigouroux, Bo Zheng, Wei Wang, Nicholas Jones, Changong Shan, Min Qin, Yuan Tian, Qihou Hu, Fanhao Meng, and Jianguo Liu
Atmos. Chem. Phys., 21, 6365–6387, https://doi.org/10.5194/acp-21-6365-2021, https://doi.org/10.5194/acp-21-6365-2021, 2021
Short summary
Short summary
This study mapped the drivers of HCHO variability from 2015 to 2019 over eastern China. Hydroxyl (OH) radical production rates from HCHO photolysis were evaluated. The relative contributions of emitted and photochemical sources to the observed HCHO abundance were analyzed. Contributions of various emission sources and geographical regions to the observed HCHO summertime enhancements were determined.
Pooja V. Pawar, Sachin D. Ghude, Chinmay Jena, Andrea Móring, Mark A. Sutton, Santosh Kulkarni, Deen Mani Lal, Divya Surendran, Martin Van Damme, Lieven Clarisse, Pierre-François Coheur, Xuejun Liu, Gaurav Govardhan, Wen Xu, Jize Jiang, and Tapan Kumar Adhya
Atmos. Chem. Phys., 21, 6389–6409, https://doi.org/10.5194/acp-21-6389-2021, https://doi.org/10.5194/acp-21-6389-2021, 2021
Short summary
Short summary
In this study, simulations of atmospheric ammonia (NH3) with MOZART-4 and HTAP-v2 are compared with satellite (IASI) and ground-based measurements to understand the spatial and temporal variability of NH3 over two emission hotspot regions of Asia, the IGP and the NCP. Our simulations indicate that the formation of ammonium aerosols is quicker over the NCP than the IGP, leading to smaller NH3 columns over the higher NH3-emitting NCP compared to the IGP region for comparable emissions.
Yan Zhang, Yu Zhao, Meng Gao, Xin Bo, and Chris P. Nielsen
Atmos. Chem. Phys., 21, 6411–6430, https://doi.org/10.5194/acp-21-6411-2021, https://doi.org/10.5194/acp-21-6411-2021, 2021
Short summary
Short summary
We combined air quality and exposure response models to analyze the benefits for air quality and human health of China’s ultra-low emission policy in one of its most developed regions. Atmospheric observations and the air quality model were also used to demonstrate improvement of emission inventories incorporating online emission monitoring data. With implementation of the policy in both power and industrial sectors, the attributable deaths due to PM2.5 exposure are estimated to decrease 5.5 %.
Zhongjing Jiang, Jing Li, Xiao Lu, Cheng Gong, Lin Zhang, and Hong Liao
Atmos. Chem. Phys., 21, 2601–2613, https://doi.org/10.5194/acp-21-2601-2021, https://doi.org/10.5194/acp-21-2601-2021, 2021
Short summary
Short summary
This study demonstrates that the intensity of the western Pacific subtropical high (WPSH), a major synoptic pattern in the northern Pacific during summer, can induce a dipole change in surface ozone pollution over eastern China. Ozone concentration increases in the north and decreases in the south during the strong WPSH phase, and vice versa. The change in chemical processes associated with the WPSH change plays a decisive role, whereas the natural emission of ozone precursors accounts for ~ 30 %.
Yang Yang, Yu Zhao, Lei Zhang, Jie Zhang, Xin Huang, Xuefen Zhao, Yan Zhang, Mengxiao Xi, and Yi Lu
Atmos. Chem. Phys., 21, 1191–1209, https://doi.org/10.5194/acp-21-1191-2021, https://doi.org/10.5194/acp-21-1191-2021, 2021
Short summary
Short summary
We conducted new NOx emission estimation based on the satellite-derived NO2 column constraint and found reduced emissions compared to previous estimates for a developed region in east China. The subsequent improvement in air quality modeling was demonstrated based on available ground observations. With multiple emission reduction cases for various pollutants, we explored the effective control approaches for ozone and inorganic aerosol pollution.
Baozhu Ge, Syuichi Itahashi, Keiichi Sato, Danhui Xu, Junhua Wang, Fan Fan, Qixin Tan, Joshua S. Fu, Xuemei Wang, Kazuyo Yamaji, Tatsuya Nagashima, Jie Li, Mizuo Kajino, Hong Liao, Meigen Zhang, Zhe Wang, Meng Li, Jung-Hun Woo, Junichi Kurokawa, Yuepeng Pan, Qizhong Wu, Xuejun Liu, and Zifa Wang
Atmos. Chem. Phys., 20, 10587–10610, https://doi.org/10.5194/acp-20-10587-2020, https://doi.org/10.5194/acp-20-10587-2020, 2020
Short summary
Short summary
Performances of the simulated deposition for different reduced N (Nr) species in China were conducted with the Model Inter-Comparison Study for Asia. Results showed that simulated wet deposition of oxidized N was overestimated in northeastern China and underestimated in south China, but Nr was underpredicted in all regions by all models. Oxidized N has larger uncertainties than Nr, indicating that the chemical reaction process is one of the most importance factors affecting model performance.
Dong Chen, Yu Zhao, Jie Zhang, Huan Yu, and Xingna Yu
Atmos. Chem. Phys., 20, 10193–10210, https://doi.org/10.5194/acp-20-10193-2020, https://doi.org/10.5194/acp-20-10193-2020, 2020
Short summary
Short summary
We studied the characteristics and sources of aerosol scattering for Nanjing. The method of aerosol scattering estimation was optimized based on field measurements, and the impacts of aerosol size and composition were quantified. To explore the reasons for the reduced visibility, source apportionment of aerosol scattering was conducted by pollution level. This work stressed the linkage between aerosols and visibility and improved the understanding of emissions and their role in air quality.
Xiao Lu, Lin Zhang, Tongwen Wu, Michael S. Long, Jun Wang, Daniel J. Jacob, Fang Zhang, Jie Zhang, Sebastian D. Eastham, Lu Hu, Lei Zhu, Xiong Liu, and Min Wei
Geosci. Model Dev., 13, 3817–3838, https://doi.org/10.5194/gmd-13-3817-2020, https://doi.org/10.5194/gmd-13-3817-2020, 2020
Short summary
Short summary
This study presents the development and evaluation of a new climate chemistry model, BCC-GEOS-Chem v1.0, which couples the GEOS-Chem chemical transport model as an atmospheric chemistry component in the Beijing Climate Center atmospheric general circulation model. A 3-year (2012–2014) simulation of BCC-GEOS-Chem v1.0 shows that the model captures well the spatiotemporal distributions of tropospheric ozone, other gaseous pollutants, and aerosols.
Lei Liu, Xiuying Zhang, Wen Xu, Xuejun Liu, Xuehe Lu, Jing Wei, Yi Li, Yuyu Yang, Zhen Wang, and Anthony Y. H. Wong
Atmos. Chem. Phys., 20, 8641–8658, https://doi.org/10.5194/acp-20-8641-2020, https://doi.org/10.5194/acp-20-8641-2020, 2020
Short summary
Short summary
Excessive atmospheric reactive nitrogen (Nr) deposition can cause a series of negative effects. Thus, it is necessary to accurately estimate Nr deposition to evaluate its impact on the ecosystems and environment. Scientists attempted to estimate surface Nr concentration and deposition using satellite retrievals. We give a thorough review of recent advances in estimating surface Nr concentration and deposition using satellite retrievals of NO2 and NH3 and summarize the existing challenges.
Haipeng Lin, Xu Feng, Tzung-May Fu, Heng Tian, Yaping Ma, Lijuan Zhang, Daniel J. Jacob, Robert M. Yantosca, Melissa P. Sulprizio, Elizabeth W. Lundgren, Jiawei Zhuang, Qiang Zhang, Xiao Lu, Lin Zhang, Lu Shen, Jianping Guo, Sebastian D. Eastham, and Christoph A. Keller
Geosci. Model Dev., 13, 3241–3265, https://doi.org/10.5194/gmd-13-3241-2020, https://doi.org/10.5194/gmd-13-3241-2020, 2020
Short summary
Short summary
Online coupling of meteorology and chemistry models often presents maintenance issues with hard-wired coding. We present WRF-GC, an one-way online coupling of the WRF meteorological model and GEOS-Chem atmospheric chemistry model for regional atmospheric chemistry and air quality modeling. Our coupling structure allows future versions of either parent model to be immediately integrated into WRF-GC. The WRF-GC model was able to well reproduce regional PM2.5 with greater computational efficiency.
Youwen Sun, Cheng Liu, Lin Zhang, Mathias Palm, Justus Notholt, Hao Yin, Corinne Vigouroux, Erik Lutsch, Wei Wang, Changong Shan, Thomas Blumenstock, Tomoo Nagahama, Isamu Morino, Emmanuel Mahieu, Kimberly Strong, Bavo Langerock, Martine De Mazière, Qihou Hu, Huifang Zhang, Christof Petri, and Jianguo Liu
Atmos. Chem. Phys., 20, 5437–5456, https://doi.org/10.5194/acp-20-5437-2020, https://doi.org/10.5194/acp-20-5437-2020, 2020
Short summary
Short summary
We present multiyear time series of ground-based Fourier-transform infrared spectroscopy measurements of HCN in densely populated eastern China. The seasonality and interannual variability of tropospheric HCN columns were investigated. The potential sources that drive the observed HCN seasonality and interannual variability were determined using a GEOS-Chem tagged CO simulation, global fire maps, and potential source contribution function values calculated using HYSPLIT back trajectories.
Yu Zhao, Mengchen Yuan, Xin Huang, Feng Chen, and Jie Zhang
Atmos. Chem. Phys., 20, 4275–4294, https://doi.org/10.5194/acp-20-4275-2020, https://doi.org/10.5194/acp-20-4275-2020, 2020
Short summary
Short summary
We estimated the ammonia emissions based on the constant emission factors and those characterizing the agricultural processes for the Yangtze River Delta, China. The discrepancies between the two estimates and their causes were analyzed. Based on ground and satellite observations, the two estimates were evaluated with air quality modeling. This work indicates ways to improve the emission estimation and helps better understand the necessity of multi-pollutant control strategy.
Archana Dayalu, J. William Munger, Yuxuan Wang, Steven C. Wofsy, Yu Zhao, Thomas Nehrkorn, Chris Nielsen, Michael B. McElroy, and Rachel Chang
Atmos. Chem. Phys., 20, 3569–3588, https://doi.org/10.5194/acp-20-3569-2020, https://doi.org/10.5194/acp-20-3569-2020, 2020
Short summary
Short summary
China has pledged to reduce carbon dioxide emissions per unit GDP by 60–65 % relative to 2005 levels, and to peak carbon emissions overall by 2030. Disagreement among available inventories of Chinese emissions makes it difficult for China to track progress toward its goals and evaluate the efficacy of regional control measures. This study uses a unique set of historical atmospheric observations for the key period from 2005 to 2009 to independently evaluate three different CO2 emission estimates.
