Articles | Volume 23, issue 8
https://doi.org/10.5194/acp-23-4637-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-4637-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Yields and molecular composition of gas-phase and secondary organic aerosol from the photooxidation of the volatile consumer product benzyl alcohol: formation of highly oxygenated and hydroxy nitro-aromatic compounds
Center for Environmental Measurement & Modeling, U.S. Environmental
Protection Agency, Research Triangle Park, NC 27711, USA
Kenneth S. Docherty
Jacobs Technology, Inc., Research Triangle Park, NC 27709, USA
Michael Lewandowski
Center for Environmental Measurement & Modeling, U.S. Environmental
Protection Agency, Research Triangle Park, NC 27711, USA
Tadeusz E. Kleindienst
Center for Environmental Measurement & Modeling, U.S. Environmental
Protection Agency, Research Triangle Park, NC 27711, USA
Related authors
Mohammed Jaoui, Klara Nestorowicz, Krzysztof J. Rudzinski, Michael Lewandowski, Tadeusz E. Kleindienst, Julio Torres, Ewa Bulska, Witold Danikiewicz, and Rafal Szmigielski
Atmos. Chem. Phys., 25, 1401–1432, https://doi.org/10.5194/acp-25-1401-2025, https://doi.org/10.5194/acp-25-1401-2025, 2025
Short summary
Short summary
Recent research has established the contribution of 1,3-butadiene (13BD) to organic aerosol formation with negative implications for urban air quality. Health effect studies have focused on whole particulate matter, but compounds responsible for adverse health effects remain uncertain. This study provides the effect of relative humidity and seed aerosol acidity on the chemical composition of aerosol formed from 13BD photooxidation.
Mohammed Jaoui, Klara Nestorowicz, Krzysztof J. Rudzinski, Michael Lewandowski, Tadeusz E. Kleindienst, Julio Torres, Ewa Bulska, Witold Danikiewicz, and Rafal Szmigielski
Atmos. Chem. Phys., 25, 1401–1432, https://doi.org/10.5194/acp-25-1401-2025, https://doi.org/10.5194/acp-25-1401-2025, 2025
Short summary
Short summary
Recent research has established the contribution of 1,3-butadiene (13BD) to organic aerosol formation with negative implications for urban air quality. Health effect studies have focused on whole particulate matter, but compounds responsible for adverse health effects remain uncertain. This study provides the effect of relative humidity and seed aerosol acidity on the chemical composition of aerosol formed from 13BD photooxidation.
Douglas A. Day, Pedro Campuzano-Jost, Benjamin A. Nault, Brett B. Palm, Weiwei Hu, Hongyu Guo, Paul J. Wooldridge, Ronald C. Cohen, Kenneth S. Docherty, J. Alex Huffman, Suzane S. de Sá, Scot T. Martin, and Jose L. Jimenez
Atmos. Meas. Tech., 15, 459–483, https://doi.org/10.5194/amt-15-459-2022, https://doi.org/10.5194/amt-15-459-2022, 2022
Short summary
Short summary
Particle-phase nitrates are an important component of atmospheric aerosols and chemistry. In this paper, we systematically explore the application of aerosol mass spectrometry (AMS) to quantify the organic and inorganic nitrate fractions of aerosols in the atmosphere. While AMS has been used for a decade to quantify nitrates, methods are not standardized. We make recommendations for a more universal approach based on this analysis of a large range of field and laboratory observations.
Cited articles
Abend, A. M., Chung, L., Bibart, R. T., Brooks, M., and McCollum, D. G.:
Concerning the stability of benzyl alcohol: formation of benzaldehyde
dibenzyl acetal under aerobic conditions, J. Pharm. Biomed. Anal., 34,
957–962, https://doi.org/10.1016/j.jpba.2003.11.007, 2004.
Akherati, A., Cappa, C. D., Kleeman, M. J., Docherty, K. S., Jimenez, J. L., Griffith, S. M., Dusanter, S., Stevens, P. S., and Jathar, S. H.: Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model – Part 3: Assessing the influence of semi-volatile and intermediate-volatility organic compounds and NOx, Atmos. Chem. Phys., 19, 4561–4594, https://doi.org/10.5194/acp-19-4561-2019, 2019.
Alton, M. W. and Browne, L. C.: Atmospheric chemistry of volatile methyl
siloxanes: kinetics and products of oxidation by OH radicals and Cl atoms,
Environ. Sci. Technol., 54, 5992–5999, 2020.
