Articles | Volume 22, issue 14
https://doi.org/10.5194/acp-22-9265-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-22-9265-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantifying the effects of mixing state on aerosol optical properties
Department of Atmospheric Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
Jeffrey H. Curtis
Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
Joseph Ching
Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Ibaraki, 305-0052, Japan
National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo, 190-8518, Japan
Research Institute for Humanity and Nature, 457-4 Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8047, Japan
now at: Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori, 680-0001, Japan
Zhonghua Zheng
Computational and Information Systems Laboratory, National Center for Atmospheric Research, Boulder, CO 80307, USA
Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO 80307, USA
Advanced Study Program, National Center for Atmospheric Research, Boulder, CO 80307, USA
Department of Atmospheric Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
Related authors
Yu Yao, Po-Lun Ma, Yi Qin, Matthew W. Christensen, Hui Wan, Kai Zhang, Balwinder Singh, Meng Huang, and Mikhail Ovchinnikov
EGUsphere, https://doi.org/10.5194/egusphere-2024-523, https://doi.org/10.5194/egusphere-2024-523, 2024
Preprint withdrawn
Short summary
Short summary
Giant aerosols have substantial effects on warm rain formation. However, it remains challenging to quantify the impact of giant particles at global scale. In this work, we applied earth system model to investigate its impacts by implementing new giant aerosol treatments to consider its physical process. We found this approach substantially affect liquid cloud and improved model's precipitation response to aerosols. Our findings demonstrate the significant impact of giant aerosols on climate.
Zhouyang Zhang, Jiandong Wang, Jiaping Wang, Nicole Riemer, Chao Liu, Yuzhi Jin, Zeyuan Tian, Jing Cai, Yueyue Cheng, Ganzhen Chen, Bin Wang, Shuxiao Wang, and Aijun Ding
EGUsphere, https://doi.org/10.5194/egusphere-2024-1924, https://doi.org/10.5194/egusphere-2024-1924, 2024
Short summary
Short summary
Black carbon (BC) exerts notable warming effects. We use a particle-resolved model to investigate the long-term behavior of BC mixing state, revealing its compositions, coating thickness distribution, and optical properties all stabilize with characteristic time of less than one day. This study can effectively simplify the description of the BC mixing state, which facilitates the precise assessment of the optical properties of BC aerosols in global and chemical transport models.
Shengnan Fu, David M. Schultz, Heng Lyu, Zhonghua Zheng, and Chi Zhang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-146, https://doi.org/10.5194/hess-2024-146, 2024
Preprint under review for HESS
Short summary
Short summary
To address the lack of county-level flood dataset in China, we used machine learning techniques to accurately identify flood events and locations from news reports. This dataset offers crucial insights into the spatiotemporal distribution of urban flooding from 2000 to 2022, highlighting increases in flood occurrences and identifying key vulnerable areas. These findings are vital for enhancing urban planning in China, aiming to mitigate the impact of future floods.
Jeffrey Henry Curtis, Nicole Riemer, and Matthew West
EGUsphere, https://doi.org/10.5194/egusphere-2024-825, https://doi.org/10.5194/egusphere-2024-825, 2024
Short summary
Short summary
This paper introduces a numerical method for simulating particle-based aerosol transport in atmospheric models. We detail the various advection order method’s numerical properties and demonstrate its implementation in a 3D weather prediction model (WRF) for the first time. Particle-based techniques improve the accuracy of aerosol size and composition predictions, which are key for aerosol-cloud and aerosol-radiation interactions.
Yu Yao, Po-Lun Ma, Yi Qin, Matthew W. Christensen, Hui Wan, Kai Zhang, Balwinder Singh, Meng Huang, and Mikhail Ovchinnikov
EGUsphere, https://doi.org/10.5194/egusphere-2024-523, https://doi.org/10.5194/egusphere-2024-523, 2024
Preprint withdrawn
Short summary
Short summary
Giant aerosols have substantial effects on warm rain formation. However, it remains challenging to quantify the impact of giant particles at global scale. In this work, we applied earth system model to investigate its impacts by implementing new giant aerosol treatments to consider its physical process. We found this approach substantially affect liquid cloud and improved model's precipitation response to aerosols. Our findings demonstrate the significant impact of giant aerosols on climate.
Wenfu Tang, Louisa K. Emmons, Helen M. Worden, Rajesh Kumar, Cenlin He, Benjamin Gaubert, Zhonghua Zheng, Simone Tilmes, Rebecca R. Buchholz, Sara-Eva Martinez-Alonso, Claire Granier, Antonin Soulie, Kathryn McKain, Bruce C. Daube, Jeff Peischl, Chelsea Thompson, and Pieternel Levelt
Geosci. Model Dev., 16, 6001–6028, https://doi.org/10.5194/gmd-16-6001-2023, https://doi.org/10.5194/gmd-16-6001-2023, 2023
Short summary
Short summary
The new MUSICAv0 model enables the study of atmospheric chemistry across all relevant scales. We develop a MUSICAv0 grid for Africa. We evaluate MUSICAv0 with observations and compare it with a previously used model – WRF-Chem. Overall, the performance of MUSICAv0 is comparable to WRF-Chem. Based on model–satellite discrepancies, we find that future field campaigns in an eastern African region (30°E–45°E, 5°S–5°N) could substantially improve the predictive skill of air quality models.
Lingcheng Li, Yilin Fang, Zhonghua Zheng, Mingjie Shi, Marcos Longo, Charles D. Koven, Jennifer A. Holm, Rosie A. Fisher, Nate G. McDowell, Jeffrey Chambers, and L. Ruby Leung
Geosci. Model Dev., 16, 4017–4040, https://doi.org/10.5194/gmd-16-4017-2023, https://doi.org/10.5194/gmd-16-4017-2023, 2023
Short summary
Short summary
Accurately modeling plant coexistence in vegetation demographic models like ELM-FATES is challenging. This study proposes a repeatable method that uses machine-learning-based surrogate models to optimize plant trait parameters in ELM-FATES. Our approach significantly improves plant coexistence modeling, thus reducing errors. It has important implications for modeling ecosystem dynamics in response to climate change.
Sudipta Ghosh, Sagnik Dey, Sushant Das, Nicole Riemer, Graziano Giuliani, Dilip Ganguly, Chandra Venkataraman, Filippo Giorgi, Sachchida Nand Tripathi, Srikanthan Ramachandran, Thazhathakal Ayyappen Rajesh, Harish Gadhavi, and Atul Kumar Srivastava
Geosci. Model Dev., 16, 1–15, https://doi.org/10.5194/gmd-16-1-2023, https://doi.org/10.5194/gmd-16-1-2023, 2023
Short summary
Short summary
Accurate representation of aerosols in climate models is critical for minimizing the uncertainty in climate projections. Here, we implement region-specific emission fluxes and a more accurate scheme for carbonaceous aerosol ageing processes in a regional climate model (RegCM4) and show that it improves model performance significantly against in situ, reanalysis, and satellite data over the Indian subcontinent. We recommend improving the model performance before using them for climate studies.
Matthew L. Dawson, Christian Guzman, Jeffrey H. Curtis, Mario Acosta, Shupeng Zhu, Donald Dabdub, Andrew Conley, Matthew West, Nicole Riemer, and Oriol Jorba
Geosci. Model Dev., 15, 3663–3689, https://doi.org/10.5194/gmd-15-3663-2022, https://doi.org/10.5194/gmd-15-3663-2022, 2022
Short summary
Short summary
Progress in identifying complex, mixed-phase physicochemical processes has resulted in an advanced understanding of the evolution of atmospheric systems but has also introduced a level of complexity that few atmospheric models were designed to handle. We present a flexible treatment for multiphase chemical processes for models of diverse scale, from box up to global models. This enables users to build a customized multiphase mechanism that is accessible to a much wider community.
Zhonghua Zheng, Matthew West, Lei Zhao, Po-Lun Ma, Xiaohong Liu, and Nicole Riemer
Atmos. Chem. Phys., 21, 17727–17741, https://doi.org/10.5194/acp-21-17727-2021, https://doi.org/10.5194/acp-21-17727-2021, 2021
Short summary
Short summary
Aerosol mixing state is an important emergent property that affects aerosol radiative forcing and aerosol–cloud interactions, but it has not been easy to constrain this property globally. We present a framework for evaluating the error in aerosol mixing state induced by aerosol representation assumptions, which is one of the important contributors to structural uncertainty in aerosol models. Our study provides insights into potential improvements to model process representation for aerosols.
Mizuo Kajino, Makoto Deushi, Tsuyoshi Thomas Sekiyama, Naga Oshima, Keiya Yumimoto, Taichu Yasumichi Tanaka, Joseph Ching, Akihiro Hashimoto, Tetsuya Yamamoto, Masaaki Ikegami, Akane Kamada, Makoto Miyashita, Yayoi Inomata, Shin-ichiro Shima, Pradeep Khatri, Atsushi Shimizu, Hitoshi Irie, Kouji Adachi, Yuji Zaizen, Yasuhito Igarashi, Hiromasa Ueda, Takashi Maki, and Masao Mikami
Geosci. Model Dev., 14, 2235–2264, https://doi.org/10.5194/gmd-14-2235-2021, https://doi.org/10.5194/gmd-14-2235-2021, 2021
Short summary
Short summary
This study compares performance of aerosol representation methods of the Japan Meteorological Agency's regional-scale nonhydrostatic meteorology–chemistry model (NHM-Chem). It indicates separate treatment of sea salt and dust in coarse mode and that of light-absorptive and non-absorptive particles in fine mode could provide accurate assessments on aerosol feedback processes.
Havala O. T. Pye, Athanasios Nenes, Becky Alexander, Andrew P. Ault, Mary C. Barth, Simon L. Clegg, Jeffrey L. Collett Jr., Kathleen M. Fahey, Christopher J. Hennigan, Hartmut Herrmann, Maria Kanakidou, James T. Kelly, I-Ting Ku, V. Faye McNeill, Nicole Riemer, Thomas Schaefer, Guoliang Shi, Andreas Tilgner, John T. Walker, Tao Wang, Rodney Weber, Jia Xing, Rahul A. Zaveri, and Andreas Zuend
Atmos. Chem. Phys., 20, 4809–4888, https://doi.org/10.5194/acp-20-4809-2020, https://doi.org/10.5194/acp-20-4809-2020, 2020
Short summary
Short summary
Acid rain is recognized for its impacts on human health and ecosystems, and programs to mitigate these effects have had implications for atmospheric acidity. Historical measurements indicate that cloud and fog droplet acidity has changed in recent decades in response to controls on emissions from human activity, while the limited trend data for suspended particles indicate acidity may be relatively constant. This review synthesizes knowledge on the acidity of atmospheric particles and clouds.