Yadong Lei, Xu Yue, Hong Liao, Cheng Gong, and Lin Zhang
Geosci. Model Dev., 13, 1137–1153, https://doi.org/10.5194/gmd-13-1137-2020, https://doi.org/10.5194/gmd-13-1137-2020, 2020
Short summary
Short summary
We coupled a dynamic vegetation model YIBs with the chemical transport model GEOS-Chem to develop a new tool for studying interactions between atmospheric chemistry and biosphere. Within this framework, leaf area index and stomatal conductance are predicted for chemical simulations. In turn, surface ozone causes negative impacts to plant growth and the consequent dry deposition. Such interactions are important for air pollution prediction but ignored in most of current chemical models.
Tongwen Wu, Fang Zhang, Jie Zhang, Weihua Jie, Yanwu Zhang, Fanghua Wu, Laurent Li, Jinghui Yan, Xiaohong Liu, Xiao Lu, Haiyue Tan, Lin Zhang, Jun Wang, and Aixue Hu
Geosci. Model Dev., 13, 977–1005, https://doi.org/10.5194/gmd-13-977-2020, https://doi.org/10.5194/gmd-13-977-2020, 2020
Short summary
Short summary
This paper describes the first version of the Beijing Climate Center (BCC) fully coupled Earth System Model with interactive atmospheric chemistry and aerosols (BCC-ESM1). It is one of the models at the BCC for the Coupled Model Intercomparison Project Phase 6 (CMIP6). The CMIP6 Aerosol Chemistry Model Intercomparison Project (AerChemMIP) experiment using BCC-ESM1 has been finished. The evaluations show an overall good agreement between BCC-ESM1 simulations and observations in the 20th century.
Lei Zhang, Peisheng Zhou, Shuzhen Cao, and Yu Zhao
Atmos. Chem. Phys., 19, 15587–15608, https://doi.org/10.5194/acp-19-15587-2019, https://doi.org/10.5194/acp-19-15587-2019, 2019
Short summary
Short summary
One of the most important processes in the global mercury biogeochemical cycling is the deposition of atmospheric mercury to the land surfaces. In this paper, results of wet, dry, and forest Hg deposition from global observation networks, individual monitoring studies, and observation-based simulations are reviewed. Uncertainties in the observation and simulation of global speciated atmospheric Hg deposition to the land surfaces are systemically estimated.
Y. Yang, Y. Zhao, and L. Zhang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W9, 211–217, https://doi.org/10.5194/isprs-archives-XLII-3-W9-211-2019, https://doi.org/10.5194/isprs-archives-XLII-3-W9-211-2019, 2019
Lei Liu, Xiuying Zhang, Anthony Y. H. Wong, Wen Xu, Xuejun Liu, Yi Li, Huan Mi, Xuehe Lu, Limin Zhao, Zhen Wang, Xiaodi Wu, and Jing Wei
Atmos. Chem. Phys., 19, 12051–12066, https://doi.org/10.5194/acp-19-12051-2019, https://doi.org/10.5194/acp-19-12051-2019, 2019
Short summary
Short summary
Agricultural production has greatly increased emissions of ammonia (NH3) to the atmosphere. Sparse measurements of surface NH3 concentrations make it challenging and difficult to understand the global distribution of surface NH3 concentrations in both time and space. Estimating surface NH3 concentrations is critically important for modeling the dry deposition of NH3, which has important impacts on the natural environment. This paper provides the satellite-based global assessment of surface NH3.
Xiao Lu, Lin Zhang, Youfan Chen, Mi Zhou, Bo Zheng, Ke Li, Yiming Liu, Jintai Lin, Tzung-May Fu, and Qiang Zhang
Atmos. Chem. Phys., 19, 8339–8361, https://doi.org/10.5194/acp-19-8339-2019, https://doi.org/10.5194/acp-19-8339-2019, 2019
Short summary
Short summary
Severe and deteriorating surface ozone pollution over major Chinese cities has become an emerging environmental concern in China. This study assesses the source contributions (including anthropogenic, background, and individual natural sources) and meteorological influences of surface ozone over China in 2016–2017 using the GEOS-Chem chemical transport model at high horizontal resolution with the most up-to-date Chinese anthropogenic emission inventory.
Jingyuan Shao, Qianjie Chen, Yuxuan Wang, Xiao Lu, Pengzhen He, Yele Sun, Viral Shah, Randall V. Martin, Sajeev Philip, Shaojie Song, Yue Zhao, Zhouqing Xie, Lin Zhang, and Becky Alexander
Atmos. Chem. Phys., 19, 6107–6123, https://doi.org/10.5194/acp-19-6107-2019, https://doi.org/10.5194/acp-19-6107-2019, 2019
Short summary
Short summary
Sulfate is a key species contributing to particle formation and growth during wintertime Chinese haze events. This study combines observations and modeling of oxygen isotope signatures in sulfate aerosol to investigate its formation mechanisms, with a focus on heterogeneous production on aerosol surface via H2O2, O3, and NO2 and trace metal catalyzed oxidation. Contributions from different formation pathways are presented.
Zhenying Xu, Mingxu Liu, Minsi Zhang, Yu Song, Shuxiao Wang, Lin Zhang, Tingting Xu, Tiantian Wang, Caiqing Yan, Tian Zhou, Yele Sun, Yuepeng Pan, Min Hu, Mei Zheng, and Tong Zhu
Atmos. Chem. Phys., 19, 5605–5613, https://doi.org/10.5194/acp-19-5605-2019, https://doi.org/10.5194/acp-19-5605-2019, 2019
Xuefen Zhao, Yu Zhao, Dong Chen, Chunyan Li, and Jie Zhang
Atmos. Chem. Phys., 19, 2095–2113, https://doi.org/10.5194/acp-19-2095-2019, https://doi.org/10.5194/acp-19-2095-2019, 2019
Short summary
Short summary
This work captured the changes in black carbon (BC) emissions from tightened pollution controls in a city cluster in eastern China through a top-down approach that incorporated available ground observations, a chemistry transport model, and a multiple regression model. The uncertainty from the a priori emission input and wet deposition was evaluated to be moderate. More ground measurements with better spatiotemporal coverage were recommended for constraining BC emissions effectively.
Yang Yang and Yu Zhao
Atmos. Chem. Phys., 19, 327–348, https://doi.org/10.5194/acp-19-327-2019, https://doi.org/10.5194/acp-19-327-2019, 2019
Short summary
Short summary
We estimated and evaluated the air pollutant emissions from open biomass burning in the Yangtze River Delta with three methods. Chemistry transport modeling indicated that the constraining method provided the best emissions. The traditional bottom-up method could often overestimate emissions and could hardly track their interannual trends. The emissions based on fire radiative power might be underestimated, which is attributed to the satellite detection limit on small fires.
Mingxu Liu, Xin Huang, Yu Song, Tingting Xu, Shuxiao Wang, Zhijun Wu, Min Hu, Lin Zhang, Qiang Zhang, Yuepeng Pan, Xuejun Liu, and Tong Zhu
Atmos. Chem. Phys., 18, 17933–17943, https://doi.org/10.5194/acp-18-17933-2018, https://doi.org/10.5194/acp-18-17933-2018, 2018
Yangyang Zhang, Aohan Tang, Dandan Wang, Qingqing Wang, Katie Benedict, Lin Zhang, Duanyang Liu, Yi Li, Jeffrey L. Collett Jr., Yele Sun, and Xuejun Liu
Atmos. Chem. Phys., 18, 16385–16398, https://doi.org/10.5194/acp-18-16385-2018, https://doi.org/10.5194/acp-18-16385-2018, 2018
Short summary
Short summary
Our study is the first to continually monitor the vertical concentration profile of NH3 in urban Beijing. Weekly concentrations averaged 13.3 ± 4.8 μg m−3. The highest NH3 concentrations were always observed between 32 and 63 m, decreasing toward the surface and toward higher altitudes. Our results demonstrate a NH3 rich atmosphere in urban Beijing, from the ground to at least 320 m. Regional transport from the south (intensive agricultural regions) contributed high NH3 concentrations in Beijing.
Archana Dayalu, J. William Munger, Steven C. Wofsy, Yuxuan Wang, Thomas Nehrkorn, Yu Zhao, Michael B. McElroy, Chris P. Nielsen, and Kristina Luus
Biogeosciences, 15, 6713–6729, https://doi.org/10.5194/bg-15-6713-2018, https://doi.org/10.5194/bg-15-6713-2018, 2018
Short summary
Short summary
Accounting for the vegetation signal is critical for comprehensive CO2 budget assessment in China. We model and evaluate hourly vegetation carbon dioxide (CO2) exchange (mass per unit area per unit time) in northern China from 2005 to 2009. The model is driven by satellite and meteorological data, is linked to ground-level ecosystem observations, and is applicable to other time periods. We find vegetation uptake of CO2 in summer is comparable to emissions from fossil fuels in northern China.
Hansen Cao, Tzung-May Fu, Lin Zhang, Daven K. Henze, Christopher Chan Miller, Christophe Lerot, Gonzalo González Abad, Isabelle De Smedt, Qiang Zhang, Michel van Roozendael, François Hendrick, Kelly Chance, Jie Li, Junyu Zheng, and Yuanhong Zhao
Atmos. Chem. Phys., 18, 15017–15046, https://doi.org/10.5194/acp-18-15017-2018, https://doi.org/10.5194/acp-18-15017-2018, 2018
Short summary
Short summary
Our top-down estimates for annual total Chinese NMVOC emissions was 30.7 to 49.5 Tg y−1, including 16.4 to 23.6 Tg y−1 from anthropogenic sources, 12.2 to 22.8 Tg y−1 from biogenic sources, and 2.08 to 3.13 Tg y−1 from biomass burning. Our four inversions consistently showed that the emissions of Chinese anthropogenic NMVOC precursors of glyoxal were larger than the a priori estimates. The glyoxal and formaldehyde constraints helped distinguish the NMVOC species from different sources.