Antonelli, L., Mapelli, E., Strini, A., Cerulli, T., Leoni, R., and Stella S.: Laboratory and real scale comparative study of benzyl alcohol emission from a two-component epoxy paint, Proceedings: Proceedings, Indoor Air, 584–589, 2002.
Atkinson, R., Aschmann, S. M., and Arey, J.: Reactions of OH and N03
Radicals with Phenol, Cresols, and 2-Nitrophenol at 296±2 K,
Environ. Sci. Technol., 26, 1397–1403, 1992.
Bernard, B., Magneron, I., Eyglunent, G., Daële, V.,
Wallington, T. J., Hurley, M. D., and Mellouki, A.: Atmospheric chemistry of
benzyl alcohol: kinetics and mechanism of reaction with OH radicals,
Environ. Sci. Technol., 47, 3182–3189, 2013.
Berndt, T., Herrmann, H., Sipila, M., and Kulmala, M.: Highly oxidized
second-generation products from the gas-phase reaction of OH radicals with
isoprene, J. Phys. Chem. A, 120, 10150–10159, 2016.
Boatright, J., Negre, F., Chen, X., Kish, C. M., Wood, B., Peel, G., Orlova,
I., Gang, D., Rhodes, D., and Dudareva, N.: Understanding in vivo benzenoid
metabolism in petunia petal tissue, Plant Physiol., 135, 1993–2011, 2004.
Carter, W. P. L., Malkina, I. L., Cocker III, D. R., and Song, C.:
Environmental chamber studies of VOC species in architectural coating and
mobile source emissions, South Coast Air Quality Management District
Contract No. 03468, 2005.
Charan, S. M., Buenconsejo, R. S., and Seinfeld, J. H.: Secondary organic aerosol yields from the oxidation of benzyl alcohol, Atmos. Chem. Phys., 20, 13167–13190, https://doi.org/10.5194/acp-20-13167-2020, 2020.
Charan, S. M., Huang, Y., Buenconsejo, R. S., Li, Q., Cocker III, D. R., and Seinfeld, J. H.: Secondary organic aerosol formation from the oxidation of decamethylcyclopentasiloxane at atmospherically relevant OH concentrations, Atmos. Chem. Phys., 22, 917–928, https://doi.org/10.5194/acp-22-917-2022, 2022.
Cheng, C. T., Chan, M. N., and Wilson, K. R.: Importance of unimolecular HO2
elimination in the heterogeneous OH reaction of highly oxygenated tartaric
acid aerosol, J. Phys. Chem. A, 120, 5887–5896, https://doi.org/10.1021/acs.jpca.6b05289, 2016.
Coggon, M. M., Gkatzelis, G. I., McDonald, B. C., Gilman, J. B., Schwantes,
R. H., Abuhassan, N., Aikin, K. C., Arendd, M. F., Berkoff, T. A., Brown, S.
S., Campos, T. L., Dickerson, R. R., Gronoff, G., Hurley, J. F.,
Isaacman-VanWertz, G., Koss, A. R., Lia, M., McKeen, S. A., Mosharyd, F.,
Peischl, J., Pospisilova, V., Renh, X., Wilson, A., Wu, Y., Trainer, M., and
Warneke, C.: Volatile chemical product emissions enhance ozone and modulate
urban chemistry, P. Natl. Acad. Sci. USA, 118, e2026653118, https://doi.org/10.1073/pnas.2026653118,
2021.
DeBolt, S., Cook, D. R., and Ford, C. M.: L-Tartaric acid synthesis from
vitamin C in higher plants, P. Natl. Acad. Sci. USA, 103, 5608–5613, https://doi.org/10.1073/pnas.0510864103, 2006.
Derrien, E., Ahmar, M., Martin-Sisteron, E., Raffin, G., Queneau, Y.,
Marion, P., Beyerle, M., Pinel, C., and Besson, M.: Oxidation of aldoses
contained in softwood hemicellulose acid hydrolysates into aldaric acids
under alkaline or noncontrolled pH conditions, Ind. Eng.
Chem. Res., 57, 4543–4552, https://doi.org/10.1021/acs.iecr.8b00239,
2018.
Do, J. Y., Salunkhe, D. K., and Olson, L. E.: Isolation, identification and
comparison of the volatiles of peach fruit as related to harvest maturity
and artificial ripening, J. Food Sci., 34, 618–621, 1969.