Mizuo Kajino, Makoto Deushi, Tsuyoshi Thomas Sekiyama, Naga Oshima, Keiya Yumimoto, Taichu Yasumichi Tanaka, Joseph Ching, Akihiro Hashimoto, Tetsuya Yamamoto, Masaaki Ikegami, Akane Kamada, Makoto Miyashita, Yayoi Inomata, Shin-ichiro Shima, Kouji Adachi, Yuji Zaizen, Yasuhito Igarashi, Hiromasa Ueda, Takashi Maki, and Masao Mikami
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-128, https://doi.org/10.5194/gmd-2018-128, 2018
Revised manuscript not accepted
Jeffrey H. Curtis, Nicole Riemer, and Matthew West
Geosci. Model Dev., 10, 4057–4079, https://doi.org/10.5194/gmd-10-4057-2017, https://doi.org/10.5194/gmd-10-4057-2017, 2017
Short summary
Short summary
Traditional aerosol representations rely on simplifying assumptions about the aerosol composition in order to reduce computational cost. This introduces errors in estimates of aerosol impacts on climate. In contrast, the WRF-PartMC-MOSAIC-SCM model, presented here, uses a particle-resolved aerosol representation. It is made feasible by the development of efficient numerical methods, and allows for the capture of complex aerosol mixing states with altitude.
Joseph Ching, Jerome Fast, Matthew West, and Nicole Riemer
Atmos. Chem. Phys., 17, 7445–7458, https://doi.org/10.5194/acp-17-7445-2017, https://doi.org/10.5194/acp-17-7445-2017, 2017
Short summary
Short summary
The composition of individual aerosols affects their cloud condensation nuclei (CCN) properties, but is challenging to represent in models. This study quantifies the error in CCN calculations when per-particle information is neglected by using a metric for the composition diversity within a population. With more particle-level measurements from field campaigns, the approach is useful for quantifying uncertainties in composition-dependent quantities regarding aerosol–cloud–climate interactions.
Megan D. Willis, Robert M. Healy, Nicole Riemer, Matthew West, Jon M. Wang, Cheol-Heon Jeong, John C. Wenger, Greg J. Evans, Jonathan P. D. Abbatt, and Alex K. Y. Lee
Atmos. Chem. Phys., 16, 4693–4706, https://doi.org/10.5194/acp-16-4693-2016, https://doi.org/10.5194/acp-16-4693-2016, 2016
L. Fierce, N. Riemer, and T. C. Bond
Atmos. Chem. Phys., 15, 3173–3191, https://doi.org/10.5194/acp-15-3173-2015, https://doi.org/10.5194/acp-15-3173-2015, 2015
Short summary
Short summary
The timescale for particles containing black carbon to age from hydrophobic to hygroscopic strongly influences black carbon's atmospheric lifetime and climate impact. This paper identifies the minimal set of independent variables needed to explain variance in this aging timescale. This work distills the complex interactions captured by a particle-resolved aerosol model to a few input variables and is a first step toward developing physically based parameterizations of aerosol aging.
R. M. Healy, N. Riemer, J. C. Wenger, M. Murphy, M. West, L. Poulain, A. Wiedensohler, I. P. O'Connor, E. McGillicuddy, J. R. Sodeau, and G. J. Evans
Atmos. Chem. Phys., 14, 6289–6299, https://doi.org/10.5194/acp-14-6289-2014, https://doi.org/10.5194/acp-14-6289-2014, 2014
J. C. Kaiser, J. Hendricks, M. Righi, N. Riemer, R. A. Zaveri, S. Metzger, and V. Aquila
Geosci. Model Dev., 7, 1137–1157, https://doi.org/10.5194/gmd-7-1137-2014, https://doi.org/10.5194/gmd-7-1137-2014, 2014
J. Tian, N. Riemer, M. West, L. Pfaffenberger, H. Schlager, and A. Petzold
Atmos. Chem. Phys., 14, 5327–5347, https://doi.org/10.5194/acp-14-5327-2014, https://doi.org/10.5194/acp-14-5327-2014, 2014
N. Riemer and M. West
Atmos. Chem. Phys., 13, 11423–11439, https://doi.org/10.5194/acp-13-11423-2013, https://doi.org/10.5194/acp-13-11423-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Importance of aerosol composition and aerosol vertical profiles in global spatial variation in the relationship between PM2.5 and aerosol optical depth
The co-benefits of a low-carbon future for PM2.5 and O3 air pollution in Europe
Assessing the effectiveness of SO2, NOx, and NH3 emission reductions in mitigating winter PM2.5 in Taiwan using CMAQ
Modelling of atmospheric concentrations of fungal spores: a 2-year simulation over France using CHIMERE
Cluster-dynamics-based parameterization for sulfuric acid–dimethylamine nucleation: comparison and selection through box and three-dimensional modeling
Observed and CMIP6-model-simulated organic aerosol response to drought in the contiguous United States during summertime
Cooling radiative forcing effect enhancement of atmospheric amines and mineral particles caused by heterogeneous uptake and oxidation
Source-resolved atmospheric metal emissions, concentrations, and deposition fluxes into the East Asian seas
Analysis of secondary inorganic aerosols over the greater Athens area using the EPISODE–CityChem source dispersion and photochemistry model
Global estimates of ambient reactive nitrogen components during 2000–2100 based on the multi-stage model
Quantifying the Impacts of Marine Aerosols over the Southeast Atlantic Ocean using a chemical transport model: Implications for aerosol-cloud interactions
The role of naphthalene and its derivatives in the formation of secondary organic aerosol in the Yangtze River Delta region, China
Unveiling the optimal regression model for source apportionment of the oxidative potential of PM10
Investigating the contribution of grown new particles to cloud condensation nuclei with largely varying preexisting particles – Part 2: Modeling chemical drivers and 3-D new particle formation occurrence
Technical note: Influence of different averaging metrics and temporal resolutions on the aerosol pH calculated by thermodynamic modeling
Dual roles of the inorganic aqueous phase on secondary organic aerosol growth from benzene and phenol
Global source apportionment of aerosols into major emission regions and sectors over 1850–2017
Modeling atmospheric brown carbon in the GISS ModelE Earth system model
Observation-constrained kinetic modeling of isoprene SOA formation in the atmosphere
Significant impact of urban tree biogenic emissions on air quality estimated by a bottom-up inventory and chemistry transport modeling
Secondary organic aerosols derived from intermediate-volatility n-alkanes adopt low-viscous phase state
Modeling the contribution of leads to sea spray aerosol in the high Arctic
Modeling the drivers of fine PM pollution over Central Europe: impacts and contributions of emissions from different sources
Reaction of SO3 with H2SO4 and its implications for aerosol particle formation in the gas phase and at the air–water interface
Weakened aerosol–radiation interaction exacerbating ozone pollution in eastern China since China's clean air actions
Uncertainties from biomass burning aerosols in air quality models obscure public health impacts in Southeast Asia
Oxidative potential apportionment of atmospheric PM1: a new approach combining high-sensitive online analysers for chemical composition and offline OP measurement technique
Aqueous-phase chemistry of glyoxal with multifunctional reduced nitrogen compounds: a potential missing route for secondary brown carbon
An updated modeling framework to simulate Los Angeles air quality – Part 1: Model development, evaluation, and source apportionment
Frequent haze events associated with transport and stagnation over the corridor between the North China Plain and Yangtze River Delta
Evaluation of WRF-Chem-simulated meteorology and aerosols over northern India during the severe pollution episode of 2016
How well are aerosol–cloud interactions represented in climate models? – Part 1: Understanding the sulfate aerosol production from the 2014–15 Holuhraun eruption
pH regulates the formation of organosulfates and inorganic sulfate from organic peroxide reaction with dissolved SO2 in aquatic media
Technical note: Accurate, reliable, and high-resolution air quality predictions by improving the Copernicus Atmosphere Monitoring Service using a novel statistical post-processing method
Measurement report: Rapid oxidation of phenolic compounds by O3 and HO•: effects of air-water interface and mineral dust in tropospheric chemical processes
Contribution of intermediate-volatility organic compounds from on-road transport to secondary organic aerosol levels in Europe
Development of an integrated model framework for multi-air-pollutant exposure assessments in high-density cities
CAMx–UNIPAR simulation of secondary organic aerosol mass formed from multiphase reactions of hydrocarbons under the Central Valley urban atmospheres of California
Impact of urbanization on fine particulate matter concentrations over central Europe
Measurement report: Assessing the impacts of emission uncertainty on aerosol optical properties and radiative forcing from biomass burning in peninsular Southeast Asia
The Emissions Model Intercomparison Project (Emissions-MIP): quantifying model sensitivity to emission characteristics
Dynamics-based estimates of decline trend with fine temporal variations in China's PM2.5 emissions
Effects of simulated secondary organic aerosol water on PM1 levels and composition over the US
Reactive organic carbon air emissions from mobile sources in the United States
Development and evaluation of processes affecting simulation of diel fine particulate matter variation in the GEOS-Chem model
Substantially positive contributions of new particle formation to cloud condensation nuclei under low supersaturation in China based on numerical model improvements
Evolution of atmospheric age of particles and its implications for the formation of a severe haze event in eastern China
A multimodel evaluation of the potential impact of shipping on particle species in the Mediterranean Sea
How does tropospheric VOC chemistry affect climate? An investigation of preindustrial control simulations using the Community Earth System Model version 2
Anthropogenic amplification of biogenic secondary organic aerosol production
Haihui Zhu, Randall V. Martin, Aaron van Donkelaar, Melanie S. Hammer, Chi Li, Jun Meng, Christopher R. Oxford, Xuan Liu, Yanshun Li, Dandan Zhang, Inderjeet Singh, and Alexei Lyapustin
Atmos. Chem. Phys., 24, 11565–11584, https://doi.org/10.5194/acp-24-11565-2024, https://doi.org/10.5194/acp-24-11565-2024, 2024
Short summary
Short summary
Ambient fine particulate matter (PM2.5) contributes to 4 million deaths globally each year. Satellite remote sensing of aerosol optical depth (AOD), coupled with a simulated PM2.5–AOD relationship (η), can provide global PM2.5 estimations. This study aims to understand the spatial patterns and driving factors of η to guide future measurement and modeling efforts. We quantified η globally and regionally and found that its spatial variation is strongly influenced by aerosol composition.
Connor J. Clayton, Daniel R. Marsh, Steven T. Turnock, Ailish M. Graham, Kirsty J. Pringle, Carly L. Reddington, Rajesh Kumar, and James B. McQuaid
Atmos. Chem. Phys., 24, 10717–10740, https://doi.org/10.5194/acp-24-10717-2024, https://doi.org/10.5194/acp-24-10717-2024, 2024
Short summary
Short summary
We demonstrate that strong climate mitigation could improve air quality in Europe; however, less ambitious mitigation does not result in these co-benefits. We use a high-resolution atmospheric chemistry model. This allows us to demonstrate how this varies across European countries and analyse the underlying chemistry. This may help policy-facing researchers understand which sectors and regions need to be prioritised to achieve strong air quality co-benefits of climate mitigation.