Archana Dayalu, J. William Munger, Yuxuan Wang, Steven C. Wofsy, Yu Zhao, Thomas Nehrkorn, Chris Nielsen, Michael B. McElroy, and Rachel Chang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-632, https://doi.org/10.5194/acp-2018-632, 2018
Revised manuscript not accepted
Short summary
Short summary
China has pledged reduction of carbon dioxide emissions per unit GDP by 60–65 % relative to 2005 levels, and to peak carbon emissions overall by 2030. Disagreement among available inventories of Chinese emissions makes it difficult for China to track progress toward its goals and evaluate the efficacy of regional control measures. This study uses a unique set of historical atmospheric observations for the key period from 2005–2009 to independently evaluate three different CO2 emissions estimates.
Wen Xu, Lei Liu, Miaomiao Cheng, Yuanhong Zhao, Lin Zhang, Yuepeng Pan, Xiuming Zhang, Baojing Gu, Yi Li, Xiuying Zhang, Jianlin Shen, Li Lu, Xiaosheng Luo, Yu Zhao, Zhaozhong Feng, Jeffrey L. Collett Jr., Fusuo Zhang, and Xuejun Liu
Atmos. Chem. Phys., 18, 10931–10954, https://doi.org/10.5194/acp-18-10931-2018, https://doi.org/10.5194/acp-18-10931-2018, 2018
Short summary
Short summary
Our main results demonstrate that atmospheric Nr pollution in eastern China is more serious in the northern region than in the southern region. Any effects of current emission controls are not yet apparent in Nr pollution. NH3 emissions from fertilizer use were the largest contributor (36 %) to total inorganic Nr deposition. Our results provide useful information for policy-makers that mitigation of NH3 emissions should be a priority to tackle serious N deposition.
Jennifer Kaiser, Daniel J. Jacob, Lei Zhu, Katherine R. Travis, Jenny A. Fisher, Gonzalo González Abad, Lin Zhang, Xuesong Zhang, Alan Fried, John D. Crounse, Jason M. St. Clair, and Armin Wisthaler
Atmos. Chem. Phys., 18, 5483–5497, https://doi.org/10.5194/acp-18-5483-2018, https://doi.org/10.5194/acp-18-5483-2018, 2018
Short summary
Short summary
Isoprene emissions from vegetation have a large effect on atmospheric chemistry and air quality. Here we use the adjoint of GEOS-Chem in an inversion of OMI formaldehyde observations to produce top-down estimates of isoprene emissions in the southeast US during the summer of 2013. We find that MEGAN v2.1 is biased high on average by 40 %. Our downward correction of isoprene emissions leads to a small reduction in modeled surface O3 and decreases the contribution of isoprene to organic aerosol.
Ping Yue, Xiaoqing Cui, Yanming Gong, Kaihui Li, Keith Goulding, and Xuejun Liu
Biogeosciences, 15, 2007–2019, https://doi.org/10.5194/bg-15-2007-2018, https://doi.org/10.5194/bg-15-2007-2018, 2018
Short summary
Short summary
Precipitation and N deposition significantly increased Rs, but warming decreased Rs, which depended mainly on the variation of soil moisture. The interactive response of Rs to combinations of the factors was much less than that of any single factor, and the interactions of multiple factors largely reduced between-year variation of Rs more than any single factor, suggesting that the carbon cycle in temperate deserts could be profoundly influenced by positive carbon–climate feedbacks.
Xiao Lu, Lin Zhang, Xiong Liu, Meng Gao, Yuanhong Zhao, and Jingyuan Shao
Atmos. Chem. Phys., 18, 3101–3118, https://doi.org/10.5194/acp-18-3101-2018, https://doi.org/10.5194/acp-18-3101-2018, 2018
Short summary
Short summary
Deteriorating tropospheric ozone pollution over India may not only affect local human health and vegetation but also perturb global ozone distribution. This study analyzes the processes controlling lower tropospheric ozone over India using OMI satellite observations (2006–2014) and model simulations (1990–2010). We show that the South Asian monsoon largely controls the seasonal cycle and interannual variability of Indian lower tropospheric ozone via changes in ozone production and transport.
Lin Zhang, Youfan Chen, Yuanhong Zhao, Daven K. Henze, Liye Zhu, Yu Song, Fabien Paulot, Xuejun Liu, Yuepeng Pan, Yi Lin, and Binxiang Huang
Atmos. Chem. Phys., 18, 339–355, https://doi.org/10.5194/acp-18-339-2018, https://doi.org/10.5194/acp-18-339-2018, 2018
Short summary
Short summary
Substantial differences exist in current estimates of agricultural ammonia emissions in China, hindering understanding of their environmental consequences. This study applies both bottom-up and top-down methods to better quantify agricultural ammonia sources in China using observations from satellite and surface networks interpreted by a chemical transport model. Our estimate of annual Chinese anthropogenic ammonia emission is 11.7 tg (teragram) for 2008 with a strong seasonality peak in summer.
Hongyan Zhao, Xin Li, Qiang Zhang, Xujia Jiang, Jintai Lin, Glen P. Peters, Meng Li, Guannan Geng, Bo Zheng, Hong Huo, Lin Zhang, Haikun Wang, Steven J. Davis, and Kebin He
Atmos. Chem. Phys., 17, 10367–10381, https://doi.org/10.5194/acp-17-10367-2017, https://doi.org/10.5194/acp-17-10367-2017, 2017
Short summary
Short summary
Effective and efficient control of air pollution relies upon an understanding of the pollution sources. We conduct an interdisciplinary study and find that 33 % of China’s PM2.5-related premature mortality in 2010 were caused by production emission in other regions; 56 % of the mortality was related to consumption in other regions. Multilateral and multi-stage cooperation under a regional sustainable development framework is in urgent need to mitigate air pollution and related health impacts.
Yuanhong Zhao, Lin Zhang, Amos P. K. Tai, Youfan Chen, and Yuepeng Pan
Atmos. Chem. Phys., 17, 9781–9796, https://doi.org/10.5194/acp-17-9781-2017, https://doi.org/10.5194/acp-17-9781-2017, 2017
Short summary
Short summary
Human activities have substantially enhanced atmospheric deposition of reactive nitrogen, inducing complex environmental consequences. This study presents a first quantitative investigation of how anthropogenic nitrogen deposition could impact surface ozone air quality through surface–atmosphere exchange processes. We find important surface ozone changes driven by nitrogen deposition, which can be comparable with those due to historical climate and land use changes.
Lei Liu, Xiuying Zhang, Wen Xu, Xuejun Liu, Yi Li, Xuehe Lu, Yuehan Zhang, and Wuting Zhang
Atmos. Chem. Phys., 17, 9365–9378, https://doi.org/10.5194/acp-17-9365-2017, https://doi.org/10.5194/acp-17-9365-2017, 2017
Short summary
Short summary
We conducted temporal trend analysis of atmospheric NH3 and NO2 in China since 1980 based on emission data (during 1980–2010), satellite observations (for NH3 since 2008 and for NO2 since 2005) and atmospheric chemistry transport modeling (during 2008–2015). Our findings provide an overall insight into the temporal trends in both NO2 and NH3 since 1980, and the multivariate data used in this study have implications for estimating long-term Nr deposition datasets.
Yu Zhao, Pan Mao, Yaduan Zhou, Yang Yang, Jie Zhang, Shekou Wang, Yanping Dong, Fangjian Xie, Yiyong Yu, and Wenqing Li
Atmos. Chem. Phys., 17, 7733–7756, https://doi.org/10.5194/acp-17-7733-2017, https://doi.org/10.5194/acp-17-7733-2017, 2017
Short summary
Short summary
We improve and evaluate an NMVOC emission inventory for Jiangsu. Field measurements were conducted to obtain NMVOC source profiles of typical chemical engineering processes. The emission inventory of NMVOCs with chemistry profiles was developed for 2005–2014, and the uncertainties were quantified. The discrepancies between various inventories in source profiles and spatial patterns were evaluated. A chemistry transport model was applied to test the improvement of the provincial NMVOC inventory.
Eri Saikawa, Hankyul Kim, Min Zhong, Alexander Avramov, Yu Zhao, Greet Janssens-Maenhout, Jun-ichi Kurokawa, Zbigniew Klimont, Fabian Wagner, Vaishali Naik, Larry W. Horowitz, and Qiang Zhang
Atmos. Chem. Phys., 17, 6393–6421, https://doi.org/10.5194/acp-17-6393-2017, https://doi.org/10.5194/acp-17-6393-2017, 2017
Short summary
Short summary
We analyze differences in existing air pollutant emission estimates to better understand the magnitude of emissions as well as the source regions and sectors of air pollution in China. We find large disagreements among the inventories, and we show that these differences have a significant impact on regional air quality simulations. Better understanding of air pollutant emissions at more disaggregated levels is essential for air pollution mitigation in China.
Jin Ling Lv, Andreas Buerkert, Guo Jun Liu, Chao Yan Lv, Xi Ming Zhang, Kai Hui Li, and Xue Jun Liu
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-55, https://doi.org/10.5194/bg-2017-55, 2017
Manuscript not accepted for further review
Short summary
Short summary
Very little research has been conducted to quantify atmospheric N deposition in agro-pastoral transition zones. Based on this, we chose a typical agro-pastoral transition zone in the border area of China and Mongolia and used scientific method to compare the dynamics and amounts of wet and dry N deposition in this area. This will hopefully supply the scientific evidence required to introduce more rational N application and manure management strategies for similar areas throughout central Asia.
Yaduan Zhou, Yu Zhao, Pan Mao, Qiang Zhang, Jie Zhang, Liping Qiu, and Yang Yang
Atmos. Chem. Phys., 17, 211–233, https://doi.org/10.5194/acp-17-211-2017, https://doi.org/10.5194/acp-17-211-2017, 2017
Short summary
Short summary
A high-resolution emission inventory was developed for Jiangsu, China, using the bottom-up approach. Through comparisons with other national and regional inventories, the best agreement between available ground observation and air quality simulation was found when the provincial inventory was applied. The result implied the advantage of improved emission inventory at local scale for high-resolution air quality modeling.
Jianlin Hu, Peng Wang, Qi Ying, Hongliang Zhang, Jianjun Chen, Xinlei Ge, Xinghua Li, Jingkun Jiang, Shuxiao Wang, Jie Zhang, Yu Zhao, and Yingyi Zhang
Atmos. Chem. Phys., 17, 77–92, https://doi.org/10.5194/acp-17-77-2017, https://doi.org/10.5194/acp-17-77-2017, 2017
Short summary
Short summary
An annual simulation of secondary organic aerosol (SOA) concentrations in China with updated SOA formation pathways reveals that SOA can be a significant contributor to PM2.5 in major urban areas. Summer SOA is dominated by emissions from biogenic sources, while winter SOA is dominated by anthropogenic emissions such as alkanes and aromatic compounds. Reactive surface uptake of dicarbonyls throughout the year and isoprene epoxides in summer is the most important contributor.