Ferri, D., Mondelli, C., Krumeich, F., and Baiker, A.: Discrimination of
active palladium sites in catalytic liquid-phase oxidation of benzyl
alcohol, J. Phys. Chem. B., 110, 22982–22986, https://doi.org/10.1021/jp065779z,
2006.
Finewax, Z., de Gow, J. A., and Ziemann, P. J.: Identification and
Quantification of 4-Nitrocatechol Formed from OH and
NO3 Radical-Initiated Reactions of Catechol in Air in the Presence of
NOx: Implications for Secondary Organic Aerosol Formation from Biomass
Burning, Environ. Sci. Technol., 52, 1981–1989, https://doi.org/10.1021/acs.est.7b05864, 2018.
Fu, Zi., Xie, H., Elm, J., Guo, X., Fu, Zh., and Chen, J.: Formation of
low-volatile products and unexpected high formaldehyde yield from the
atmospheric oxidation of methylsiloxanes, Environ. Sci. Technol., 54,
7136–7145, https://doi.org/10.1021/acs.est.0c01090, 2020.
Gkatzelis, G. I., Coggon, M. M., McDonald, B. C., Peischl, J., Aikin, K. C.,
Gilman, J. B., Trainer, M., and Warneke, C.: Identifying volatile chemical
product tracer compounds in U.S. Cities, Environ. Sci. Technol., 55, 188–199,
https://doi.org/10.1021/acs.est.0c05467, 2021.
Gowda, D., Kawamura, K., and Tachibana, E.: Identification of hydroxy- and
keto-dicarboxylic acids in remote marine aerosols using gas
chromatography/quadruple and time-of-flight mass spectrometry, Rapid
Commun. Mass Spectrom., 30, 992–1000, https://doi.org/10.1002/rcm.7527, 2016.
Harrison, J. C. and Wells, J. R.: Gas-phase chemistry of benzyl alcohol:
reaction rate constants and products with OH radical and ozone, Atmos.
Environ., 43, 798–804, 2009.
Harrison, J. C. and Wells, J. R.: 2-Butoxyethanol and benzyl alcohol
reactions with the nitrate radical: rate coefficients and gas-phase
products, Int. J. Chem. Kinet., 44, 778–788, 2012.
Hayes, P. L., Carlton, A. G., Baker, K. R., Ahmadov, R., Washenfelder, R. A., Alvarez, S., Rappenglück, B., Gilman, J. B., Kuster, W. C., de Gouw, J. A., Zotter, P., Prévôt, A. S. H., Szidat, S., Kleindienst, T. E., Offenberg, J. H., Ma, P. K., and Jimenez, J. L.: Modeling the formation and aging of secondary organic aerosols in Los Angeles during CalNex 2010, Atmos. Chem. Phys., 15, 5773–5801, https://doi.org/10.5194/acp-15-5773-2015, 2015.
Hinton, M. R.: Xylaric acid, D-arabinaric acid (D-lyxaric acid),
L-arabinaric acid (L-lyxaric acid), and Ribaric acid-1,4-lactone; Synthesis
and isolation-synthesis of polyhydroxypolyamides therefrom, Theses,
Dissertations, & Professional Papers, 1202,
https://scholarworks.umt.edu/etd/1202 (last access: 14 September 2022), 2008.
Hodzic, A., Jimenez, J. L., Madronich, S., Aiken, A. C., Bessagnet, B., Curci, G., Fast, J., Lamarque, J.-F., Onasch, T. B., Roux, G., Schauer, J. J., Stone, E. A., and Ulbrich, I. M.: Modeling organic aerosols during MILAGRO: importance of biogenic secondary organic aerosols, Atmos. Chem. Phys., 9, 6949–6981, https://doi.org/10.5194/acp-9-6949-2009, 2009.
Horvat, R. J., Chapman Jr., G. W., Robertson, J. A., Meredith, F. I.,
Scorza, R., Callahan, A. M., and Morgens, P.: Comparison of the volatile
compounds from several commercial peach cultivars, J. Agric. Food Chem., 38,
234–237, 1990.
Humes, M. B., Wang, M., Kim, S., Machesky, J. E., Gentner, D. R., Robinson,
A. L., Donahue, N. M., and Presto, A. A.: Limited secondary organic aerosol
production from acyclic oxygenated volatile chemical products, Environ. Sci.