Ping-Chieh Huang, Hui-Ming Hung, Hsin-Chih Lai, and Charles C.-K. Chou
Atmos. Chem. Phys., 24, 10759–10772, https://doi.org/10.5194/acp-24-10759-2024, https://doi.org/10.5194/acp-24-10759-2024, 2024
Short summary
Short summary
Models were used to study ways to reduce particulate matter (PM) pollution in Taiwan during winter. After considering various factors, such as physical processes and chemical reactions, we found that reducing NOx or NH3 emissions is more effective at mitigating PM2.5 than reducing SO2 emissions. When considering both efficiency and cost, reducing NH3 emissions seems to be a more suitable policy for the studied environment in Taiwan.
Matthieu Vida, Gilles Foret, Guillaume Siour, Florian Couvidat, Olivier Favez, Gaelle Uzu, Arineh Cholakian, Sébastien Conil, Matthias Beekmann, and Jean-Luc Jaffrezo
Atmos. Chem. Phys., 24, 10601–10615, https://doi.org/10.5194/acp-24-10601-2024, https://doi.org/10.5194/acp-24-10601-2024, 2024
Short summary
Short summary
We simulate 2 years of atmospheric fungal spores over France and use observations of polyols and primary biogenic factors from positive matrix factorisation. The representation of emissions taking into account a proxy for vegetation surface and specific humidity enables us to reproduce very accurately the seasonal cycle of fungal spores. Furthermore, we estimate that fungal spores can account for 20 % of PM10 and 40 % of the organic fraction of PM10 over vegetated areas in summer.
Jiewen Shen, Bin Zhao, Shuxiao Wang, An Ning, Yuyang Li, Runlong Cai, Da Gao, Biwu Chu, Yang Gao, Manish Shrivastava, Jingkun Jiang, Xiuhui Zhang, and Hong He
Atmos. Chem. Phys., 24, 10261–10278, https://doi.org/10.5194/acp-24-10261-2024, https://doi.org/10.5194/acp-24-10261-2024, 2024
Short summary
Short summary
We extensively compare various cluster-dynamics-based parameterizations for sulfuric acid–dimethylamine nucleation and identify a newly developed parameterization derived from Atmospheric Cluster Dynamic Code (ACDC) simulations as being the most reliable one. This study offers a valuable reference for developing parameterizations of other nucleation systems and is meaningful for the accurate quantification of the environmental and climate impacts of new particle formation.
Wei Li and Yuxuan Wang
Atmos. Chem. Phys., 24, 9339–9353, https://doi.org/10.5194/acp-24-9339-2024, https://doi.org/10.5194/acp-24-9339-2024, 2024
Short summary
Short summary
Droughts immensely increased organic aerosol (OA) in the contiguous United States in summer (1998–2019), notably in the Pacific Northwest (PNW) and Southeast (SEUS). The OA rise in the SEUS is driven by the enhanced formation of epoxydiol-derived secondary organic aerosol due to the increase in biogenic volatile organic compounds and sulfate, while in the PNW, it is caused by wildfires. A total of 10 climate models captured the OA increase in the PNW yet greatly underestimated it in the SEUS.
Weina Zhang, Jianhua Mai, Zhichao Fan, Yongpeng Ji, Yuemeng Ji, Guiying Li, Yanpeng Gao, and Taicheng An
Atmos. Chem. Phys., 24, 9019–9030, https://doi.org/10.5194/acp-24-9019-2024, https://doi.org/10.5194/acp-24-9019-2024, 2024
Short summary
Short summary
This study reveals heterogeneous oxidation causes further radiative forcing effect (RFE) enhancement of amine–mineral mixed particles. Note that RFE increment is higher under clean conditions than that under polluted conditions, which is contributed to high-oxygen-content products. The enhanced RFE of amine–mineral particles caused by heterogenous oxidation is expected to alleviate warming effects.
Shenglan Jiang, Yan Zhang, Guangyuan Yu, Zimin Han, Junri Zhao, Tianle Zhang, and Mei Zheng
Atmos. Chem. Phys., 24, 8363–8381, https://doi.org/10.5194/acp-24-8363-2024, https://doi.org/10.5194/acp-24-8363-2024, 2024
Short summary
Short summary
This study aims to provide gridded data on sea-wide concentrations, deposition fluxes, and soluble deposition fluxes with detailed source categories of metals using the modified CMAQ model. We developed a monthly emission inventory of six metals – Fe, Al, V, Ni, Zn, and Cu – from terrestrial anthropogenic, ship, and dust sources in East Asia in 2017. Our results reveal the contribution of each source to the emissions, concentrations, and deposition fluxes of metals in the East Asian seas.
Stelios Myriokefalitakis, Matthias Karl, Kim A. Weiss, Dimitris Karagiannis, Eleni Athanasopoulou, Anastasia Kakouri, Aikaterini Bougiatioti, Eleni Liakakou, Iasonas Stavroulas, Georgios Papangelis, Georgios Grivas, Despina Paraskevopoulou, Orestis Speyer, Nikolaos Mihalopoulos, and Evangelos Gerasopoulos
Atmos. Chem. Phys., 24, 7815–7835, https://doi.org/10.5194/acp-24-7815-2024, https://doi.org/10.5194/acp-24-7815-2024, 2024
Short summary
Short summary
A state-of-the-art thermodynamic model has been coupled with the city-scale chemistry transport model EPISODE–CityChem to investigate the equilibrium between the inorganic gas and aerosol phases over the greater Athens area, Greece. The simulations indicate that the formation of nitrates in an urban environment is significantly affected by local nitrogen oxide emissions, as well as ambient temperature, relative humidity, photochemical activity, and the presence of non-volatile cations.
Rui Li, Yining Gao, Lijia Zhang, Yubing Shen, Tianzhao Xu, Wenwen Sun, and Gehui Wang
Atmos. Chem. Phys., 24, 7623–7636, https://doi.org/10.5194/acp-24-7623-2024, https://doi.org/10.5194/acp-24-7623-2024, 2024
Short summary
Short summary
A three-stage model was developed to obtain the global maps of reactive nitrogen components during 2000–2100. The results implied that cross-validation R2 values of four species showed satisfactory performance (R2 > 0.55). Most reactive nitrogen components, except NH3, in China showed increases during 2000–2013. In the future scenarios, SSP3-7.0 (traditional-energy scenario) and SSP1-2.6 (carbon neutrality scenario) showed the highest and lowest reactive nitrogen component concentrations.
Mashiat Hossain, Rebecca M. Garland, and Hannah M. Horowitz
EGUsphere, https://doi.org/10.5194/egusphere-2024-1948, https://doi.org/10.5194/egusphere-2024-1948, 2024
Short summary
Short summary
Our research examines aerosol dynamics over the southeast Atlantic, a region with significant uncertainties in aerosol radiative forcings. Using the GEOS-Chem model, we find that at cloud altitudes, organic aerosols dominate during the biomass burning season, while sulfate aerosols, driven by marine emissions, prevail during peak primary production. These findings highlight the need for accurate representation of marine aerosols in models to improve climate predictions and reduce uncertainties.
Fei Ye, Jingyi Li, Yaqin Gao, Hongli Wang, Jingyu An, Cheng Huang, Song Guo, Keding Lu, Kangjia Gong, Haowen Zhang, Momei Qin, and Jianlin Hu
Atmos. Chem. Phys., 24, 7467–7479, https://doi.org/10.5194/acp-24-7467-2024, https://doi.org/10.5194/acp-24-7467-2024, 2024
Short summary
Short summary
Naphthalene (Nap) and methylnaphthalene (MN) are key precursors of secondary organic aerosol (SOA), yet their sources and sinks are often inadequately represented in air quality models. In this study, we incorporated detailed emissions, gas-phase chemistry, and SOA parameterization of Nap and MN into CMAQ to address this issue. The findings revealed remarkably high SOA formation potentials for these compounds despite their low emissions in the Yangtze River Delta region during summer.
Vy Dinh Ngoc Thuy, Jean-Luc Jaffrezo, Ian Hough, Pamela A. Dominutti, Guillaume Salque Moreton, Grégory Gille, Florie Francony, Arabelle Patron-Anquez, Olivier Favez, and Gaëlle Uzu
Atmos. Chem. Phys., 24, 7261–7282, https://doi.org/10.5194/acp-24-7261-2024, https://doi.org/10.5194/acp-24-7261-2024, 2024
Short summary
Short summary
The capacity of particulate matter (PM) to generate reactive oxygen species in vivo is represented by oxidative potential (OP). This study focuses on finding the appropriate model to evaluate the oxidative character of PM sources in six sites using the PM sources and OP. Eight regression techniques are introduced to assess the OP of PM. The study highlights the importance of selecting a model according to the input data characteristics and establishes some recommendations for the procedure.
Ming Chu, Xing Wei, Shangfei Hai, Yang Gao, Huiwang Gao, Yujiao Zhu, Biwu Chu, Nan Ma, Juan Hong, Yele Sun, and Xiaohong Yao
Atmos. Chem. Phys., 24, 6769–6786, https://doi.org/10.5194/acp-24-6769-2024, https://doi.org/10.5194/acp-24-6769-2024, 2024
Short summary
Short summary
We used a 20-bin WRF-Chem model to simulate NPF events in the NCP during a three-week observational period in the summer of 2019. The model was able to reproduce the observations during June 29–July 6, which was characterized by a high frequency of NPF occurrence.
Haoqi Wang, Xiao Tian, Wanting Zhao, Jiacheng Li, Haoyu Yu, Yinchang Feng, and Shaojie Song
Atmos. Chem. Phys., 24, 6583–6592, https://doi.org/10.5194/acp-24-6583-2024, https://doi.org/10.5194/acp-24-6583-2024, 2024
Short summary
Short summary
pH is a key property of ambient aerosols, which affect many atmospheric processes. As aerosol pH is a non-conservative parameter, diverse averaging metrics and temporal resolutions may influence the pH values calculated by thermodynamic models. This technical note seeks to quantitatively evaluate the average pH using varied metrics and resolutions. The ultimate goal is to establish standardized reporting practices in future research endeavors.
Jiwon Choi, Myoseon Jang, and Spencer Blau
Atmos. Chem. Phys., 24, 6567–6582, https://doi.org/10.5194/acp-24-6567-2024, https://doi.org/10.5194/acp-24-6567-2024, 2024
Short summary
Short summary
Persistent phenoxy radical (PPR), formed by phenol gas oxidation and its aqueous reaction, catalytically destroys O3 and retards secondary organic aerosol (SOA) growth. Explicit gas mechanisms including the formation of PPR and low-volatility products from the oxidation of phenol or benzene are applied to the UNIPAR model to predict SOA mass via multiphase reactions of precursors. Aqueous reactions of reactive organics increase SOA mass but retard SOA growth via heterogeneously formed PPR.