Wen Xu, Wei Song, Yangyang Zhang, Xuejun Liu, Lin Zhang, Yuanhong Zhao, Duanyang Liu, Aohan Tang, Daowei Yang, Dandan Wang, Zhang Wen, Yuepeng Pan, David Fowler, Jeffrey L. Collett Jr., Jan Willem Erisman, Keith Goulding, Yi Li, and Fusuo Zhang
Atmos. Chem. Phys., 17, 31–46, https://doi.org/10.5194/acp-17-31-2017, https://doi.org/10.5194/acp-17-31-2017, 2017
Short summary
Short summary
This paper evaluates the effectiveness of emission control measures implemented in Beijing during the Parade Blue period by integrating our own results, official-released data and modeling data. We demonstrate that emission control measures make a major contribution to air quality improvement in Beijing and surrounding regions. We conclude a joint local and regional control of secondary aerosol precursors to be key to curbing air pollution in Beijing.
Hui Zhong, Yu Zhao, Marilena Muntean, Lei Zhang, and Jie Zhang
Atmos. Chem. Phys., 16, 15119–15134, https://doi.org/10.5194/acp-16-15119-2016, https://doi.org/10.5194/acp-16-15119-2016, 2016
Short summary
Short summary
A better understanding of the discrepancies in multi-scale emission inventories could provide indications for their limitations and further improvements. We develop a bottom-up inventory of Hg emissions for Jiangsu, China. Compared to the national and global inventories, the largest total Hg emissions and fraction of Hg2+ are estimated. The crucial parameters responsible for the differences include Hg contents in coals/materials, abatement rates of emission control devices, and activity levels.
Xiao Lu, Lin Zhang, Xu Yue, Jiachen Zhang, Daniel A. Jaffe, Andreas Stohl, Yuanhong Zhao, and Jingyuan Shao
Atmos. Chem. Phys., 16, 14687–14702, https://doi.org/10.5194/acp-16-14687-2016, https://doi.org/10.5194/acp-16-14687-2016, 2016
Short summary
Short summary
Increasing wildfire activities in the mountainous western US may present a challenge for the region to attain a recently revised ozone air quality standard in summer. We quantify the wildfire influence on the ozone variability, trends, and number of high ozone days over this region in summers 1989–2010 using a Lagrangian dispersion model and statistical regression models.
Yunhua Chang, Xuejun Liu, Congrui Deng, Anthony J. Dore, and Guoshun Zhuang
Atmos. Chem. Phys., 16, 11635–11647, https://doi.org/10.5194/acp-16-11635-2016, https://doi.org/10.5194/acp-16-11635-2016, 2016
Short summary
Short summary
First, we establish a pool of isotopic signatures (δ15N–NH3) for the major NH3 emission sources in China. Second, we demonstrated that the isotopic source signatures of NH3 represent an emerging tool for partitioning NH3 sources in urban atmospheres.
Enzai Du, Wim de Vries, Wenxuan Han, Xuejun Liu, Zhengbing Yan, and Yuan Jiang
Atmos. Chem. Phys., 16, 8571–8579, https://doi.org/10.5194/acp-16-8571-2016, https://doi.org/10.5194/acp-16-8571-2016, 2016
Short summary
Short summary
Accelerated N emissions in China may lead to an imbalance of atmospheric nutrient inputs in various ecosystems. Our assessment of P and N deposition in China's forests showed relatively high rates of P deposition, but they were accompanied by even much higher N deposition, resulting in high N : P deposition ratios. P and N deposition both showed a power-law increase with closer distance to the nearest large cities. Our results suggest an anthropogenic imbalance of regional N and P cycling.
Min Zhong, Eri Saikawa, Yang Liu, Vaishali Naik, Larry W. Horowitz, Masayuki Takigawa, Yu Zhao, Neng-Huei Lin, and Elizabeth A. Stone
Geosci. Model Dev., 9, 1201–1218, https://doi.org/10.5194/gmd-9-1201-2016, https://doi.org/10.5194/gmd-9-1201-2016, 2016
Short summary
Short summary
Large discrepancies exist among emission inventories (e.g., REAS and EDGAR) at the provincial level in China. We use WRF-Chem to evaluate the impact of the difference in existing emission inventories and find that emissions inputs significantly affect our air pollutant simulation results. Our study highlights the importance of constraining emissions at the provincial level for regional air quality modeling over East Asia.
Yaning Kang, Mingxu Liu, Yu Song, Xin Huang, Huan Yao, Xuhui Cai, Hongsheng Zhang, Ling Kang, Xuejun Liu, Xiaoyuan Yan, Hong He, Qiang Zhang, Min Shao, and Tong Zhu
Atmos. Chem. Phys., 16, 2043–2058, https://doi.org/10.5194/acp-16-2043-2016, https://doi.org/10.5194/acp-16-2043-2016, 2016
Short summary
Short summary
The multi-year (1980–2012) comprehensive ammonia emissions inventories were compiled for China on 1 km × 1 km grid.
Various realistic parameters (ambient temperature, wind speed, soil acidity, synthetic fertilizer types, etc.) were considered in these inventories to synthetically refine the emission factors of ammonia volatilization according to local agricultural practice.
This paper shows the interannual trend and spatial distribution of ammonia emissions in details over recent decades.
Y. Zhao, L. P. Qiu, R. Y. Xu, F. J. Xie, Q. Zhang, Y. Y. Yu, C. P. Nielsen, H. X. Qin, H. K. Wang, X. C. Wu, W. Q. Li, and J. Zhang
Atmos. Chem. Phys., 15, 12623–12644, https://doi.org/10.5194/acp-15-12623-2015, https://doi.org/10.5194/acp-15-12623-2015, 2015
Short summary
Short summary
A high-resolution emission inventory of air pollutants and CO2 for Nanjing, a typical city in eastern China, is developed, incorporating the best available local information from on-site surveys. The temporal and spatial distribution of the emissions and the correlation between specific species of the inventory are assessed by comparisons with observations and other inventories at larger spatial scale. The emission inventory provides a basis to consider the quality of instrumental observations.
W. Xu, X. S. Luo, Y. P. Pan, L. Zhang, A. H. Tang, J. L. Shen, Y. Zhang, K. H. Li, Q. H. Wu, D. W. Yang, Y. Y. Zhang, J. Xue, W. Q. Li, Q. Q. Li, L. Tang, S. H. Lu, T. Liang, Y. A. Tong, P. Liu, Q. Zhang, Z. Q. Xiong, X. J. Shi, L. H. Wu, W. Q. Shi, K. Tian, X. H. Zhong, K. Shi, Q. Y. Tang, L. J. Zhang, J. L. Huang, C. E. He, F. H. Kuang, B. Zhu, H. Liu, X. Jin, Y. J. Xin, X. K. Shi, E. Z. Du, A. J. Dore, S. Tang, J. L. Collett Jr., K. Goulding, Y. X. Sun, J. Ren, F. S. Zhang, and X. J. Liu
Atmos. Chem. Phys., 15, 12345–12360, https://doi.org/10.5194/acp-15-12345-2015, https://doi.org/10.5194/acp-15-12345-2015, 2015
Short summary
Short summary
The annual average concentrations (1.3-47.0µg N m-3) and dry plus wet/bulk deposition fluxes (2.9-83.3kg N ha-1 yr-1) of inorganic Nr species ranked by land use as urban > rural > background sites and by regions as north China > southeast China > southwest China > northeast China > northwest China > Tibetan Plateau, reflecting the impact of anthropogenic Nr emission. Average dry and wet/bulk N deposition fluxes were 20.6 ± 11.2 and 19.3 ± 9.2kg kg N ha-1 yr-1 across China, respectively.
Y. Zhao, L. Zhang, Y. Pan, Y. Wang, F. Paulot, and D. K. Henze
Atmos. Chem. Phys., 15, 10905–10924, https://doi.org/10.5194/acp-15-10905-2015, https://doi.org/10.5194/acp-15-10905-2015, 2015
Short summary
Short summary
Rapid Asian industrialization has led to increased atmospheric nitrogen deposition downwind. This work analyzes the sources and processes controlling atmospheric nitrogen deposition to the northwestern Pacific. Both nitrogen emissions and meteorology, largely controlled by the East Asian Monsoon, determine the seasonality of nitrogen deposition. Ascribing deposition over the marginal seas to nitrogen sources from different regions and sectors shows important contribution from fertilizer use.
H. Cui, P. Mao, Y. Zhao, C. P. Nielsen, and J. Zhang
Atmos. Chem. Phys., 15, 8657–8678, https://doi.org/10.5194/acp-15-8657-2015, https://doi.org/10.5194/acp-15-8657-2015, 2015
Short summary
Short summary
We present an emission inventory with quantified uncertainties of organic carbon (OC) and elemental carbon (EC) in China. New emission factors from local measurements lead to lower OC emissions than previous studies. We use ground observations to test the levels, trends, and spatial pattern of the emissions. The improvement over prior inventories is indicated by inter-annual comparison and correlation analysis between emissions and observations. Sources with high primary OC/EC are underestimate.
W. Tao, J. Liu, G. A. Ban-Weiss, D. A. Hauglustaine, L. Zhang, Q. Zhang, Y. Cheng, Y. Yu, and S. Tao
Atmos. Chem. Phys., 15, 8597–8614, https://doi.org/10.5194/acp-15-8597-2015, https://doi.org/10.5194/acp-15-8597-2015, 2015
Short summary
Short summary
We examine the responses of a range of meteorological and air quality indicators to the expansion of urban land using WRF/Chem. Sensitivity studies indicate that the responses of pollutant concentrations to the spatial extent of urbanization are linear near the surface but nonlinear at higher altitudes. The results of process analysis demonstrate that urban heat island circulation and a deeper boundary layer with stronger turbulent intensities play a significant role in relocating pollutants.
Y. Zhao, H. Zhong, J. Zhang, and C. P. Nielsen
Atmos. Chem. Phys., 15, 4317–4337, https://doi.org/10.5194/acp-15-4317-2015, https://doi.org/10.5194/acp-15-4317-2015, 2015
Short summary
Short summary
China’s atmospheric Hg emissions of anthropogenic origin have been effectively restrained through the national policy of air pollution control. Expansion of technologies with high energy efficiencies and air pollutant removal rates leads to a much slower growth of Hg emissions than that of energy and economy. However, increased uncertainties of Hg emissions are quantified from 2005 to 2012, attributed to the unclear operation status or small sample size of field tests on those technologies.