Technol., 56, 4806–4815, 2022.
Humpf, H. U. and Schreier, P.: Bound aroma compounds from the fruit and the
leaves of blackberry (Rubus laciniata L.), J. Agric. Food Chem., 39,
1830–1832, 1991.
Ikemori, E., Nakayama, T., and Hasegawa, H.: Characterization and possible
sources of nitrated mono- and di-aromatic
hydrocarbons containing hydroxyl and/or carboxyl functional groups in
ambient particles in Nagoya, Japan, Atmos. Environ., 211, 91–102, 2019.
Janechek, N. J., Marek, R. F., Bryngelson, N., Singh, A., Bullard, R. L., Brune, W. H., and Stanier, C. O.: Physical properties of secondary photochemical aerosol from OH oxidation of a cyclic siloxane, Atmos. Chem. Phys., 19, 1649–1664, https://doi.org/10.5194/acp-19-1649-2019, 2019.
Jaoui, M.: The Home of the U.S. Government's Open Data, U. S. Environmental Protection Agency, https://data.gov/ (last access: 14 September 2022), 2023.
Jaoui, M. and Kamens, R. M.: Mass balance of gaseous and particulate
products analysis from α-pinene/NOx/air in the presence of
natural sunlight, J. Geophys. Res., 106, 12541–12558,
https://doi.org/10.1029/2001JD900005, 2001.
Jaoui, M., Kleindienst, T. E., Lewandowski, M., and Edney, E. O.:
Identification and quantification of aerosol polar oxygenated compounds
bearing carboxylic and/or hydroxyl groups, 1. Method development, Anal.
Chem., 76, 4765–4778, 2004.
Jaoui, M., Kleindienst, T. E., Lewandowski, M., Offenberg, J. H., and Edney,
E. O.: Identification and quantification of aerosol polar oxygenated
compounds bearing carboxylic or hydroxyl groups. 2. Organic tracer compounds
from monoterpenes, Environ. Sci. Technol., 39, 5661–5673, 2005.
Jaoui, M., Kleindienst, T. E., Docherty, K. S., Lewandowski, M., and
Offenberg, J. H.: Secondary organic aerosol formation from the oxidation of
a series of sesquiterpenes: a-cedrene, b-caryophyllene, a-humulene and
a-farnesene with O3, OH and NO3 radicals, Environ. Chem., 10,
178–193, https://doi.org/10.1071/EN13025, 2013.
Jaoui, M., Lewandowski, M., Docherty, K., Offenberg, J. H., and Kleindienst, T. E.: Atmospheric oxidation of 1,3-butadiene: characterization of gas and aerosol reaction products and implications for PM2.5, Atmos. Chem. Phys., 14, 13681–13704, https://doi.org/10.5194/acp-14-13681-2014, 2014.
Jaoui, M., Lewandowski, M., Offenberg, H. J., Colon, M., Docherty, K. S.,
and Kleindienst, T. E: Characterization of aerosol nitroaromatic compounds:
Validation of an experimental method, Mass Spectrom., 53, 680–692, 2018.
Jaoui, M., Szmigielski, R., Nestorowicz, K., Kolodziejczyk, A., Sarang, K.,
Rudzinski, K. J., Konopka, A., Bulska, E, Lewandowski, M., and Kleindienst,
T. E.: Organic hydroxy acids as highly oxygenated molecular (HOM) tracers
for aged isoprene aerosol, Environ. Sci. Technol., 53,
14516–14527, https://doi.org/10.1021/acs.est.9b05075, 2019.
Jaoui, M., Piletic, I., Szmigielski, R., Rudzinski, J. K., E, Lewandowski,
M., Riedel, T. P., and Kleindienst, T. E.: Rapid production of highly
oxidized molecules in isoprene aerosol via peroxy and alkoxy radical
isomerization pathways in low and high NOx environments: Combined
laboratory, computational and field studies, Sci. Total
Environ., 775, 145592, https://doi.org/10.1016/j.scitotenv.2021.145592, 2021.
Jenkin, M. E., Saunders, S. M., Wagner, V., and Pilling, M. J.: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part B): tropospheric degradation of aromatic volatile organic compounds, Atmos. Chem. Phys., 3, 181–193, https://doi.org/10.5194/acp-3-181-2003, 2003.