Yang Yang, Shaoxuan Mou, Hailong Wang, Pinya Wang, Baojie Li, and Hong Liao
Atmos. Chem. Phys., 24, 6509–6523, https://doi.org/10.5194/acp-24-6509-2024, https://doi.org/10.5194/acp-24-6509-2024, 2024
Short summary
Short summary
The variations in anthropogenic aerosol concentrations and source contributions and their subsequent radiative impact in major emission regions during historical periods are quantified based on an aerosol-tagging system in E3SMv1. Due to the industrial development and implementation of economic policies, sources of anthropogenic aerosols show different variations, which has important implications for pollution prevention and control measures and decision-making for global collaboration.
Maegan A. DeLessio, Kostas Tsigaridis, Susanne E. Bauer, Jacek Chowdhary, and Gregory L. Schuster
Atmos. Chem. Phys., 24, 6275–6304, https://doi.org/10.5194/acp-24-6275-2024, https://doi.org/10.5194/acp-24-6275-2024, 2024
Short summary
Short summary
This study presents the first explicit representation of brown carbon aerosols in the GISS ModelE Earth system model (ESM). Model sensitivity to a range of brown carbon parameters and model performance compared to AERONET and MODIS retrievals of total aerosol properties were assessed. A summary of best practices for incorporating brown carbon into ModelE is also included.
Chuanyang Shen, Xiaoyan Yang, Joel Thornton, John Shilling, Chenyang Bi, Gabriel Isaacman-VanWertz, and Haofei Zhang
Atmos. Chem. Phys., 24, 6153–6175, https://doi.org/10.5194/acp-24-6153-2024, https://doi.org/10.5194/acp-24-6153-2024, 2024
Short summary
Short summary
In this work, a condensed multiphase isoprene oxidation mechanism was developed to simulate isoprene SOA formation from chamber and field studies. Our results show that the measured isoprene SOA mass concentrations can be reasonably reproduced. The simulation results indicate that multifunctional low-volatility products contribute significantly to total isoprene SOA. Our findings emphasize that the pathways to produce these low-volatility species should be considered in models.
Alice Maison, Lya Lugon, Soo-Jin Park, Alexia Baudic, Christopher Cantrell, Florian Couvidat, Barbara D'Anna, Claudia Di Biagio, Aline Gratien, Valérie Gros, Carmen Kalalian, Julien Kammer, Vincent Michoud, Jean-Eudes Petit, Marwa Shahin, Leila Simon, Myrto Valari, Jérémy Vigneron, Andrée Tuzet, and Karine Sartelet
Atmos. Chem. Phys., 24, 6011–6046, https://doi.org/10.5194/acp-24-6011-2024, https://doi.org/10.5194/acp-24-6011-2024, 2024
Short summary
Short summary
This study presents the development of a bottom-up inventory of urban tree biogenic emissions. Emissions are computed for each tree based on their location and characteristics and are integrated in the regional air quality model WRF-CHIMERE. The impact of these biogenic emissions on air quality is quantified for June–July 2022. Over Paris city, urban trees increase the concentrations of particulate organic matter by 4.6 %, of PM2.5 by 0.6 %, and of ozone by 1.0 % on average over 2 months.
Tommaso Galeazzo, Bernard Aumont, Marie Camredon, Richard Valorso, Yong B. Lim, Paul J. Ziemann, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 5549–5565, https://doi.org/10.5194/acp-24-5549-2024, https://doi.org/10.5194/acp-24-5549-2024, 2024
Short summary
Short summary
Secondary organic aerosol (SOA) derived from n-alkanes is a major component of anthropogenic particulate matter. We provide an analysis of n-alkane SOA by chemistry modeling, machine learning, and laboratory experiments, showing that n-alkane SOA adopts low-viscous semi-solid or liquid states. Our results indicate few kinetic limitations of mass accommodation in SOA formation, supporting the application of equilibrium partitioning for simulating n-alkane SOA in large-scale atmospheric models.
Rémy Lapere, Louis Marelle, Pierre Rampal, Laurent Brodeau, Christian Melsheimer, Gunnar Spreen, and Jennie L. Thomas
EGUsphere, https://doi.org/10.5194/egusphere-2024-1271, https://doi.org/10.5194/egusphere-2024-1271, 2024
Short summary
Short summary
Elongated open water areas in sea ice, called leads, can release marine aerosols into the atmosphere. In the Arctic, this source of atmospheric particles could play an important role for climate. However, the amount, seasonality and spatial distribution of such emissions are mostly unknown. Here, we propose a first parameterization for sea spray aerosols emitted through leads in sea ice and quantify their impact on aerosol populations in the high Arctic.
Lukáš Bartík, Peter Huszár, Jan Karlický, Ondřej Vlček, and Kryštof Eben
Atmos. Chem. Phys., 24, 4347–4387, https://doi.org/10.5194/acp-24-4347-2024, https://doi.org/10.5194/acp-24-4347-2024, 2024
Short summary
Short summary
The presented study deals with the attribution of fine particulate matter (PM2.5) concentrations to anthropogenic emissions over Central Europe using regional-scale models. It calculates the present-day contributions of different emissions sectors to concentrations of PM2.5 and its secondary components. Moreover, the study investigates the effect of chemical nonlinearities by using multiple source attribution methods and secondary organic aerosol calculation methods.
Rui Wang, Yang Cheng, Shasha Chen, Rongrong Li, Yue Hu, Xiaokai Guo, Tianlei Zhang, Fengmin Song, and Hao Li
Atmos. Chem. Phys., 24, 4029–4046, https://doi.org/10.5194/acp-24-4029-2024, https://doi.org/10.5194/acp-24-4029-2024, 2024
Short summary
Short summary
We used quantum chemical calculations, Born–Oppenheimer molecular dynamics simulations, and the ACDC kinetic model to characterize SO3–H2SO4 interaction in the gas phase and at the air–water interface and to study the effect of H2S2O7 on H2SO4–NH3-based clusters. The work expands our understanding of new pathways for the loss of SO3 in acidic polluted areas and helps reveal some missing sources of NPF in metropolitan industrial regions and understand the atmospheric organic–sulfur cycle better.
Hao Yang, Lei Chen, Hong Liao, Jia Zhu, Wenjie Wang, and Xin Li
Atmos. Chem. Phys., 24, 4001–4015, https://doi.org/10.5194/acp-24-4001-2024, https://doi.org/10.5194/acp-24-4001-2024, 2024
Short summary
Short summary
The present study quantifies the response of aerosol–radiation interaction (ARI) to anthropogenic emission reduction from 2013 to 2017, with the main focus on the contribution to changed O3 concentrations over eastern China both in summer and winter using the WRF-Chem model. The weakened ARI due to decreased anthropogenic emission aggravates the summer (winter) O3 pollution by +0.81 ppb (+0.63 ppb), averaged over eastern China.
Margaret R. Marvin, Paul I. Palmer, Fei Yao, Mohd Talib Latif, and Md Firoz Khan
Atmos. Chem. Phys., 24, 3699–3715, https://doi.org/10.5194/acp-24-3699-2024, https://doi.org/10.5194/acp-24-3699-2024, 2024
Short summary
Short summary
We use an atmospheric chemistry model to investigate aerosols emitted from fire activity across Southeast Asia. We find that the limited nature of measurements in this region leads to large uncertainties that significantly hinder the model representation of these aerosols and their impacts on air quality. As a result, the number of monthly attributable deaths is underestimated by as many as 4500, particularly in March at the peak of the mainland burning season.
Julie Camman, Benjamin Chazeau, Nicolas Marchand, Amandine Durand, Grégory Gille, Ludovic Lanzi, Jean-Luc Jaffrezo, Henri Wortham, and Gaëlle Uzu
Atmos. Chem. Phys., 24, 3257–3278, https://doi.org/10.5194/acp-24-3257-2024, https://doi.org/10.5194/acp-24-3257-2024, 2024
Short summary
Short summary
Fine particle (PM1) pollution is a major health issue in the city of Marseille, which is subject to numerous pollution sources. Sampling carried out during the summer enabled a fine characterization of the PM1 sources and their oxidative potential, a promising new metric as a proxy for health impact. PM1 came mainly from combustion sources, secondary ammonium sulfate, and organic nitrate, while the oxidative potential of PM1 came from these sources and from resuspended dust in the atmosphere.
Yuemeng Ji, Zhang Shi, Wenjian Li, Jiaxin Wang, Qiuju Shi, Yixin Li, Lei Gao, Ruize Ma, Weijun Lu, Lulu Xu, Yanpeng Gao, Guiying Li, and Taicheng An
Atmos. Chem. Phys., 24, 3079–3091, https://doi.org/10.5194/acp-24-3079-2024, https://doi.org/10.5194/acp-24-3079-2024, 2024
Short summary
Short summary
The formation mechanisms for secondary brown carbon (SBrC) contributed by multifunctional reduced nitrogen compounds (RNCs) remain unclear. Hence, from combined laboratory experiments and quantum chemical calculations, we investigated the heterogeneous reactions of glyoxal (GL) with multifunctional RNCs, which are driven by four-step indirect nucleophilic addition reactions. Our results show a possible missing source for SBrC formation on urban, regional, and global scales.
Elyse A. Pennington, Yuan Wang, Benjamin C. Schulze, Karl M. Seltzer, Jiani Yang, Bin Zhao, Zhe Jiang, Hongru Shi, Melissa Venecek, Daniel Chau, Benjamin N. Murphy, Christopher M. Kenseth, Ryan X. Ward, Havala O. T. Pye, and John H. Seinfeld
Atmos. Chem. Phys., 24, 2345–2363, https://doi.org/10.5194/acp-24-2345-2024, https://doi.org/10.5194/acp-24-2345-2024, 2024
Short summary
Short summary
To assess the air quality in Los Angeles (LA), we improved the CMAQ model by using dynamic traffic emissions and new secondary organic aerosol schemes to represent volatile chemical products. Source apportionment demonstrates that the urban areas of the LA Basin and vicinity are NOx-saturated, with the largest sensitivity of O3 to changes in volatile organic compounds in the urban core. The improvement and remaining issues shed light on the future direction of the model development.
Feifan Yan, Hang Su, Yafang Cheng, Rujin Huang, Hong Liao, Ting Yang, Yuanyuan Zhu, Shaoqing Zhang, Lifang Sheng, Wenbin Kou, Xinran Zeng, Shengnan Xiang, Xiaohong Yao, Huiwang Gao, and Yang Gao
Atmos. Chem. Phys., 24, 2365–2376, https://doi.org/10.5194/acp-24-2365-2024, https://doi.org/10.5194/acp-24-2365-2024, 2024
Short summary
Short summary
PM2.5 pollution is a major air quality issue deteriorating human health, and previous studies mostly focus on regions like the North China Plain and Yangtze River Delta. However, the characteristics of PM2.5 concentrations between these two regions are studied less often. Focusing on the transport corridor region, we identify an interesting seesaw transport phenomenon with stagnant weather conditions, conducive to PM2.5 accumulation over this region, resulting in large health effects.