M. Van Damme, L. Clarisse, E. Dammers, X. Liu, J. B. Nowak, C. Clerbaux, C. R. Flechard, C. Galy-Lacaux, W. Xu, J. A. Neuman, Y. S. Tang, M. A. Sutton, J. W. Erisman, and P. F. Coheur
Atmos. Meas. Tech., 8, 1575–1591, https://doi.org/10.5194/amt-8-1575-2015, https://doi.org/10.5194/amt-8-1575-2015, 2015
Short summary
Short summary
In this study, comprehensive ground-based data sets (Europe, China, Africa and United States) are used to evaluate NH3 measurements from IASI. Global yearly and regional monthly comparisons show fair agreement, while hourly measurements are used to investigate the limitations of direct comparisons. In addition, dense airborne measurements are explored and show the highest correlation coefficients in this study. Finally, the urgent need for independent NH3 column measurements is discussed.
Y.-Y. Yan, J.-T. Lin, Y. Kuang, D. Yang, and L. Zhang
Atmos. Chem. Phys., 14, 12649–12663, https://doi.org/10.5194/acp-14-12649-2014, https://doi.org/10.5194/acp-14-12649-2014, 2014
Short summary
Short summary
Limited by coarse resolutions, global chemical transport models cannot well capture small-scale nonlinear processes. To alleviate the problem, we develop a two-way coupled system to integrate the global GEOS-Chem model and its three high-resolution nested models covering Asia, Europe and North America. Confirmed by comparisons with observations, the coupled system improves upon the global model with a 10% increase in global tropospheric CO, a 4% decrease in OH and a 4% increase in MCF lifetime.
Y. Zhao, J. Zhang, and C. P. Nielsen
Atmos. Chem. Phys., 14, 8849–8868, https://doi.org/10.5194/acp-14-8849-2014, https://doi.org/10.5194/acp-14-8849-2014, 2014
L. Zhang, D. J. Jacob, X. Yue, N. V. Downey, D. A. Wood, and D. Blewitt
Atmos. Chem. Phys., 14, 5295–5309, https://doi.org/10.5194/acp-14-5295-2014, https://doi.org/10.5194/acp-14-5295-2014, 2014
G. C. M. Vinken, K. F. Boersma, A. van Donkelaar, and L. Zhang
Atmos. Chem. Phys., 14, 1353–1369, https://doi.org/10.5194/acp-14-1353-2014, https://doi.org/10.5194/acp-14-1353-2014, 2014
R. A. Ellis, D. J. Jacob, M. P. Sulprizio, L. Zhang, C. D. Holmes, B. A. Schichtel, T. Blett, E. Porter, L. H. Pardo, and J. A. Lynch
Atmos. Chem. Phys., 13, 9083–9095, https://doi.org/10.5194/acp-13-9083-2013, https://doi.org/10.5194/acp-13-9083-2013, 2013
Y. Zhao, J. Zhang, and C. P. Nielsen
Atmos. Chem. Phys., 13, 487–508, https://doi.org/10.5194/acp-13-487-2013, https://doi.org/10.5194/acp-13-487-2013, 2013
Related subject area
Subject: Gases | Research Activity: Machine Learning | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Diagnosing ozone–NOx–VOC–aerosol sensitivity and uncovering causes of urban–nonurban discrepancies in Shandong, China, using transformer-based estimations
A machine learning approach to downscale EMEP4UK: analysis of UK ozone variability and trends
Automated detection and monitoring of methane super-emitters using satellite data
Spatiotemporal modeling of air pollutant concentrations in Germany using machine learning
Technical note: Improving the European air quality forecast of the Copernicus Atmosphere Monitoring Service using machine learning techniques
Chenliang Tao, Yanbo Peng, Qingzhu Zhang, Yuqiang Zhang, Bing Gong, Qiao Wang, and Wenxing Wang
Atmos. Chem. Phys., 24, 4177–4192, https://doi.org/10.5194/acp-24-4177-2024, https://doi.org/10.5194/acp-24-4177-2024, 2024
Short summary
Short summary
We developed a novel transformer framework to bridge the sparse surface monitoring for inferring ozone–NOx–VOC–aerosol sensitivity and their urban–nonurban discrepancies at a finer scale with implications for improving our understanding of ozone variations. The change in urban–rural disparities in ozone was dominated by PM2.5 from 2019 to 2020. An aerosol-inhibited regime on top of the two traditional NOx- and VOC-limited regimes was identified in Jiaodong Peninsula, Shandong, China.
Lily Gouldsbrough, Ryan Hossaini, Emma Eastoe, Paul J. Young, and Massimo Vieno
Atmos. Chem. Phys., 24, 3163–3196, https://doi.org/10.5194/acp-24-3163-2024, https://doi.org/10.5194/acp-24-3163-2024, 2024
Short summary
Short summary
High-resolution spatial fields of surface ozone are used to understand spikes in ozone concentration and predict their impact on public health. Such fields are routinely output from complex mathematical models for atmospheric conditions. These outputs are on a coarse spatial resolution and the highest concentrations tend to be biased. Using a novel data-driven machine learning methodology, we show how such output can be corrected to produce fields with both lower bias and higher resolution.
Berend J. Schuit, Joannes D. Maasakkers, Pieter Bijl, Gourav Mahapatra, Anne-Wil van den Berg, Sudhanshu Pandey, Alba Lorente, Tobias Borsdorff, Sander Houweling, Daniel J. Varon, Jason McKeever, Dylan Jervis, Marianne Girard, Itziar Irakulis-Loitxate, Javier Gorroño, Luis Guanter, Daniel H. Cusworth, and Ilse Aben
Atmos. Chem. Phys., 23, 9071–9098, https://doi.org/10.5194/acp-23-9071-2023, https://doi.org/10.5194/acp-23-9071-2023, 2023
Short summary
Short summary
Using two machine learning models, which were trained on TROPOMI methane satellite data, we detect 2974 methane plumes, so-called super-emitters, in 2021. We detect methane emissions globally related to urban areas or landfills, coal mining, and oil and gas production. Using our monitoring system, we identify 94 regions with frequent emissions. For 12 locations, we target high-resolution satellite instruments to enlarge and identify the exact infrastructure responsible for the emissions.
Vigneshkumar Balamurugan, Jia Chen, Adrian Wenzel, and Frank N. Keutsch
Atmos. Chem. Phys., 23, 10267–10285, https://doi.org/10.5194/acp-23-10267-2023, https://doi.org/10.5194/acp-23-10267-2023, 2023
Short summary
Short summary
In this study, machine learning models are employed to model NO2 and O3 concentrations. We employed a wide range of sources of data, including meteorological and column satellite measurements, to model NO2 and O3 concentrations. The spatial and temporal variability, and their drivers, were investigated. Notably, the machine learning model established the relationship between NOx and O3. Despite the fact that metropolitan regions are NO2 hotspots, rural areas have high O3 concentrations.
Jean-Maxime Bertrand, Frédérik Meleux, Anthony Ung, Gaël Descombes, and Augustin Colette
Atmos. Chem. Phys., 23, 5317–5333, https://doi.org/10.5194/acp-23-5317-2023, https://doi.org/10.5194/acp-23-5317-2023, 2023
Short summary
Short summary
Post-processing methods based on machine learning algorithms were applied to refine the forecasts of four key pollutants at monitoring sites across Europe. Performances show significant improvements compared to those of the deterministic model raw outputs. Taking advantage of the large modelling domain extension, an innovative
globalapproach is proposed to drastically reduce the period necessary to train the models and thus facilitate the implementation in an operational context.
Cited articles
Ahmad, I., Tang, D., Wang, T., Wang, M., and Wagan, B.: Precipitation trends over time using
Mann-Kendall and Spearman's rho tests in Swat River Basin, Pak. Adv.
Meteorol., 2015, 431860, https://doi.org/10.1155/2015/431860, 2015.
An, Z., Huang, R. J., Zhang, R., Tie, X., Li, G., Cao, J., Zhou, W., Shi,
Z., Han, Y., Gu, Z., and Ji, Y.: Severe haze in northern China: A synergy of
anthropogenic emissions and atmospheric processes, P. Natl. Acad. Sci. USA,
116, 8657–8666, https://doi.org/10.1073/pnas.1900125116, 2019.
Baker, L. A., Herlihy, A. T., Kaufmann, P. R., and Eilers, J. M.: Acidic
Lakes and Streams in the United States: The Role of Acidic Deposition,
Science, 252, 1151–1154, https://doi.org/10.1126/science.252.5009.1151,
1991.
Beachley, G., Puchalski, M., Rogers, C., and Lear, G.: A summary of
long-term trends in sulfur and nitrogen deposition in the United States:
1990–2013, JSM Environ. Sci. Ecol., 4, 1030–1034, 2016.
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore,
A. M., Li, Q. B., Liu, H. G. Y., Mickley, L. J., and Schultz, M. G.: Global
modeling of tropospheric chemistry with assimilated meteorology: Model
description and evaluation, J. Geophys. Res.-Atmos., 106, 23073–23095,
https://doi.org/10.1029/2001jd000807, 2001.
Breiman, L.: Random forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/a:1010933404324, 2001.
Burns, D. A., Aherne, J., Gay, D. A., and Lehmann, C. M. B.: Acid rain and
its environmental effects: Recent scientific advances, Atmos. Environ., 146,
1–4, https://doi.org/10.1016/j.atmosenv.2016.10.019, 2016.
Comero, S., Vaccaro, S., Locoro, G., De Capitani, L., and Gawlik, B. M.: Characterization of
the Danube River sediments using the PMF multivariate approach, Chemosphere,
95, 329–335, https://doi.org/10.1016/j.chemosphere.2013.09.028, 2014.
Chen, Y., Zhang, L., Henze, D. K., Zhao, Y., Lu, X., Winiwarter, W., Guo,
Y., Liu, X., Wen, Z., Pan, Y., and Song, Y.: Interannual variation of
reactive nitrogen emissions and their impacts on PM2.5 air pollution in
China during 2005 to 2015, Environ. Res. Lett., 16, 125004,
https://doi.org/10.1088/1748-9326/ac3695, 2021.
Cheng, M., Jiang, H., Guo, Z., Zhang, X., and Lu, X.: Estimating NO2 dry
deposition using satellite data in eastern China, Int. J. Remote Sens., 34,
2548–2565, https://doi.org/10.1080/01431161.2012.747019, 2012.