Khare, P. and Gentner, D. R.: Considering the future of anthropogenic gas-phase organic compound emissions and the increasing influence of non-combustion sources on urban air quality, Atmos. Chem. Phys., 18, 5391–5413, https://doi.org/10.5194/acp-18-5391-2018, 2018.
Kleindienst, T. E., Edney, E. O., Lewandowski, M., Offenberg, J. H., and
Jaoui M.: Secondary organic carbon and aerosol yields from the irradiations
of isoprene and α-pinene in the presence of NOx and SO2, Environ.
Sci. Technol., 40, 3807–3812, 2006.
Kleindienst, T. E., Lewandowski, M., Offenberg, J. H., Jaoui, M., and Edney, E. O.: The formation of secondary organic aerosol from the isoprene + OH reaction in the absence of NOx, Atmos. Chem. Phys., 9, 6541–6558, https://doi.org/10.5194/acp-9-6541-2009, 2009.
Kleindienst, T. E., Jaoui, M., Lewandowski, M., Offenberg, J. H., and Docherty, K. S.: The formation of SOA and chemical tracer compounds from the photooxidation of naphthalene and its methyl analogs in the presence and absence of nitrogen oxides, Atmos. Chem. Phys., 12, 8711–8726, https://doi.org/10.5194/acp-12-8711-2012, 2012.
Kroflic, A., Hus, M., Grilc, M., and Grgic, I.: Underappreciated and complex
role of nitrous acid in aromatic nitration under mild environmental
conditions: the case of activated methoxyphenols, Environ. Sci. Technol.,
52, 13756–13765, https://doi.org/10.1021/acs.est.8b01903, 2018.
Kroll, J. H., Chan, A. W. H., Ng, N. L., Flagan, R. C., and Seinfeld, J. H.:
Reactions of semivolatile organics and their effects on secondary organic
aerosol formation, Environ. Sci. Technol., 41, 3545–3550, 2007.
Larsen, M. and Poll, L.: Odor thresholds of some important aroma compounds
in raspberries, Z. Lebensm. Unters. Forsch, 191, 129–131, 1990.
Lewandowski, M., Jaoui, M., Offenberg, J. H., Krug, J. D., and Kleindienst, T. E.: Atmospheric oxidation of isoprene and 1,3-butadiene: influence of aerosol acidity and relative humidity on secondary organic aerosol, Atmos. Chem. Phys., 15, 3773–3783, https://doi.org/10.5194/acp-15-3773-2015, 2015.
Li, W., Li, L., Chen, C-L, Kacarab, M., Peng, W., Price, D., Xu, J., and
Cocker III, D. R.: Potential of select intermediate-volatility organic
compounds and consumer products for secondary organic aerosol and ozone
formation under relevant urban conditions, Atmos. Environ., 118, 109–117,
2018.
Lu, Q., Murphy, B. N., Qin, M., Adams, P. J., Zhao, Y., Pye, H. O. T., Efstathiou, C., Allen, C., and Robinson, A. L.: Simulation of organic aerosol formation during the CalNex study: updated mobile emissions and secondary organic aerosol parameterization for intermediate-volatility organic compounds, Atmos. Chem. Phys., 20, 4313–4332, https://doi.org/10.5194/acp-20-4313-2020, 2020.
McDonald, B. C., De Gouw, J. A., Gilman, J. B., Jathar, S. H., Akherati, A.,
Cappa, C. D., Jimenez, J. L., Lee-Taylor, J., Hayes, P. L., McKeen, S. A.,
Cui, Y. Y., Kim, S. W., Gentner, D. R., Isaacman-VanWertz, G., Goldstein, A.
H., Harley, R. A., Frost, G. J., Roberts, J. M., Ryerson, T. B., and
Trainer, M.: Volatile chemical products emerging as largest petrochemical
source of urban organic emissions, Science, 359, 760–764, 2018.
Milani, A., Al-Naiema, I. M., and Stone, E. A: Detection of a secondary
organic aerosol tracer derived from personal care products, Atmos. Environ.,
246, 118078, https://doi.org/10.1016/j.atmosenv.2020.118078, 2021.
Mohr, C., DeCarlo, P. F., Heringa, M. F., Chirico, R., Richter, R., Crippa,
M., Querol, X., Baltensperger, U., and Prévôt, A. S. H.: Spatial
variation of aerosol chemical composition and organic components identified
by positive matrix factorization in the Barcelona region, Environ. Sci.
