Articles | Volume 23, issue 2
https://doi.org/10.5194/acp-23-1705-2023
https://doi.org/10.5194/acp-23-1705-2023
Research article
 | 
31 Jan 2023
Research article |  | 31 Jan 2023

Aura/MLS observes and SD-WACCM-X simulates the seasonality, quasi-biennial oscillation and El Niño–Southern Oscillation of the migrating diurnal tide driving upper mesospheric CO primarily through vertical advection

Cornelius Csar Jude H. Salinas, Dong L. Wu, Jae N. Lee, Loren C. Chang, Liying Qian, and Hanli Liu

Related authors

New insights into the polar ozone and water vapor, radiative effects, and their connection to the tides in the mesosphere-lower thermosphere during major Sudden Stratospheric Warming events
Guochun Shi, Hanli Liu, Masaki Tsutsumi, Njål Gulbrandsen, Alexander Kozlovsky, Dimitry Pokhotelov, Mark Lester, Kun Wu, and Gunter Stober
EGUsphere, https://doi.org/10.5194/egusphere-2024-3749,https://doi.org/10.5194/egusphere-2024-3749, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Evaluating F10.7 and F30 Radio Fluxes as Long-Term Solar Proxies of Energy Deposition in the Thermosphere
Liying Qian and Kalevi Mursula
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-23,https://doi.org/10.5194/angeo-2024-23, 2024
Revised manuscript accepted for ANGEO
Short summary
Thermospheric nitric oxide NO during solar minimum modulated by O/O2 ratio and thermospheric transport and mixing
Miriam Sinnhuber, Christina Arras, Stefan Bender, Bernd Funke, Hanli Liu, Daniel R. Marsh, Thomas Reddmann, Eugene Rozanov, Timofei Sukhodolov, Monika E. Szelag, and Jan Maik Wissing
EGUsphere, https://doi.org/10.5194/egusphere-2024-2256,https://doi.org/10.5194/egusphere-2024-2256, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Upper-atmosphere responses to the 2022 Hunga Tonga–Hunga Ha′apai volcanic eruption via acoustic gravity waves and air–sea interaction
Qinzeng Li, Jiyao Xu, Aditya Riadi Gusman, Hanli Liu, Wei Yuan, Weijun Liu, Yajun Zhu, and Xiao Liu
Atmos. Chem. Phys., 24, 8343–8361, https://doi.org/10.5194/acp-24-8343-2024,https://doi.org/10.5194/acp-24-8343-2024, 2024
Short summary
A Machine-learning Based Marine Planetary Boundary Layer (MPBL) Moisture Profile Retrieval Product from GNSS-RO Deep Refraction Signals
Jie Gong, Dong Liang Wu, Michelle Badalov, Manisha Ganeshan, and Minghua Zheng
EGUsphere, https://doi.org/10.5194/egusphere-2024-973,https://doi.org/10.5194/egusphere-2024-973, 2024
Short summary

Related subject area

Subject: Dynamics | Research Activity: Remote Sensing | Altitude Range: Mesosphere | Science Focus: Physics (physical properties and processes)
Lidar measurements of noctilucent clouds at Río Grande, Tierra del Fuego, Argentina
Natalie Kaifler, Bernd Kaifler, Markus Rapp, Guiping Liu, Diego Janches, Gerd Baumgarten, and Jose-Luis Hormaechea
Atmos. Chem. Phys., 24, 14029–14044, https://doi.org/10.5194/acp-24-14029-2024,https://doi.org/10.5194/acp-24-14029-2024, 2024
Short summary
Has the 2022 Hunga eruption impacted the noctilucent cloud season in 2023/24 and 2024?
Sandra Wallis, Matthew DeLand, and Christian von Savigny
EGUsphere, https://doi.org/10.5194/egusphere-2024-2165,https://doi.org/10.5194/egusphere-2024-2165, 2024
Short summary
Upper-atmosphere responses to the 2022 Hunga Tonga–Hunga Ha′apai volcanic eruption via acoustic gravity waves and air–sea interaction
Qinzeng Li, Jiyao Xu, Aditya Riadi Gusman, Hanli Liu, Wei Yuan, Weijun Liu, Yajun Zhu, and Xiao Liu
Atmos. Chem. Phys., 24, 8343–8361, https://doi.org/10.5194/acp-24-8343-2024,https://doi.org/10.5194/acp-24-8343-2024, 2024
Short summary
Momentum flux characteristics of vertical propagating Gravity Waves
Prosper K. Nyassor, Cristiano M. Wrasse, Igo Paulino, Cosme A. O. B. Figueiredo, Ricardo A. Buriti, Hisao Takahashi, Delano Gobbi, and Gabriel A. Giongo
EGUsphere, https://doi.org/10.5194/egusphere-2024-1982,https://doi.org/10.5194/egusphere-2024-1982, 2024
Short summary
Influences of sudden stratospheric warmings on the ionosphere above Okinawa
Klemens Hocke, Wenyue Wang, and Guanyi Ma
Atmos. Chem. Phys., 24, 5837–5846, https://doi.org/10.5194/acp-24-5837-2024,https://doi.org/10.5194/acp-24-5837-2024, 2024
Short summary

Cited articles

Akmaev, R. A. and Shved, G. M.: Modelling of the composition of the lower thermosphere taking account of the dynamics with applications to tidal variations of the [OI] 5577 Å airglow, J. Atmos. Terr. Phys., 42, 705–716, 1980. 
Allen, D. R., Stanford, J. L., López-Valverde, M. A., Nakamura, N., Lary, D. J., Douglass, A. R., Cerniglia, M. C., Remedios, J. J., and Taylor, F. W.: Observations of middle atmosphere CO from the UARS ISAMS during the early northern winter 1991/92, J. Atmos. Sci., 56, 563–583, 1999. 
Allen, D. R., Stanford, J. L., Nakamura, N., Lopez-Valverde, M. A., Lopez-Puertas, M., Taylor, F. W., and Remedios, J.J.: Antarctic polar descent and planetary wave activity observed in ISAMS CO from April to July 1992, Geophys. Res. Lett., 27, 665–668, 2000. 
Angelats i Coll, M. and Forbes, J. M.: Dynamical influences on atomic oxygen and 5577 Å emission rates in the lower thermosphere, Geophys. Res. Lett., 25, 461–464, 1998. 
Brasseur, G. P. and Solomon, S.: Aeronomy of the middle atmosphere: Chemistry and physics of the stratosphere and mesosphere, vol. 32, Springer Science & Business Media, https://doi.org/10.1007/1-4020-3824-0_3, 2006. 
Download
Short summary
Upper mesospheric carbon monoxide's (CO) photochemical lifetime is longer than dynamical timescales. This work uses satellite observations and model simulations to establish that the migrating diurnal tide and its seasonal and interannual variabilities drive CO primarily through vertical advection. Vertical advection is a transport process that is currently difficult to observe. This work thus shows that we can use CO as a tracer for vertical advection across seasonal and interannual timescales.
Altmetrics
Final-revised paper
Preprint