Cheng, I. and Zhang, L.: Long-term air concentrations, wet deposition, and
scavenging ratios of inorganic ions, HNO3 and SO2 and assessment of aerosol
and precipitation acidity at Canadian rural locations, Atmos. Chem. Phys.,
17, 4711–4730, https://doi.org/10.5194/acp-17-4711-2017, 2017.
Cheng, I., Zhang, L., He, Z., Cathcart, H., Houle, D., Cole, A., Feng, J.,
O'Brien, J., Macdonald, A. M., Aherne, J., and Brook, J.: Long-term declines
in atmospheric nitrogen and sulfur deposition reduce critical loads
exceedances at multiple Canadian rural sites, 2000–2018, Atmos. Chem.
Phys., 22, 14631–14656, https://doi.org/10.5194/acp-22-14631-2022, 2022.
Constantin, D. E., Bocaneala, C., Voiculescu, M., Rosu, A., Merlaud, A.,
Roozendael, M. V., and Georgescu, P. L.: Evolution of SO2 and NOX emissions
from several large combustion plants in Europe during 2005 to 2015, Int. J.
Environ. Res. Publ. Hlth., 17, 3630, https://doi.org/10.3390/ijerph17103630,
2020.
Du, E. and Liu, X.: High rates of wet nitrogen deposition in China: A
synthesis, in: Nitrogen deposition, critical loads and biodiversity, edited
by: Sutton, M. A., Mason, K. E., Sheppard, L. J., Sverdrup, H., Haeuber, R.,
and Hicks, W. K., Springer, the Netherlands, 49–56,
https://doi.org/10.1007/978-94-007-7939-6_6, 2014.
Eastham, S. D., Long, M. S., Keller, C. A., Lundgren, E., Yantosca, R. M.,
Zhuang, J., Li, C., Lee, C. J., Yannetti, M., Auer, B. M., Clune, T. L.,
Kouatchou, J., Putman, W. M., Thompson, M. A., Trayanov, A. L., Molod, A.
M., Martin, R. V., and Jacob, D. J.: GEOS-Chem High Performance (GCHP
v11-02c): a next-generation implementation of the GEOS-Chem chemical
transport model for massively parallel applications, Geosci. Model Dev., 11,
2941–2953, https://doi.org/10.5194/gmd-11-2941-2018, 2018.
Feng, J., Vet, R., Cole, A., Zhang, L., Cheng, I., O'Brien, J., and
Macdonald, A.-M.: Inorganic chemical components in precipitation in the
eastern U.S. and Eastern Canada during 1989–2016: Temporal and regional
trends of wet concentration and wet deposition from the NADP and CAPMoN
measurements, Atmos. Environ., 254, 118367,
https://doi.org/10.1016/j.atmosenv.2021.118367, 2021.
Flechard, C. R., Nemitz, E., Smith, R. I., Fowler, D., Vermeulen, A. T.,
Bleeker, A., Erisman, J. W., Simpson, D., Zhang, L., Tang, Y. S., and
Sutton, M. A.: Dry deposition of reactive nitrogen to European ecosystems: a
comparison of inferential models across the NitroEurope network, Atmos.
Chem. Phys., 11, 2703–2728, https://doi.org/10.5194/acp-11-2703-2011, 2011.
Fowler, D., Pyle, J. A., Raven, J. A., and Sutton, M. A.: The global
nitrogen cycle in the twenty-first century: introduction, Philos. T. R.
Soc., 368, 20130165, https://doi.org/10.1098/rstb.2013.0165, 2013.
Fu, B., Li, S., Yu, X., Yang, P., Yu, G., Feng, R., and Zhuang, X.: Chinese
ecosystem research network: Progress and perspectives, Ecol. Complex., 7,
225–233, https://doi.org/10.1016/j.ecocom.2010.02.007, 2010.
Fu, J. S., Carmichael, G. R., Dentener, F., Aas, W., Andersson, C., Barrie,
L. A., Cole, A., Galy-Lacaux, C., Geddes, J., Itahashi, S., Kanakidou, M.,
Labrador, L., Paulot, F., Schwede, D., Tan, J., and Vet, R.: Improving
Estimates of Sulfur, Nitrogen, and Ozone Total Deposition through
Multi-Model and Measurement-Model Fusion Approaches, Environ. Sci. Technol., 56, 2134–2142,
https://doi.org/10.1021/acs.est.1c05929, 2022.
He, H., Wang, Y., Ma, Q., Ma, J., Chu, B., Ji, D., Tang, G., Liu, C., Zhang,
H., and Hao, J.: Mineral dust and NOX promote the conversion of SO2 to
sulfate in heavy pollution days, Sci. Rep., 4, 4172,
https://doi.org/10.1038/srep04172, 2014.
Holland, E. A., Braswell, B. H., Sulzman, J., and Lamarque, J. F.: Nitrogen
deposition onto the United States and Western Europe: synthesis of
observations and models, Ecol. Appl., 15, 38–57, 2005.
Hou, Y., Wang, L., Zhou, Y., Wang, S., Liu, W., and Zhu, J.: Analysis of the
tropospheric column nitrogen dioxide over China based on satellite
observations during 2008–2017, Atmos. Pollut. Res., 10, 651–655,
https://doi.org/10.1016/j.apr.2018.11.003, 2019.
Jia, Y., Yu, G., Gao, Y., He, N., Wang, Q., Jiao, C., and Zuo, Y.: Global
inorganic nitrogen dry deposition inferred from ground- and space-based
measurements, Sci. Rep., 6, 19810, https://doi.org/10.1038/srep19810, 2016.
Kang, Y., Liu, M., Song, Y., Huang, X., Yao, H., Cai, X., Zhang, H., Kang,
L., Liu, X., Yan, X., He, H., Zhang, Q., Shao, M., and Zhu, T.:
High-resolution ammonia emissions inventories in China from 1980 to 2012,
Atmos. Chem. Phys., 16, 2043–2058, https://doi.org/10.5194/acp-16-2043-2016,
2016.
Karplus, V. J., Zhang, S., and Almond, D.: Quantifying coal power plant
responses to tighter SO2 emissions standards in China, P. Natl. Acad.
Sci. USA, 115, 7004–7009, https://doi.org/10.1073/pnas.1800605115, 2018.
Keller, C. A., Long, M. S., Yantosca, R. M., Da Silva, A. M., Pawson, S.,
and Jacob, D. J.: HEMCO v1.0: a versatile, ESMF-compliant component for
calculating emissions in atmospheric models, Geosci. Model Dev., 7,
1409–1417, https://doi.org/10.5194/gmd-7-1409-2014, 2014.
Keresztesi, Á., Birsan, M.-V., Nita, I.-A., Bodor, Z., and Szép, R.:
Assessing the neutralisation, wet deposition and source contributions of the
precipitation chemistry over Europe during 2000–2017, Environ. Sci. Eur.,
31, 50, https://doi.org/10.1186/s12302-019-0234-9, 2019.
Krotkov, N. A., McLinden, C. A., Li, C., Lamsal, L. N., Celarier, E. A.,
Marchenko, S. V., Swartz, W. H., Bucsela, E. J., Joiner, J., Duncan, B. N.,
Boersma, K. F., Veefkind, J. P., Levelt, P. F., Fioletov, V. E., Dickerson,
R. R., He, H., Lu, Z., and Streets, D. G.: Aura OMI observations of regional
SO2 and NO2 pollution changes from 2005 to 2015, Atmos. Chem. Phys., 16,
4605–4629, https://doi.org/10.5194/acp-16-4605-2016, 2016.
Krotkov, N. A., Lamsal, L. N., Marchenko, S. V., Celarier, E. A., Bucsela, E. J.,
Swartz, W. H., Joiner, J., and Team TOC: OMI/Aura NO2 Cloud-Screened Total
and Tropospheric Column L3 Global Gridded 0.25∘ × 0.25∘
V3. NASA Goddard Space Flight Center, Goddard Earth Sciences Data and
Information Services Center (GES DISC),
https://doi.org/10.5067/Aura/OMI/DATA/DATA3007, 2019.
Kuang, F., Liu, X., Zhu, B., Shen, J., Pan, Y., Su, M., and Goulding, K.:
Wet and dry nitrogen deposition in the central Sichuan Basin of China,
Atmos. Environ., 143, 39–50, https://doi.org/10.1016/j.atmosenv.2016.08.032,
2016.
Kuhn, M.: caret: Classification and Regression Training, R package version
6.0-90, https://CRAN.R-project.org/package=caret (last access: 29 July 2023), 2021.
Li, J.: Pollution trends in China from 2000 to 2017: A multi-sensor view
from space, Remote Sens., 12, 208, https://doi.org/10.3390/rs12020208, 2020.
Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B.,
Cui, H., Man, H., Zhang, Q., and He, K.: Anthropogenic emission inventories
in China: a review, Natl. Sci. Rev., 4, 834–866,
https://doi.org/10.1093/nsr/nwx150, 2017.
Li, M., Klimont, Z., Zhang, Q., Martin, R. V., Zheng, B., Heyes, C., Cofala,
J., Zhang, Y., and He, K.: Comparison and evaluation of anthropogenic
emissions of SO2 and NOX over China, Atmos. Chem. Phys., 18, 3433–3456,
https://doi.org/10.5194/acp-18-3433-2018, 2018.
Li, R., Cui, L., Meng, Y., Zhao, Y., and Fu, H.: Satellite-based prediction
of daily SO2 exposure across China using a high-quality random
forest-spatiotemporal Kriging (RF-STK) model for health risk assessment,
Atmos. Environ., 208, 10–19, https://doi.org/10.1016/j.atmosenv.2019.03.029,
2019.
Li, R., Cui, L., Fu, H., Zhao, Y., Zhou, W., and Chen, J.: Satellite-Based
Estimates of Wet Ammonium (NH4-N) Deposition Fluxes Across China during
2011–2016 Using a Space-Time Ensemble Model, Environ. Sci. Technol., 54,
13419–13428, https://doi.org/10.1021/acs.est.0c03547, 2020a.
Li, R., Cui, L., Liang, J., Zhao, Y., Zhang, Z., and Fu, H.: Estimating
historical SO2 level across the whole China during 1973–2014 using random
forest model, Chemosphere, 247, 125839,
https://doi.org/10.1016/j.chemosphere.2020.125839, 2020b.
Li, Y., Schichtel, B. A., Walker, J. T., Schwede, D. B., Chen, X., Lehmann,
C. M. B., Puchalski, M. A., Gay, D. A., and Collett Jr., J. L.: Increasing
importance of deposition of reduced nitrogen in the United States, P.