Technol., 49, 10421–10430, 2015.
Namysl, S., Pelucchi, M., Maffei, L. P., Herbinet, O., Stagni, A.,
Faravelli, T., and Battin-Leclerc, F.: Experimental and modeling study of
benzaldehyde oxidation, Combustion and Flame, 211, 124–132, 2020.
Offenberg, J. H., Lewandowski, M., Edney, E. O., Kleindienst, T. E., and Jaoui,
M.: Investigation of a systematic offset in the measurement of organic
carbon with a semicontinuous analyzer, J.
A&WMA, 57, 596–599, https://doi.org/10.3155/1047-3289.57.5.596, 2007.
Orlova, I., Marshall-Coloìn, A., Schnepp, J., Wood, B., Varbanova, M.,
Fridman, E., Blakeslee, J. J., Peer, W. A., Murphy, A. S., Rhodes, D.,
Pichersky, E., and Dudareva, N.: Reduction of Benzenoid synthesis in petunia
flowers reveals multiple pathways to benzoic acid and enhancement in auxin
transport, Plant Cell, 18, 3458–3475, 2006.
Pennington, E. A., Seltzer, K. M., Murphy, B. N., Qin, M., Seinfeld, J. H., and Pye, H. O. T.: Modeling secondary organic aerosol formation from volatile chemical products, Atmos. Chem. Phys., 21, 18247–18261, https://doi.org/10.5194/acp-21-18247-2021, 2021.
Piletic, I. R. and Kleindienst, T. E.: Rates and Yields of Unimolecular
Reactions Producing Highly Oxidized Peroxy Radicals in the OH-Induced
Autoxidation of α-Pinene, β-Pinene, and Limonene, J. Phys. Chem. A, 126,
88–100, https://doi.org/10.1021/acs.jpca.1c07961, 2022.
Qin, M. M., Murphy, B. N., Isaacs, K. K., McDonald, B. C., Lu, Q. Y.,
McKeen, S. A., Koval, L., Robinson, A. L., Efstathiou, C., Allen, C., and
Pye, H. O. T.: Criteria pollutant impacts of volatile chemical products
informed by near-field modelling, Nature Sustainability, 4, 129–137,
https://doi.org/10.1038/s41893-020-00614-1, 2021.
Röhrl, A. and Lammel, G.: Determination of malic acid and other C4
dicarboxylic acids in atmospheric aerosol samples, Chemosphere, 46,
1195–1199, https://doi.org/10.1016/s0045-6535(01)00243-0, 2002.
Sankar, S., Nowicka, E., Carter, E., Murphy, D. M., Knight, D. W., Bethell,
D., and Hutchings, G. J.: The benzaldehyde oxidation paradox explained by
the interception of peroxy radical by benzyl alcohol, Nat. Commun., 5, 3332,
https://doi.org/10.1038/ncomms4332, 2014.
Seltzer, K. M., Murphy, B. N., Pennington, E. A., Allen, C., Talgo, K., and
Pye, H. O. T.: Volatile chemical product enhancements to criteria pollutants
in the United States, Environ. Sci. Technol., 56, 6905–6913, https://doi.org/10.1021/acs.est.1c04298,
2021.
Shilling, J. E., Chen, Q., King, S. M., Rosenoern, T., Kroll, J. H., Worsnop, D. R., McKinney, K. A., and Martin, S. T.: Particle mass yield in secondary organic aerosol formed by the dark ozonolysis of α-pinene, Atmos. Chem. Phys., 8, 2073–2088, https://doi.org/10.5194/acp-8-2073-2008, 2008.
Smith, D. F., Kleindienst, T. E., and Hudgens, E. E.: Improved
high-performance liquid chromatographic method for artifact free
measurements of aldehydes in the presence of ozone using
2,4-dinitrophenylhydrazine, J. Chromatogr. A, 483, 431–436, 1989.
Stockwell, C. E., Coggon, M. M., Gkatzelis, G. I., Ortega, J., McDonald, B. C., Peischl, J., Aikin, K., Gilman, J. B., Trainer, M., and Warneke, C.: Volatile organic compound emissions from solvent- and water-borne coatings – compositional differences and tracer compound identifications, Atmos. Chem. Phys., 21, 6005–6022, https://doi.org/10.5194/acp-21-6005-2021, 2021.