Prerita Agarwal, David S. Stevenson, and Mathew R. Heal
Atmos. Chem. Phys., 24, 2239–2266, https://doi.org/10.5194/acp-24-2239-2024, https://doi.org/10.5194/acp-24-2239-2024, 2024
Short summary
Short summary
Air pollution levels across northern India are amongst some of the worst in the world, with episodic and hazardous haze events. Here, the ability of the WRF-Chem model to predict air quality over northern India is assessed against several datasets. Whilst surface wind speed and particle pollution peaks are over- and underestimated, respectively, meteorology and aerosol trends are adequately captured, and we conclude it is suitable for investigating severe particle pollution events.
George Jordan, Florent Malavelle, Ying Chen, Amy Peace, Eliza Duncan, Daniel G. Partridge, Paul Kim, Duncan Watson-Parris, Toshihiko Takemura, David Neubauer, Gunnar Myhre, Ragnhild Skeie, Anton Laakso, and James Haywood
Atmos. Chem. Phys., 24, 1939–1960, https://doi.org/10.5194/acp-24-1939-2024, https://doi.org/10.5194/acp-24-1939-2024, 2024
Short summary
Short summary
The 2014–15 Holuhraun eruption caused a huge aerosol plume in an otherwise unpolluted region, providing a chance to study how aerosol alters cloud properties. This two-part study uses observations and models to quantify this relationship’s impact on the Earth’s energy budget. Part 1 suggests the models capture the observed spatial and chemical evolution of the plume, yet no model plume is exact. Understanding these differences is key for Part 2, where changes to cloud properties are explored.
Lin Du, Xiaofan Lv, Makroni Lily, Kun Li, and Narcisse Tsona Tchinda
Atmos. Chem. Phys., 24, 1841–1853, https://doi.org/10.5194/acp-24-1841-2024, https://doi.org/10.5194/acp-24-1841-2024, 2024
Short summary
Short summary
This study explores the pH effect on the reaction of dissolved SO2 with selected organic peroxides. Results show that the formation of organic and/or inorganic sulfate from these peroxides strongly depends on their electronic structures, and these processes are likely to alter the chemical composition of dissolved organic matter in different ways. The rate constants of these reactions exhibit positive pH and temperature dependencies within pH 1–10 and 240–340 K ranges.
Angelo Riccio and Elena Chianese
Atmos. Chem. Phys., 24, 1673–1689, https://doi.org/10.5194/acp-24-1673-2024, https://doi.org/10.5194/acp-24-1673-2024, 2024
Short summary
Short summary
Starting from the Copernicus Atmosphere Monitoring Service (CAMS), we provided a novel ensemble statistical post-processing approach to improve their air quality predictions. Our approach is able to provide reliable short-term forecasts of pollutant concentrations, which is a key challenge in supporting national authorities in their tasks related to EU Air Quality Directives, such as planning and reporting the state of air quality to the citizens.
Yanru Huo, Mingxue Li, Xueyu Wang, Jianfei Sun, Yuxin Zhou, Yuhui Ma, and Maoxia He
EGUsphere, https://doi.org/10.5194/egusphere-2023-2856, https://doi.org/10.5194/egusphere-2023-2856, 2024
Short summary
Short summary
This work found that the A-W interface and TiO2 clusters promote the oxidation of phenolic compounds (PhCs) to varying degrees comparing with gas phase, and bulk water. Some by-products are more harmful than their parent compounds. This work provides important evidence for the rapid oxidation observed in the O3/HO• + PhCs experiments at the A-W interface and in the mineral dust.
Stella E. I. Manavi and Spyros N. Pandis
Atmos. Chem. Phys., 24, 891–909, https://doi.org/10.5194/acp-24-891-2024, https://doi.org/10.5194/acp-24-891-2024, 2024
Short summary
Short summary
Organic vapors of intermediate volatility have often been neglected as sources of atmospheric organic aerosol. In this work we use a new approach for their simulation and quantify the contribution of these compounds emitted by transportation sources (gasoline and diesel vehicles) to particulate matter over Europe. The estimated secondary organic aerosol levels are on average 60 % higher than predicted by previous approaches. However, these estimates are probably lower limits.
Zhiyuan Li, Kin-Fai Ho, Harry Fung Lee, and Steve Hung Lam Yim
Atmos. Chem. Phys., 24, 649–661, https://doi.org/10.5194/acp-24-649-2024, https://doi.org/10.5194/acp-24-649-2024, 2024
Short summary
Short summary
This study developed an integrated model framework for accurate multi-air-pollutant exposure assessments in high-density and high-rise cities. Following the proposed integrated model framework, we established multi-air-pollutant exposure models for four major PM10 chemical species as well as four criteria air pollutants with R2 values ranging from 0.73 to 0.93. The proposed framework serves as an important tool for combined exposure assessment in epidemiological studies.
Yujin Jo, Myoseon Jang, Sanghee Han, Azad Madhu, Bonyoung Koo, Yiqin Jia, Zechen Yu, Soontae Kim, and Jinsoo Park
Atmos. Chem. Phys., 24, 487–508, https://doi.org/10.5194/acp-24-487-2024, https://doi.org/10.5194/acp-24-487-2024, 2024
Short summary
Short summary
The CAMx–UNIPAR model simulated the SOA budget formed via multiphase reactions of hydrocarbons and the impact of emissions and climate on SOA characteristics under California’s urban environments during winter 2018. SOA growth was dominated by daytime oxidation of long-chain alkanes and nighttime terpene oxidation with O3 and NO−3 radicals. The spatial distributions of anthropogenic SOA were affected by the northwesterly wind, whereas those of biogenic SOA were insensitive to wind directions.
Peter Huszar, Alvaro Patricio Prieto Perez, Lukáš Bartík, Jan Karlický, and Anahi Villalba-Pradas
Atmos. Chem. Phys., 24, 397–425, https://doi.org/10.5194/acp-24-397-2024, https://doi.org/10.5194/acp-24-397-2024, 2024
Short summary
Short summary
Urbanization transforms rural land into artificial land, while due to human activities, it also introduces a great quantity of emissions. We quantify the impact of urbanization on the final particulate matter pollutant levels by looking not only at these emissions, but also at the way urban land cover influences meteorological conditions, how the removal of pollutants changes due to urban land cover, and how biogenic emissions from vegetation change due to less vegetation in urban areas.
Yinbao Jin, Yiming Liu, Xiao Lu, Xiaoyang Chen, Ao Shen, Haofan Wang, Yinping Cui, Yifei Xu, Siting Li, Jian Liu, Ming Zhang, Yingying Ma, and Qi Fan
Atmos. Chem. Phys., 24, 367–395, https://doi.org/10.5194/acp-24-367-2024, https://doi.org/10.5194/acp-24-367-2024, 2024
Short summary
Short summary
This study aims to address these issues by evaluating eight independent biomass burning (BB) emission inventories (GFED, FINN1.5, FINN2.5 MOS, FINN2.5 MOSVIS, GFAS, FEER, QFED, and IS4FIRES) using the WRF-Chem model and analyzing their impact on aerosol optical properties (AOPs) and direct radiative forcing (DRF) during wildfire events in peninsular Southeast Asia (PSEA) that occurred in March 2019.
Hamza Ahsan, Hailong Wang, Jingbo Wu, Mingxuan Wu, Steven J. Smith, Susanne Bauer, Harrison Suchyta, Dirk Olivié, Gunnar Myhre, Hitoshi Matsui, Huisheng Bian, Jean-François Lamarque, Ken Carslaw, Larry Horowitz, Leighton Regayre, Mian Chin, Michael Schulz, Ragnhild Bieltvedt Skeie, Toshihiko Takemura, and Vaishali Naik
Atmos. Chem. Phys., 23, 14779–14799, https://doi.org/10.5194/acp-23-14779-2023, https://doi.org/10.5194/acp-23-14779-2023, 2023
Short summary
Short summary
We examine the impact of the assumed effective height of SO2 injection, SO2 and BC emission seasonality, and the assumed fraction of SO2 emissions injected as SO4 on climate and chemistry model results. We find that the SO2 injection height has a large impact on surface SO2 concentrations and, in some models, radiative flux. These assumptions are a
hiddensource of inter-model variability and may be leading to bias in some climate model results.
Zhen Peng, Lili Lei, Zhe-Min Tan, Meigen Zhang, Aijun Ding, and Xingxia Kou
Atmos. Chem. Phys., 23, 14505–14520, https://doi.org/10.5194/acp-23-14505-2023, https://doi.org/10.5194/acp-23-14505-2023, 2023
Short summary
Short summary
Annual PM2.5 emissions in China consistently decreased by about 3% to 5% from 2017 to 2020 with spatial variations and seasonal dependencies. High-temporal-resolution and dynamics-based PM2.5 emission estimates provide quantitative diurnal variations for each season. Significant reductions in PM2.5 emissions in the North China Plain and northeast of China in 2020 were caused by COVID-19.
Stylianos Kakavas, Spyros N. Pandis, and Athanasios Nenes
Atmos. Chem. Phys., 23, 13555–13564, https://doi.org/10.5194/acp-23-13555-2023, https://doi.org/10.5194/acp-23-13555-2023, 2023
Short summary
Short summary
Water uptake from organic species in aerosol can affect the partitioning of semi-volatile inorganic compounds but are not considered in global and chemical transport models. We address this with a version of the PM-CAMx model that considers such organic water effects and use it to carry out 1-year aerosol simulations over the continental US. We show that such organic water impacts can increase dry PM1 levels by up to 2 μg m-3 when RH levels and PM1 concentrations are high.
Benjamin N. Murphy, Darrell Sonntag, Karl M. Seltzer, Havala O. T. Pye, Christine Allen, Evan Murray, Claudia Toro, Drew R. Gentner, Cheng Huang, Shantanu Jathar, Li Li, Andrew A. May, and Allen L. Robinson
Atmos. Chem. Phys., 23, 13469–13483, https://doi.org/10.5194/acp-23-13469-2023, https://doi.org/10.5194/acp-23-13469-2023, 2023
Short summary
Short summary
We update methods for calculating organic particle and vapor emissions from mobile sources in the USA. Conventionally, particulate matter (PM) and volatile organic carbon (VOC) are speciated without consideration of primary semivolatile emissions. Our methods integrate state-of-the-science speciation profiles and correct for common artifacts when sampling emissions in a laboratory. We quantify impacts of the emission updates on ambient pollution with the Community Multiscale Air Quality model.
Yanshun Li, Randall V. Martin, Chi Li, Brian L. Boys, Aaron van Donkelaar, Jun Meng, and Jeffrey R. Pierce
Atmos. Chem. Phys., 23, 12525–12543, https://doi.org/10.5194/acp-23-12525-2023, https://doi.org/10.5194/acp-23-12525-2023, 2023
Short summary
Short summary
We developed and evaluated processes affecting within-day (diel) variability in PM2.5 concentrations in a chemical transport model over the contiguous US. Diel variability in PM2.5 for the contiguous US is driven by early-morning accumulation into a shallow mixed layer, decreases from mid-morning through afternoon with mixed-layer growth, increases from mid-afternoon through evening as the mixed-layer collapses, and decreases overnight as emissions decrease.