Natl. Acad. Sci. USA, 113, 5874–5879, https://doi.org/10.1073/pnas.1525736113,
2016.
Likens, G. E., Butler, T. J., Claybrooke, R., Vermeylen, F., and Larson, R.:
Long-term monitoring of precipitation chemistry in the U.S.: Insights into
changes and condition, Atmos. Environ., 245, 118031,
https://doi.org/10.1016/j.atmosenv.2020.118031, 2021.
Liu, F., Zhang, Q., Tong, D., Zheng, B., Li, M., Huo, H., and He, K. B.:
High-resolution inventory of technologies, activities, and emissions of
coal-fired power plants in China from 1990 to 2010, Atmos. Chem. Phys., 15,
13299–13317, https://doi.org/10.5194/acp-15-13299-2015, 2015.
Liu, L., Zhang, X., Xu, W., Liu, X., Lu, X., Wang, S., Zhang, W., and Zhao,
L.: Ground Ammonia Concentrations over China Derived from Satellite and
Atmospheric Transport Modeling, Remote Sens., 9, 467,
https://doi.org/10.3390/rs9050467, 2017a.
Liu, L., Zhang, X., Xu, W., Liu, X., Lu, X., Chen, D., Zhang, X., Wang, S.,
and Zhang, W.: Estimation of monthly bulk nitrate deposition in China based
on satellite NO2 measurement by the Ozone Monitoring Instrument, Remote
Sens. Environ., 199, 93–106, https://doi.org/10.1016/j.rse.2017.07.005,
2017b.
Liu, L., Xu, W., Lu, X., Zhong, B., Guo, Y., Lu, X., Zhao, Y., He, W., Wang,
S., Zhang, X., Liu, X., and Vitousek, P.: Exploring global changes in
agricultural ammonia emissions and their contribution to nitrogen deposition
since 1980, P. Natl. Acad. Sci. USA, 119, e2121998119,
https://doi.org/10.1073/pnas.2121998119, 2022.
Liu, M., Huang, X., Song, Y., Xu, T., Wang, S., Wu, Z., Hu, M., Zhang, L.,
Zhang, Q., Pan, Y., Liu, X., and Zhu, T.: Rapid SO2 emission reductions
significantly increase tropospheric ammonia concentrations over the North
China Plain, Atmos. Chem. Phys., 18, 17933–17943,
https://doi.org/10.5194/acp-18-17933-2018, 2018.
Liu, M., Lin, J., Boersma, K. F., Pinardi, G., Wang, Y., Chimot, J., Wagner, T., Xie, P., Eskes, H., Van Roozendael, M., Hendrick, F., Wang, P., Wang, T., Yan, Y., Chen, L., and Ni, R.: Improved aerosol correction for OMI tropospheric NO2 retrieval over East Asia: constraint from CALIOP aerosol vertical profile, Atmos. Meas. Tech., 12, 1–21, https://doi.org/10.5194/amt-12-1-2019, 2019.
Liu, X. J., Zhang, Y., Han, W. X., Tang, A. H., Shen, J. L., Cui, Z. L.,
Vitousek, P., Erisman, J. W., Goulding, K., Christie, P., Fangmeier, A., and
Zhang, F. S.: Enhanced nitrogen deposition over China, Nature, 494, 459–462,
https://doi.org/10.1038/nature11917, 2013.
Liu, X. J., Xu, W., Du, E. Z., Tang, A. H., Zhang, Y., Wen, Z., Hao, T. X.,
Pan, Y. P., Zhang, L., Zhao, Y., Shen, J. L., Zhou, F., Gao, Z. L., Chang,
Y. H., Goulding, K., Collett Jr., J. L., Vitousek, P. M., Zhang, F. S.,
Zhang, Y. Y., Gu, B. J., and Feng, Z. Z.: Environmental impacts of nitrogen
emissions in China and the role of policies in emission reduction, Philos.
T. R. Soc., 378, 20190324, https://doi.org/10.1098/rsta.2019.0324, 2020.
Lu, X., Ye, X., Zhou, M., Zhao, Y., Weng, H., Kong, H., Li, K., Gao, M.,
Zheng, B., Lin, J., Zhou, F., Zhang, Q., Wu, D., Zhang, L., and Zhang, Y.:
The underappreciated role of agricultural soil nitrogen oxide emissions in
ozone pollution regulation in North China, Nat. Commun., 12, 5021,
https://doi.org/10.1038/s41467-021-25147-9, 2021.
Luo, X., Pan, Y., Goulding, K., Zhang, L., Liu, X., and Zhang, F.: Spatial
and seasonal variations of atmospheric sulfur concentrations and dry
deposition at 16 rural and suburban sites in China, Atmos. Environ., 146,
79–89, https://doi.org/10.1016/j.atmosenv.2016.07.038, 2016.
Lye, C. and Tian, H.: Spatial and temporal patterns of nitrogen deposition
in China: Synthesis of observational data, J. Geophys. Res., 112, D22S05,
https://doi.org/10.1029/2006jd007990, 2007.
Pan, Y. P., Wang, Y. S., Tang, G. Q., and Wu, D.: Wet and dry deposition of
atmospheric nitrogen at ten sites in Northern China, Atmos. Chem. Phys., 12,
6515–6535, https://doi.org/10.5194/acp-12-6515-2012, 2012.
Park, R. J.: Natural and transboundary pollution influences on
sulfate-nitrate-ammonium aerosols in the United States: Implications for
policy, J. Geophys. Res., 109, D15204, https://doi.org/10.1029/2003jd004473, 2004.
Payne, R. J., Stevens, C. J., Dise, N. B., Gowing, D. J., Pilkington, M. G.,
Phoenix, G. K., Emmett, B. A., and Ashmore, M. R.: Impacts of atmospheric
pollution on the plant communities of British acid grasslands, Environ.
Pollut., 159, 2602–2608, https://doi.org/10.1016/j.envpol.2011.06.009, 2011.
Qin, K., Han, X., Li, D., Xu, J., Loyola, D., Xue, Y., Zhou, X., Li, D.,
Zhang, K., and Yuan, L.: Satellite-based estimation of surface NO2
concentrations over east-central China: A comparison of POMINO and OMNO2d
data, Atmos. Environ., 224, 117322,
https://doi.org/10.1016/j.atmosenv.2020.117322, 2020.
Qu, Z., Henze, D. K., Li, C., Theys, N., Wang, Y., Wang, J., Wang, W., Han,
J., Shim, C., Dickerson, R. R., and Ren, X.: SO2 Emission Estimates Using
OMI SO2 Retrievals for 2005–2017, J. Geophys. Res.-Atmos., 124,
8336–8359, https://doi.org/10.1029/2019jd030243, 2019.
Reuss, J. O., Cosby, B. J., and Wright, R. F.: Chemical processes governing
soil and water acidification, Nature, 329, 27–32,1987.
Simpson, D., Benedictow, A., Berge, H., Bergström, R., Emberson, L. D.,
Fagerli, H., Flechard, C. R., Hayman, G. D., Gauss, M., Jonson, J. E.,
Jenkin, M. E., Nyíri, A., Richter, C., Semeena, V. S., Tsyro, S.,
Tuovinen, J. P., Valdebenito, Á., and Wind, P.: The EMEP MSC-W chemical
transport model – technical description, Atmos. Chem. Phys., 12, 7825–7865,
https://doi.org/10.5194/acp-12-7825-2012, 2012.
Skyllakou, K., Rivera, P. G., Dinkelacker, B., Karnezi, E., Kioutsioukis,
I., Hernandez, C., Adams, P. J., and Pandis, S. N.: Changes in PM2.5;
concentrations and their sources in the US from 1990 to 2010, Atmos. Chem.
Phys., 21, 17115–17132, https://doi.org/10.5194/acp-21-17115-2021, 2021.
Song, L., Kuang, F., Skiba, U., Zhu, B., Liu, X., Levy, P., Dore, A., and
Fowler, D.: Bulk deposition of organic and inorganic nitrogen in southwest
China from 2008 to 2013, Environ. Pollut., 227, 157–166,
https://doi.org/10.1016/j.envpol.2017.04.031, 2017.
Theobald, M. R., Vivanco, M. G., Aas, W., Andersson, C., Ciarelli, G.,
Couvidat, F., Cuvelier, K., Manders, A., Mircea, M., Pay, M.-T., Tsyro, S.,
Adani, M., Bergström, R., Bessagnet, B., Briganti, G., Cappelletti, A.,
amp, apos, Isidoro, M., Fagerli, H., Mar, K., Otero, N., Raffort, V.,
Roustan, Y., Schaap, M., Wind, P., and Colette, A.: An evaluation of
European nitrogen and sulfur wet deposition and their trends estimated by
six chemistry transport models for the period 1990–2010, Atmos. Chem.
Phys., 19, 379–405, https://doi.org/10.5194/acp-19-379-2019, 2019.
Tørseth, K., Aas, W., Breivik, K., Fjæraa, A. M., Fiebig, M.,
Hjellbrekke, A. G., Lund Myhre, C., Solberg, S., and Yttri, K. E.:
Introduction to the European Monitoring and Evaluation Programme (EMEP) and
observed atmospheric composition change during 1972–2009, Atmos. Chem.
Phys., 12, 5447–5481, https://doi.org/10.5194/acp-12-5447-2012, 2012.
Totsuka, T., Sase, H., and Shimizu, H.: Major activities of acid deposition
monitoring network in East Asia (EANET) and related studies, in: Plant
responses to air pollution and global change, Springer, 251–259, https://doi.org/10.1007/4-431-31014-2_28, 2005.
Vet, R., Artz, R. S., Carou, S., Shaw, M., Ro, C.-U., Aas, W., Baker, A.,
Bowersox, V. C., Dentener, F., Galy-Lacaux, C., Hou, A., Pienaar, J. J.,
Gillett, R., Forti, M. C., Gromov, S., Hara, H., Khodzher, T., Mahowald, N.
M., Nickovic, S., Rao, P. S. P., and Reid, N. W.: A global assessment of
precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base
cations, organic acids, acidity and pH, and phosphorus, Atmos. Environ., 93,
3–100, https://doi.org/10.1016/j.atmosenv.2013.10.060, 2014.
Wang, J., Sha, Z., Zhang, J., Kang, J., Xu, W., Goulding, K., and Liu, X.:
Reactive N emissions from cropland and their mitigation in the North China
Plain, Environ. Res., 214, 114015,
https://doi.org/10.1016/j.envres.2022.114015, 2022.