Urakami, K., Kobayashi, C., Miyazaki, Y., Nishijima, K., and Yoshimura, Y.:
Degradation products generated by sonication of benzyl alcohol, a sample
preparation solvent for the determination of residual solvents in
pharmaceutical bulks, on capillary gas chromatography, Chem. Pharm. Bull.,
48, 1299–1303, 2000.
Vallat, A. and Dorn, S.: Changes in volatile emissions from apple trees and
associated response of adult female codling moths over the fruit-growing
season, J. Agric. Food Chem., 53, 4083–4090, 2005.
Vidovic, K., Lasic Jurkovic, D., Sala, M., Kroflic, A., and Grgic, I.:
Nighttime aqueous-phase formation of nitrocatechols in the atmospheric
condensed phase, Environ. Sci. Technol., 52, 9722–9730,
https://doi.org/10.1021/acs.est.8b01161, 2018.
Vlachou, A., Daellenbach, K. R., Bozzetti, C., Chazeau, B., Salazar, G. A., Szidat, S., Jaffrezo, J.-L., Hueglin, C., Baltensperger, U., Haddad, I. E., and Prévôt, A. S. H.: Advanced source apportionment of carbonaceous aerosols by coupling offline AMS and radiocarbon size-segregated measurements over a nearly 2-year period, Atmos. Chem. Phys., 18, 6187–6206, https://doi.org/10.5194/acp-18-6187-2018, 2018.
Wang, L.: The atmospheric oxidation mechanism of benzyl alcohol initiated by
OH radicals: the addition channels, Chem. Phys. Chem., 16, 1542–1550,
https://doi.org/10.1002/cphc.201500012, 2015.
Wang, N., Jorga, S. D., Pierce, J. R., Donahue, N. M., and Pandis, S. N.: Particle wall-loss correction methods in smog chamber experiments, Atmos. Meas. Tech., 11, 6577–6588, https://doi.org/10.5194/amt-11-6577-2018, 2018.
Wang, Y., Hu, M., Wang, Y., Zheng, J., Shang, D., Yang, Y., Liu, Y., Li, X., Tang, R., Zhu, W., Du, Z., Wu, Y., Guo, S., Wu, Z., Lou, S., Hallquist, M., and Yu, J. Z.: The formation of nitro-aromatic compounds under high NOx and anthropogenic VOC conditions in urban Beijing, China, Atmos. Chem. Phys., 19, 7649–7665, https://doi.org/10.5194/acp-19-7649-2019, 2019.
Weschler, C. J.: Chemistry in indoor environments: 20 years of research,
Indoor Air, 21, 205–218, 2011.
Wu, Y. and Johnston, M. V.: Molecular characterization of secondary aerosol
from oxidation of cyclic methylsiloxanes, J. Am. Soc. Mass. Spectr., 27,
402–409, https://doi.org/10.1007/s13361-015-1300-1, 2016.
Wu, Y. and Johnston, M. V.: Aerosol formation from OH oxidation of the
volatile cyclic methyl siloxane (cVMS) Decamethylcyclopentasiloxane,
Environ. Sci. Technol., 51, 4445–4451, https://doi.org/10.1021/acs.est.7b00655, 2017.
Zhang, X., Cappa, C. D., Jathar, S. H., McVay, R. C., Ensberg, J. J.,
Kleeman, M. J., and Seinfeld, J. H.: Influence of vapor wall loss in
laboratory chambers on yields of secondary organic aerosol, P. Natl. Acad. Sci. USA, 111, 5802–5807,
https://doi.org/10.1073/pnas.1404727111, 2014.
Zhao, B., Wang, S., Donahue, N. M., Jathar, S. H., Huang, X., Wu, W., Hao,
J., and Robinson, A. L.: Quantifying the effect of organic aerosol aging and
intermediate volatility emissions on regional-scale aerosol pollution in
China, Sci. Rep., 6, 28815, https://doi.org/10.1038/srep28815, 2016.
Short summary
VCPs are a class of chemicals widely used in industrial and consumer products (e.g., coatings, adhesives, inks, personal care products) and are an important component of total VOCs in urban atmospheres. This study provides SOA yields and detailed chemical analysis of the gas- and aerosol-phase products of the photooxidation of one of these VCPs, benzyl alcohol. These results will allow better links between characterized sources and their resulting criteria for pollutant formation.
VCPs are a class of chemicals widely used in industrial and consumer products (e.g., coatings,...
Altmetrics
Final-revised paper
Preprint