Chupeng Zhang, Shangfei Hai, Yang Gao, Yuhang Wang, Shaoqing Zhang, Lifang Sheng, Bin Zhao, Shuxiao Wang, Jingkun Jiang, Xin Huang, Xiaojing Shen, Junying Sun, Aura Lupascu, Manish Shrivastava, Jerome D. Fast, Wenxuan Cheng, Xiuwen Guo, Ming Chu, Nan Ma, Juan Hong, Qiaoqiao Wang, Xiaohong Yao, and Huiwang Gao
Atmos. Chem. Phys., 23, 10713–10730, https://doi.org/10.5194/acp-23-10713-2023, https://doi.org/10.5194/acp-23-10713-2023, 2023
Short summary
Short summary
New particle formation is an important source of atmospheric particles, exerting critical influences on global climate. Numerical models are vital tools to understanding atmospheric particle evolution, which, however, suffer from large biases in simulating particle numbers. Here we improve the model chemical processes governing particle sizes and compositions. The improved model reveals substantial contributions of newly formed particles to climate through effects on cloud condensation nuclei.
Xiaodong Xie, Jianlin Hu, Momei Qin, Song Guo, Min Hu, Dongsheng Ji, Hongli Wang, Shengrong Lou, Cheng Huang, Chong Liu, Hongliang Zhang, Qi Ying, Hong Liao, and Yuanhang Zhang
Atmos. Chem. Phys., 23, 10563–10578, https://doi.org/10.5194/acp-23-10563-2023, https://doi.org/10.5194/acp-23-10563-2023, 2023
Short summary
Short summary
The atmospheric age of particles reflects how long particles have been formed and suspended in the atmosphere, which is closely associated with the evolution processes of particles. An analysis of the atmospheric age of PM2.5 provides a unique perspective on the evolution processes of different PM2.5 components. The results also shed lights on how to design effective emission control actions under unfavorable meteorological conditions.
Lea Fink, Matthias Karl, Volker Matthias, Sonia Oppo, Richard Kranenburg, Jeroen Kuenen, Sara Jutterström, Jana Moldanova, Elisa Majamäki, and Jukka-Pekka Jalkanen
Atmos. Chem. Phys., 23, 10163–10189, https://doi.org/10.5194/acp-23-10163-2023, https://doi.org/10.5194/acp-23-10163-2023, 2023
Short summary
Short summary
The Mediterranean Sea is a heavily trafficked shipping area, and air quality monitoring stations in numerous cities along the Mediterranean coast have detected high levels of air pollutants originating from shipping emissions. The current study investigates how existing restrictions on shipping-related emissions to the atmosphere ensure compliance with legislation. Focus was laid on fine particles and particle species, which were simulated with five different chemical transport models.
Noah A. Stanton and Neil F. Tandon
Atmos. Chem. Phys., 23, 9191–9216, https://doi.org/10.5194/acp-23-9191-2023, https://doi.org/10.5194/acp-23-9191-2023, 2023
Short summary
Short summary
Chemistry in Earth’s atmosphere has a potentially strong but very uncertain impact on climate. Past attempts to fully model chemistry in Earth’s troposphere (the lowest layer of the atmosphere) typically simplified the representation of Earth’s surface, which in turn limited the ability to simulate changes in climate. The cutting-edge model that we use in this study does not require such simplification, and we use it to examine the climate effects of chemical interactions in the troposphere.
Yiqi Zheng, Larry W. Horowitz, Raymond Menzel, David J. Paynter, Vaishali Naik, Jingyi Li, and Jingqiu Mao
Atmos. Chem. Phys., 23, 8993–9007, https://doi.org/10.5194/acp-23-8993-2023, https://doi.org/10.5194/acp-23-8993-2023, 2023
Short summary
Short summary
Biogenic secondary organic aerosols (SOAs) account for a large fraction of fine aerosol at the global scale. Using long-term measurements and a climate model, we investigate anthropogenic impacts on biogenic SOA at both decadal and centennial timescales. Results show that despite reductions in biogenic precursor emissions, SOA has been strongly amplified by anthropogenic emissions since the preindustrial era and exerts a cooling radiative forcing.
Cited articles
Appel, K. W., Napelenok, S. L., Foley, K. M., Pye, H. O. T., Hogrefe, C., Luecken, D. J., Bash, J. O., Roselle, S. J., Pleim, J. E., Foroutan, H., Hutzell, W. T., Pouliot, G. A., Sarwar, G., Fahey, K. M., Gantt, B., Gilliam, R. C., Heath, N. K., Kang, D., Mathur, R., Schwede, D. B., Spero, T. L., Wong, D. C., and Young, J. O.: Description and evaluation of the Community Multiscale Air Quality (CMAQ) modeling system version 5.1, Geosci. Model Dev., 10, 1703–1732, https://doi.org/10.5194/gmd-10-1703-2017, 2017. a
Asmi, A., Wiedensohler, A., Laj, P., Fjaeraa, A.-M., Sellegri, K., Birmili, W., Weingartner, E., Baltensperger, U., Zdimal, V., Zikova, N., Putaud, J.-P., Marinoni, A., Tunved, P., Hansson, H.-C., Fiebig, M., Kivekäs, N., Lihavainen, H., Asmi, E., Ulevicius, V., Aalto, P. P., Swietlicki, E., Kristensson, A., Mihalopoulos, N., Kalivitis, N., Kalapov, I., Kiss, G., de Leeuw, G., Henzing, B., Harrison, R. M., Beddows, D., O'Dowd, C., Jennings, S. G., Flentje, H., Weinhold, K., Meinhardt, F., Ries, L., and Kulmala, M.: Number size distributions and seasonality of submicron particles in Europe 2008–2009, Atmos. Chem. Phys., 11, 5505–5538, https://doi.org/10.5194/acp-11-5505-2011, 2011. a
Binkowski, F. S., Arunachalam, S., Adelman, Z., and Pinto, J. P.: Examining
photolysis rates with a prototype online photolysis module in CMAQ, J. Appl. Meteorol. Clim., 46, 1252–1256,
https://doi.org/10.1175/JAM2531.1, 2007. a
Bond, T. C. and Bergstrom, R. W.: Light absorption by carbonaceous particles:
An investigative review, Aerosol Sci. Tech., 40, 27–67,
https://doi.org/10.1080/02786820500421521, 2006. a
Bond, T. C., Habib, G., and Bergstrom, R. W.: Limitations in the enhancement
of visible light absorption due to mixing state,
J. Geophys. Res.-Atmos., 111, 1–13, https://doi.org/10.1029/2006JD007315, 2006. a
Bondy, A. L., Bonanno, D., Moffet, R. C., Wang, B., Laskin, A., and Ault, A. P.: The diverse chemical mixing state of aerosol particles in the southeastern United States, Atmos. Chem. Phys., 18, 12595–12612, https://doi.org/10.5194/acp-18-12595-2018, 2018. a, b
Burgos, M. A., Andrews, E., Titos, G., Benedetti, A., Bian, H., Buchard, V., Curci, G., Kipling, Z., Kirkevåg, A., Kokkola, H., Laakso, A., Letertre-Danczak, J., Lund, M. T., Matsui, H., Myhre, G., Randles, C., Schulz, M., van Noije, T., Zhang, K., Alados-Arboledas, L., Baltensperger, U., Jefferson, A., Sherman, J., Sun, J., Weingartner, E., and Zieger, P.: A global model–measurement evaluation of particle light scattering coefficients at elevated relative humidity, Atmos. Chem. Phys., 20, 10231–10258, https://doi.org/10.5194/acp-20-10231-2020, 2020. a
Bzdek, B. R., Pennington, M. R., and Johnston, M. V.: Single particle chemical
analysis of ambient ultrafine aerosol: A review,
J. Aerosol Sci.,
52, 109–120, 2012. a
Cappa, C. D., Onasch, T. B., Massoli, P., Worsnop, D. R., Bates, T. S., Cross, E. S., Davidovits, P., Hakala, J., Hayden, K. L., Jobson, B. T., Kolesar, K. R., Lack, D. A., Lerner, B. M., Li, S. M., Mellon, D., Nuaaman, I., Olfert, J. S., Petäjä, T., Quinn, P. K., Song, C., Subramanian, R., Williams, E. J., and Zaveri, R. A.:
Radiative absorption enhancements due to the mixing state of atmospheric
black carbon, Science, 337, 1078–1081, 2012. a
Cappa, C. D., Zhang, X., Russell, L. M., Collier, S., Lee, A. K. Y., Chen, C. L., Betha, R., Chen, S., Liu, J., Price, D. J., Sanchez, K. J., McMeeking, G. R., Williams, L. R., Onasch, T. B., Worsnop, D. R., Abbatt, J., and Zhang, Q.: Light absorption by
ambient black and brown carbon and its dependence on black carbon coating
state for two California, USA, cities in winter and summer,
J. Geophys. Res.-Atmos., 124, 1550–1577, 2019. a, b
Charlson, R. J., Schwartz, S., Hales, J., Cess, R. D., Coakley, J. J., Hansen,
J., and Hofmann, D.: Climate forcing by anthropogenic aerosols, Science, 255,
423–430, 1992. a
China, S., Mazzoleni, C., Gorkowski, K., Aiken, A. C., and Dubey, M. K.:
Morphology and mixing state of individual freshly emitted wildfire
carbonaceous particles, Nat. Commun., 4, 1–7, 2013. a
China, S., Scarnato, B., Owen, R. C., Zhang, B., Ampadu, M. T., Kumar, S., Dzepina, K., Dziobak, M. P., Fialho, P., Perlinger, J. A., Hueber, J., Helmig, D., Mazzoleni, L. R., and Mazzoleni, C.: Morphology
and mixing state of aged soot particles at a remote marine free troposphere
site: Implications for optical properties, Geophys. Res. Lett., 42,
1243–1250, 2015. a
Ching, J., Riemer, N., and West, M.: Impacts of black carbon mixing state on
black carbon nucleation scavenging: Insights from a particle-resolved model,
J. Geophys. Res.-Atmos., 117, D23209, https://doi.org/10.1029/2012JD018269, 2012. a
Ching, J., Riemer, N., and West, M.: Black carbon mixing state impacts on
cloud microphysical properties: Effects of aerosol plume and environmental
conditions, J. Geophys. Res.-Atmos., 121, 5990–6013,
https://doi.org/10.1002/2016JD024851, 2016. a
Ching, J., Fast, J., West, M., and Riemer, N.: Metrics to quantify the importance of mixing state for CCN activity, Atmos. Chem. Phys., 17, 7445–7458, https://doi.org/10.5194/acp-17-7445-2017, 2017. a, b