Wen, Z., Xu, W., Li, Q. Q., Han, M. J., Tang, A. H., Zhang, Y., Luo, X. S.,
Shen, J. L., Wang, W., Li, K. H., Pan, Y. P., Zhang, L., Li, W. Q., Collett Jr.,
J. L., Zhong, B. Q., Wang, X. M., Goulding, K., Zhang, F. S., and Liu, X. J.:
Changes of nitrogen deposition in China from 1980 to 2018, Environ.
Int., 144, 106022, https://doi.org/10.1016/j.envint.2020.106022,
2020.
Wesely, M. L.: Parameterization of surface resistances to gaseous dry
deposition in regional-scale numerical models, Atmos. Environ., 23,
1293–1304, https://doi.org/10.1016/0004-6981(89)90153-4,
1989.
Whitburn, S., Van Damme, M., Clarisse, L., Bauduin, S., Heald, C. L.,
Hadji-Lazaro, J., Hurtmans, D., Zondlo, M. A., Clerbaux, C., and Coheur, P.
F.: A flexible and robust neural network IASI-NH3 retrieval algorithm, J.
Geophys. Res.-Atmos., 121, 6581–6599,
https://doi.org/10.1002/2016jd024828, 2016.
Wu, Y., Di, B., Luo, Y., Grieneisen, M. L., Zeng, W., Zhang, S., Deng, X.,
Tang, Y., Shi, G., Yang, F., and Zhan, Y.: A robust approach to deriving
long-term daily surface NO2 levels across China: Correction to substantial
estimation bias in back-extrapolation, Environ. Int., 154, 106576,
https://doi.org/10.1016/j.envint.2021.106576, 2021.
Xia, Y., Zhao, Y., and Nielsen, C. P.: Benefits of China's efforts in
gaseous pollutant control indicated by the bottom-up emissions and satellite
observations 2000–2014, Atmos. Environ., 136, 43–53,
https://doi.org/10.1016/j.atmosenv.2016.04.013, 2016.
Xu, W., Luo, X. S., Pan, Y. P., Zhang, L., Tang, A. H., Shen, J. L., Zhang,
Y., Li, K. H., Wu, Q. H., Yang, D. W., Zhang, Y. Y., Xue, J., Li, W. Q., Li,
Q. Q., Tang, L., Lu, S. H., Liang, T., Tong, Y. A., Liu, P., Zhang, Q.,
Xiong, Z. Q., Shi, X. J., Wu, L. H., Shi, W. Q., Tian, K., Zhong, X. H.,
Shi, K., Tang, Q. Y., Zhang, L. J., Huang, J. L., He, C. E., Kuang, F. H.,
Zhu, B., Liu, H., Jin, X., Xin, Y. J., Shi, X. K., Du, E. Z., Dore, A. J.,
Tang, S., Collett, J. L., Goulding, K., Sun, Y. X., Ren, J., Zhang, F. S.,
and Liu, X. J.: Quantifying atmospheric nitrogen deposition through a
nationwide monitoring network across China, Atmos. Chem. Phys., 15,
12345–12360, https://doi.org/10.5194/acp-15-12345-2015, 2015.
Xu, W., Liu, L., Cheng, M., Zhao, Y., Zhang, L., Pan, Y., Zhang, X., Gu, B.,
Li, Y., Zhang, X., Shen, J., Lu, L., Luo, X., Zhao, Y., Feng, Z., Collett
Jr., J. L., Zhang, F., and Liu, X.: Spatial–temporal patterns of inorganic
nitrogen air concentrations and deposition in eastern China, Atmos. Chem.
Phys., 18, 10931–10954, https://doi.org/10.5194/acp-18-10931-2018, 2018.
Xu, W., Zhang, L., and Liu, X.: A database of atmospheric nitrogen
concentration and deposition from the nationwide monitoring network in
China, Sci. Data, 6, D15204, https://doi.org/10.1038/s41597-019-0061-2, 2019.
Xu, X.: China's GDP and POP spatial distribution kilometer grid dataset,
Resources and environment science data registration and publication system,
http://www.resdc.cn/DOI (last access: 29 July 2023), 2017.
Yamaga, S., Ban, S., Xu, M., Sakurai, T., Itahashi, S., and Matsuda, K.:
Trends of sulfur and nitrogen deposition from 2003 to 2017 in Japanese
remote areas, Environ. Pollut., 289, 117842,
https://doi.org/10.1016/j.envpol.2021.117842, 2021.
Ye, C., Lu, K., Song, H., Mu, Y., Chen, J., and Zhang, Y.: A critical review
of sulfate aerosol formation mechanisms during winter polluted periods, J.
Environ. Sci., 123, 387–399,
https://doi.org/10.1016/j.jes.2022.07.011, 2023.
Yu, G., Jia, Y., He, N., Zhu, J., Chen, Z., Wang, Q., Piao, S., Liu, X., He,
H., Guo, X., Wen, Z., Li, P., Ding, G., and Goulding, K.: Stabilization of
atmospheric nitrogen deposition in China over the past decade, Nat.
Geosci., 12, 424–431, https://doi.org/10.1038/s41561-019-0352-4, 2019.
Zhan, X., Yu, G., He, N., Jia, B., Zhou, M., Wang, C., Zhang, J., Zhao, G.,
Wang, S., Liu, Y., and Yan, J.: Inorganic nitrogen wet deposition: Evidence
from the North-South Transect of Eastern China, Environ. Pollut., 204, 1–8,
https://doi.org/10.1016/j.envpol.2015.03.016, 2015.
Zhang, G., Pan, Y., Tian, S., Cheng, M., Xie, Y., Wang, H., and Wang, Y.:
Limitations of passive sampling technique of rainfall chemistry and wet
deposition flux characterization, Res. Environ., 28, 684–690,
https://doi.org/10.13198/j.issn.1001-6929.2015.05.03, 2015.
Zhang, L., Gong, S., Padro, J., and Barrie, L.: A size-segregated particle
dry deposition scheme for an atmospheric aerosol module, Atmos. Environ.,
35, 549–560, https://doi.org/10.1016/S1352-2310(00)00326-5, 2001.
Zhang, Q., Zheng, Y., Tong, D., Shao, M., Wang, S., Zhang, Y., Xu, X., Wang,
J., He, H., Liu, W., Ding, Y., Lei, Y., Li, J., Wang, Z., Zhang, X., Wang,
Y., Cheng, J., Liu, Y., Shi, Q., Yan, L., Geng, G., Hong, C., Li, M., Liu,
F., Zheng, B., Cao, J., Ding, A., Gao, J., Fu, Q., Huo, J., Liu, B., Liu,
Z., Yang, F., He, K., and Hao, J.: Drivers of improved PM2.5 air quality in
China from 2013 to 2017, P. Natl. Acad. Sci. USA, 116, 24463–24469,
https://doi.org/10.1073/pnas.1907956116, 2019.
Zhang, T., Chen, H. Y. H., and Ruan, H.: Global negative effects of nitrogen
deposition on soil microbes, ISME J., 12, 1817–1825,
https://doi.org/10.1038/s41396-018-0096-y, 2018a.
Zhang, X. Y., Chuai, X. W., Liu, L., Zhang, W. T., Lu, X. H., Zhao, L. M.,
and Chen, D. M.: Decadal trends in wet sulfur deposition in China estimated
from OMI SO2 columns, J. Geophys. Res.-Atmos., 123, 10796–10811,
https://doi.org/10.1029/2018jd028770, 2018b.
Zhang, Y., Liu, X. J., Fangmeier, A., Goulding, K. T. W., and Zhang, F. S.:
Nitrogen inputs and isotopes in precipitation in the North China Plain,
Atmos. Environ., 42, 1436–1448,
https://doi.org/10.1016/j.atmosenv.2007.11.002, 2008.
Zhang, Y., Zhao, J., and Yin, H.: European Union agricultural policy
transformation trend and enlightenment, World Agriculture, 5, https://doi.org/10.13856/j.cn11-1097/s.2020.05.001, 2020 (in
Chinese).
Zhao, S. and Qiao, G.: The shadow prices of CO2, SO2 and NOX for U.S. coal
power industry 2010–2017: a convex quantile regression method, J.
Prod. Anal., 57, 243–253, https://doi.org/10.1007/s11123-022-00629-0,
2022.
Zhao, Y.: Gridded deposition of N and S for China 2005–2020, Air Quality Nju [data set], http://www.airqualitynju.com/En/Data/List/Datadownload, last access: 29 July 2023.
Zhao, Y., Xi, M., Zhang, Q., Dong, Z., Ma, M., Zhou, K., Xu, W., Xing, J.,
Zheng, B., Wen, Z., Liu, X., Nielsen, C. P., Liu, Y., Pan, Y., and Zhang,
L.: Decline in bulk deposition of air pollutants in China lags behind
reductions in emissions, Nat. Geosci., 15, 190–195,
https://doi.org/10.1038/s41561-022-00899-1, 2022.
Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X.,
Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and
Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the
consequence of clean air actions, Atmos. Chem. Phys., 18, 14095–14111,
https://doi.org/10.5194/acp-18-14095-2018, 2018a.
Zheng, X. D., Liu, X. Y., Song, W., Sun, X. C., and Liu, C. Q.: Nitrogen
isotope variations of ammonium across rain events: Implications for
different scavenging between ammonia and particulate ammonium, Environ.
Pollut., 239, 392–398, https://doi.org/10.1016/j.envpol.2018.04.015, 2018b.
Zhou, K., Zhao, Y., Zhang, L., and Xi, M.: Declining dry deposition of NO2
and SO2 with diverse spatiotemporal patterns in China from 2013 to 2018,
Atmos. Environ., 262, 118655,
https://doi.org/10.1016/j.atmosenv.2021.118655, 2021.
Zhu, J., He, N., Wang, Q., Yuan, G., Wen, D., Yu, G., and Jia, Y.: The
composition, spatial patterns, and influencing factors of atmospheric wet
nitrogen deposition in Chinese terrestrial ecosystems, Sci. Total Environ.,
511, 777–785, https://doi.org/10.1016/j.scitotenv.2014.12.038, 2015.
Short summary
We developed a dataset of the long-term (2005–2020) variabilities of China’s nitrogen and sulfur deposition, with multiple statistical models that combine available observations and chemistry transport modeling. We demonstrated the strong impact of human activities and national pollution control actions on the spatiotemporal changes in deposition and indicated a relatively small benefit of emission abatement on deposition (and thereby ecological risk) for China compared to Europe and the USA.
We developed a dataset of the long-term (2005–2020) variabilities of China’s nitrogen and...
Altmetrics
Final-revised paper
Preprint