Corbin, J. C., Pieber, S. M., Czech, H., Zanatta, M., Jakobi, G., Massabò, D., Orasche, J., El Haddad, I., Mensah, A. A., Stengel, B., Drinovec, L., Mocnik, G., Zimmermann, R., Prévôt, A. S. H., and Gysel, M.: Brown and
black carbon emitted by a marine engine operated on heavy fuel oil and
distillate fuels: Optical properties, size distributions, and emission
factors, J. Geophys. Res.-Atmos., 123, 6175–6195, 2018. a, b
Curci, G., Hogrefe, C., Bianconi, R., Im, U., Balzarini, A., Baró, R.,
Brunner, D., Forkel, R., Giordano, L., Hirtl, M., Honzak, L.,
Jiménez-Guerrero, P., Knote, C., Langer, M., Makar, P. A., Pirovano,
G., Pérez, J. L., San José, R., Syrakov, D., Tuccella, P.,
Werhahn, J., Wolke, R., Žabkar, R., Zhang, J., and Galmarini, S.:
Uncertainties of simulated aerosol optical properties induced by assumptions
on aerosol physical and chemical properties: An AQMEII-2 perspective,
Atmos. Environ., 115, 541–552, https://doi.org/10.1016/j.atmosenv.2014.09.009,
2015. a
Curtis, D. B., Meland, B., Aycibin, M., Arnold, N. P., Grassian, V. H., Young,
M. A., and Kleiber, P. D.: A laboratory investigation of light scattering
from representative components of mineral dust aerosol at a wavelength of 550
nm, J. Geophys. Res.-Atmos., 113, D08210, https://doi.org/10.1029/2007JD009387, 2008. a
DeVille, L., Riemer, N., and West, M.: Convergence of a generalized Weighted
Flow Algorithm for stochastic particle coagulation,
Journal of Computational Dynamics, 6, 69–94, 1–18, https://doi.org/10.3934/jcd.2019003, 2019. a
DeVille, R. E. L., Riemer, N., and West, M.: Weighted Flow Algorithms
(WFA) for stochastic particle coagulation, J. Computational Phys., 230,
8427–8451, https://doi.org/10.1016/j.jcp.2011.07.027, 2011. a
Esteve, A. R., Highwood, E. J., Morgan, W. T., Allen, G., Coe, H., Grainger,
R. G., Brown, P., and Szpek, K.: A study on the sensitivities of simulated
aerosol optical properties to composition and size distribution using
airborne measurements, Atmos. Environ., 89, 517–524,
https://doi.org/10.1016/j.atmosenv.2014.02.063, 2014. a, b
Fast, J. D., Gustafson Jr., W. I., Easter, R. C., Zaveri, R. A., Barnard, J. C.,
Chapman, E. G., Grell, G. A., and Peckham, S. E.: Evolution of ozone,
particulates, and aerosol direct radiative forcing in the vicinity of Houston
using a fully coupled meteorology-chemistry-aerosol model, J. Geophys. Res.-Atmos., 111, D21305, https://doi.org/10.1029/2005JD006721, 2006. a
Fierce, L., Bond, T. C., Bauer, S. E., Mena, F., and Riemer, N.: Black carbon
absorption at the global scale is affected by particle-scale diversity in
composition, Nat. Commun., 7, 1–8, https://doi.org/10.1038/ncomms12361,
2016. a, b
Fierce, L., Riemer, N., and Bond, T. C.: Toward reduced representation of
mixing state for simulating aerosol effects on climate,
B. Am. Meteorol. Soc., 98, 971–980,
https://doi.org/10.1175/BAMS-D-16-0028.1, 2017. a
Fierce, L., Onasch, T. B., Cappa, C. D., Mazzoleni, C., China, S., Bhandari,
J., Davidovits, P., Al Fischer, D., Helgestad, T., Lambe, A. T., Sedlacek,
A. J., Smith, G. D., and Wolff, L.: Radiative absorption enhancements by
black carbon controlled by particle-to-particle heterogeneity in
composition,
P. Natl. Acad. Sci. USA, 117, 5196–5203, https://doi.org/10.1073/pnas.1919723117, 2020. a, b, c
Forster, P., Storelvmo, T., Armour, K., Collins, W., Dufresne, J.-L., Frame,
D., Lunt, D., Mauritsen, T., Palmer, M., Watanabe, M., Wild, M., and Zhang,
H.: The Earth's Energy Budget, Climate Feedbacks, and Climate Sensitivity,
923–1054, Cambridge University Press, Cambridge, United Kingdom and New
York, NY, USA, 2021. a
Healy, R. M., Riemer, N., Wenger, J. C., Murphy, M., West, M., Poulain, L., Wiedensohler, A., O'Connor, I. P., McGillicuddy, E., Sodeau, J. R., and Evans, G. J.: Single particle diversity and mixing state measurements, Atmos. Chem. Phys., 14, 6289–6299, https://doi.org/10.5194/acp-14-6289-2014, 2014. a, b, c
Hu, K., Liu, D., Tian, P., Wu, Y., Deng, Z., Wu, Y., Zhao, D., Li, R., Sheng, J., Huang, M., Ding, D., Li, W., Wang, Y., and Wu, Y.: Measurements of the diversity of shape and mixing
state for ambient black carbon particles, Geophys. Res. Lett., 48,
e2021GL094522, https://doi.org/10.1029/2021gl094522, 2021. a, b
Hughes, M., Kodros, J. K., Pierce, J. R., West, M., and Riemer, N.: Machine
learning to predict the global distribution of aerosol mixing state metrics,
Atmosphere, 9, 15, https://doi.org/10.3390/atmos9010015, 2018. a
Kodros, J. K., Hanna, S. J., Bertram, A. K., Leaitch, W. R., Schulz, H., Herber, A. B., Zanatta, M., Burkart, J., Willis, M. D., Abbatt, J. P. D., and Pierce, J. R.: Size-resolved mixing state of black carbon in the Canadian high Arctic and implications for simulated direct radiative effect, Atmos. Chem. Phys., 18, 11345–11361, https://doi.org/10.5194/acp-18-11345-2018, 2018. a, b
Koike, M., Moteki, N., Khatri, P., Takamura, T., Takegawa, N., Kondo, Y.,
Hashioka, H., Matsui, H., Shimizu, A., and Sugimoto, N.: Case study of
absorption aerosol optical depth closure of black carbon over the East China
Sea, J. Geophys. Res.-Atmos., 119, 122–136, 2014. a
Lanz, V. A., Prévôt, A. S. H., Alfarra, M. R., Weimer, S., Mohr, C., DeCarlo, P. F., Gianini, M. F. D., Hueglin, C., Schneider, J., Favez, O., D'Anna, B., George, C., and Baltensperger, U.: Characterization of aerosol chemical composition with aerosol mass spectrometry in Central Europe: an overview, Atmos. Chem. Phys., 10, 10453–10471, https://doi.org/10.5194/acp-10-10453-2010, 2010. a
Laskin, A., Cowin, J., and Iedema, M.: Analysis of individual environmental
particles using modern methods of electron microscopy and X-ray
microanalysis, J. Electron Spectrosc., 150,
260–274, https://doi.org/10.1016/j.elspec.2005.06.008, 2006. a
Levy, R. C., Remer, L. A., and Dubovik, O.: Global aerosol optical properties
and application to Moderate Resolution Imaging Spectroradiometer aerosol
retrieval over land, J. Geophys. Res.-Atmos., 112, D13210, https://doi.org/10.1029/2006jd007815, 2007. a
Liu, D., Allan, J., Whitehead, J., Young, D., Flynn, M., Coe, H., McFiggans, G., Fleming, Z. L., and Bandy, B.: Ambient black carbon particle hygroscopic properties controlled by mixing state and composition, Atmos. Chem. Phys., 13, 2015–2029, https://doi.org/10.5194/acp-13-2015-2013, 2013. a
Liu, D., Whitehead, J., Alfarra, M. R., Reyes-Villegas, E., Spracklen, D. V.,
Reddington, C. L., Kong, S., Williams, P. I., Ting, Y. C., Haslett, S.,
Taylor, J. W., Flynn, M. J., Morgan, W. T., McFiggans, G., Coe, H., and
Allan, J. D.: Black-carbon absorption enhancement in the atmosphere
determined by particle mixing state, Nat. Geosci., 10, 184–188,
https://doi.org/10.1038/ngeo2901, 2017. a
Liu, X., Easter, R. C., Ghan, S. J., Zaveri, R., Rasch, P., Shi, X., Lamarque, J.-F., Gettelman, A., Morrison, H., Vitt, F., Conley, A., Park, S., Neale, R., Hannay, C., Ekman, A. M. L., Hess, P., Mahowald, N., Collins, W., Iacono, M. J., Bretherton, C. S., Flanner, M. G., and Mitchell, D.: Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere Model CAM5, Geosci. Model Dev., 5, 709–739, https://doi.org/10.5194/gmd-5-709-2012, 2012. a
Luo, J., Zhang, Q., Luo, J., Liu, J., Huo, Y., and Zhang, Y.: Optical modeling
of black carbon with different coating materials: The effect of coating
configurations, J. Geophys. Res.-Atmos., 124,
13230–13253, 2019. a
Ma, X., Yu, F., and Luo, G.: Aerosol direct radiative forcing based on GEOS-Chem-APM and uncertainties, Atmos. Chem. Phys., 12, 5563–5581, https://doi.org/10.5194/acp-12-5563-2012, 2012. a
Majdi, M., Kim, Y., Turquety, S., and Sartelet, K.: Impact of mixing state on
aerosol optical properties during severe wildfires over the
Euro-Mediterranean region, Atmos. Environ., 220, 117042,
https://doi.org/10.1016/j.atmosenv.2019.117042, 2020. a
Matsui, H.: Development of a global aerosol model using a two-dimensional
sectional method: 1. Model design,
J. Adv. Model. Earth Sy., 9, 1921–1947, 2017. a
Matsui, H. and Mahowald, N.: Development of a global aerosol model using a
two-dimensional sectional method: 2. Evaluation and sensitivity simulations,
J. Adv. Model. Earth Sy., 9, 1887–1920, 2017. a
Matsui, H., Koike, M., Kondo, Y., Moteki, N., Fast, J. D., and Zaveri, R. A.:
Development and validation of a black carbon mixing state resolved
three-dimensional model: Aging processes and radiative impact,
J. Geophys. Res.-Atmos., 118, 2304–2326, 2013. a
Matsui, H., Hamilton, D. S., and Mahowald, N. M.: Black carbon radiative
effects highly sensitive to emitted particle size when resolving mixing-state
diversity, Nat. Commun., 9, 1–11, 2018. a
McComiskey, A., Schwartz, S. E., Schmid, B., Guan, H., Lewis, E. R.,
Ricchiazzi, P., and Ogren, J. A.: Direct aerosol forcing: Calculation from
observables and sensitivities to inputs, J. Geophys. Res.-Atmos., 113, D09202, https://doi.org/10.1029/2007JD009170, 2008. a
McKay, M. D., Beckman, R. J., and Conover, W. J.: A comparison of three methods
for selecting values of input variables in the analysis of output from a
computer code, Technometrics, 42, 55–61, 2000. a
Michel Flores, J., Bar-Or, R. Z., Bluvshtein, N., Abo-Riziq, A., Kostinski, A., Borrmann, S., Koren, I., Koren, I., and Rudich, Y.: Absorbing aerosols at high relative humidity: linking hygroscopic growth to optical properties, Atmos. Chem. Phys., 12, 5511–5521, https://doi.org/10.5194/acp-12-5511-2012, 2012. a
Mitchell Jr., J. M.: The effect of atmospheric aerosols on climate with special
reference to temperature near the earth's surface, J. Appl. Meteorol. Clim., 10, 703–714, 1971. a
Moffet, R. C. and Prather, K. A.: In-situ measurements of the mixing state and
optical properties of soot with implications for radiative forcing
estimates, P. Natl. Acad. Sci. USA, 106, 11872–11877, https://doi.org/10.1073/pnas.0900040106,
2009. a
Nandy, L., Yao, Y., Zheng, Z., and Riemer, N.: Water uptake and optical
properties of mixed organic-inorganic particles, Aerosol Sci. Tech., 55, 1398–1413, https://doi.org/10.1080/02786826.2021.1966378, 2021. a
Oikawa, E., Nakajima, T., Inoue, T., and Winker, D.: A study of the shortwave
direct aerosol forcing using ESSP/CALIPSO observation and GCM simulation,
J. Geophys. Res.-Atmos., 118, 3687–3708, 2013. a
Riemer, N. and West, M.: Quantifying aerosol mixing state with entropy and diversity measures, Atmos. Chem. Phys., 13, 11423–11439, https://doi.org/10.5194/acp-13-11423-2013, 2013. a, b, c, d
Riemer, N., West, M., Zaveri, R. A., and Easter, R. C.: Simulating the
evolution of soot mixing state with a particle-resolved aerosol model,
J. Geophys. Res.-Atmos., 114, 1–22,
https://doi.org/10.1029/2008JD011073, 2009. a, b
Riemer, N., West, M., Zaveri, R., and Easter, R.: Estimating black carbon aging
time-scales with a particle-resolved aerosol model, J. Aerosol Sci., 41, 143–158, 2010. a
Riemer, N., Ault, A. P., West, M., Craig, R. L., and Curtis, J. H.: Aerosol
Mixing State: Measurements, Modeling, and Impacts, Rev. Geophys.,
57, 187–249, https://doi.org/10.1029/2018RG000615, 2019. a
Rissler, J., Nordin, E. Z., Eriksson, A. C., Nilsson, P. T., Frosch, M.,
Sporre, M. K., Wierzbicka, A., Svenningsson, B., Löndahl, J., Messing,
M. E., Sjogren, S., Hemmingsen, J. G., Loft, S., Pagels, J. H., and
Swietlicki, E.: Effective density and mixing state of aerosol particles in a
near-traffic urban environment, Environ. Sci. Technol., 48,
6300–6308, https://doi.org/10.1021/es5000353, 2014. a
Scarnato, B. V., Vahidinia, S., Richard, D. T., and Kirchstetter, T. W.: Effects of internal mixing and aggregate morphology on optical properties of black carbon using a discrete dipole approximation model, Atmos. Chem. Phys., 13, 5089–5101, https://doi.org/10.5194/acp-13-5089-2013, 2013. a, b
Schell, B., Ackermann, I. J., Hass, H., Binkowski, F. S., and Ebel, A.:
Modeling the formation of secondary organic aerosol within a comprehensive
air quality model system, J. Geophys. Res.-Atmos., 106,
28275–28293, 2001. a
Spracklen, D. V., Pringle, K. J., Carslaw, K. S., Chipperfield, M. P., and Mann, G. W.: A global off-line model of size-resolved aerosol microphysics: I. Model development and prediction of aerosol properties, Atmos. Chem. Phys., 5, 2227–2252, https://doi.org/10.5194/acp-5-2227-2005, 2005. a
Stokes, R. and Robinson, R.: Interactions in aqueous nonelectrolyte solutions.
I. Solute-solvent equilibria, J. Phys. Chem., 70,
2126–2131, 1966. a
Subba, T., Gogoi, M. M., Pathak, B., Bhuyan, P. K., and Babu, S. S.: Recent
trend in the global distribution of aerosol direct radiative forcing from
satellite measurements, Atmos. Sci. Lett., 21, e975, https://doi.org/10.1002/asl.975, 2020. a
Szopa, S., Naik, V., Adhikary, B., Artaxo, P., Berntsen, T., Collins, W.,
Fuzzi, S., Gallardo, L., Kiendler-Scharr, A., Klimont, Z., Liao, H., Unger,
N., and Zanis, P.: Short-Lived Climate Forcers, Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA,
817–922, 2021. a
Thornhill, G. D., Collins, W. J., Kramer, R. J., Olivié, D., Skeie, R. B., O'Connor, F. M., Abraham, N. L., Checa-Garcia, R., Bauer, S. E., Deushi, M., Emmons, L. K., Forster, P. M., Horowitz, L. W., Johnson, B., Keeble, J., Lamarque, J.-F., Michou, M., Mills, M. J., Mulcahy, J. P., Myhre, G., Nabat, P., Naik, V., Oshima, N., Schulz, M., Smith, C. J., Takemura, T., Tilmes, S., Wu, T., Zeng, G., and Zhang, J.: Effective radiative forcing from emissions of reactive gases and aerosols – a multi-model comparison, Atmos. Chem. Phys., 21, 853–874, https://doi.org/10.5194/acp-21-853-2021, 2021. a
Titos, G., Jefferson, A., Sheridan, P. J., Andrews, E., Lyamani, H., Alados-Arboledas, L., and Ogren, J. A.: Aerosol light-scattering enhancement due to water uptake during the TCAP campaign, Atmos. Chem. Phys., 14, 7031–7043, https://doi.org/10.5194/acp-14-7031-2014, 2014. a
Titos, G., Cazorla, A., Zieger, P., Andrews, E., Lyamani, H.,
Granados-Muñoz, M. J., Olmo, F. J., and Alados-Arboledas, L.: Effect
of hygroscopic growth on the aerosol light-scattering coefficient: A review
of measurements, techniques and error sources, Atmos. Environ., 141,
494–507, https://doi.org/10.1016/j.atmosenv.2016.07.021, 2016. a, b
Wang, J., Cubison, M. J., Aiken, A. C., Jimenez, J. L., and Collins, D. R.: The importance of aerosol mixing state and size-resolved composition on CCN concentration and the variation of the importance with atmospheric aging of aerosols, Atmos. Chem. Phys., 10, 7267–7283, https://doi.org/10.5194/acp-10-7267-2010, 2010. a
West, M., Riemer, N., Curtis, J., Michelotti, M., Zaveri, R. A., Tian, J., and Arabas, S.: compdyn/partmc: Version 2.6.0 (2.6.0), Zenodo [code], https://doi.org/10.5281/zenodo.5644422, 2021. a
Winker, D. M., Pelon, J., Coakley, J. A., Ackerman, S. A., Charlson, R. J., Colarco, P. R., Flamant, P., Fu, Q., Hoff, R. M., Kittaka, C., Kubar, T. L., le Treut, H., Mccormick, M. P., Mégie, G., Poole, L., Powell, K., Trepte, C., Vaughan, M. A., and Wielicki, B. A.: The CALIPSO mission: A
global 3D view of aerosols and clouds, B. Am. Meteorol. Soc., 91, 1211–1230, 2010. a
Wu, Y., Cheng, T., and Zheng, L.: Light absorption of black carbon aerosols
strongly influenced by particle morphology distribution, Environ.
Res. Lett., 15, 094051, https://doi.org/10.1088/1748-9326/aba2ff, 2020. a, b
Yao, Y., Curtis, J., Ching, J., Zheng, Z., and Riemer, N.: Data for: Quantifying the effects of mixing state on aerosol optical properties, University of Illinois at Urbana-Champaign [data set], https://doi.org/10.13012/B2IDB-8157303_V1, 2022. a
Ye, Q., Gu, P., Li, H. Z., Robinson, E. S., Lipsky, E., Kaltsonoudis, C., Lee, A. K., Apte, J. S., Robinson, A. L., Sullivan, R. C., Presto, A. A., and Donahue, N. M.: Spatial
variability of sources and mixing state of atmospheric particles in a
metropolitan area, Environ. Sci. Technol., 52, 6807–6815, 2018. a
Yu, C., Liu, D., Broda, K., Joshi, R., Olfert, J., Sun, Y., Fu, P., Coe, H., and Allan, J. D.: Characterising mass-resolved mixing state of black carbon in Beijing using a morphology-independent measurement method, Atmos. Chem. Phys., 20, 3645–3661, https://doi.org/10.5194/acp-20-3645-2020, 2020. a, b
Yu, H., Kaufman, Y. J., Chin, M., Feingold, G., Remer, L. A., Anderson, T. L., Balkanski, Y., Bellouin, N., Boucher, O., Christopher, S., DeCola, P., Kahn, R., Koch, D., Loeb, N., Reddy, M. S., Schulz, M., Takemura, T., and Zhou, M.: A review of measurement-based assessments of the aerosol direct radiative effect and forcing, Atmos. Chem. Phys., 6, 613–666, https://doi.org/10.5194/acp-6-613-2006, 2006. a
Zaveri, R. A. and Peters, L. K.: A new lumped structure photochemical mechanism
for large-scale applications, J. Geophys. Res.-Atmos.,
104, 30387–30415, 1999. a
Zaveri, R. A., Easter, R. C., and Peters, L. K.: A computationally efficient
multicomponent equilibrium solver for aerosols (MESA), J. Geophys.
Res.-Atmos., 110, D24203, https://doi.org/10.1029/2004JD005618, 2005. a
Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for
Simulating Aerosol Interactions and Chemistry (MOSAIC), J. Geophys. Res.-Atmos., 113, 1–29, https://doi.org/10.1029/2007JD008782,
2008. a, b
Zaveri, R. A., Barnard, J. C., Easter, R. C., Riemer, N., and West, M.:
Particle-resolved simulation of aerosol size, composition, mixing state, and
the associated optical and cloud condensation nuclei activation properties in
an evolving urban plume, J. Geophys. Res.-Atmos., 115,
1–19, https://doi.org/10.1029/2009JD013616, 2010. a, b, c
Zdanovskii, A.: New methods for calculating solubilities of electrolytes in
multicomponent systems, Zh. Fiz. Khim, 22, 1475–1485, 1948. a
Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich, I., Alfarra, M. R., Takami, A., Middlebrook, A. M., Sun, Y. L., Dzepina, K., Dunlea, E., Docherty, K., DeCarlo, P. F., Salcedo, D., Onasch, T., Jayne, J. T., Miyoshi, T., Shimono, A., Hatakeyama, S., Takegawa, N., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R. J., Rautiainen, J., Sun, J. Y., Zhang, Y. M., and Worsnop, D. R.: Ubiquity and
dominance of oxygenated species in organic aerosols in
anthropogenically-influenced Northern Hemisphere midlatitudes, Geophys.
Res. Lett., 34, L13801, https://doi.org/10.1029/2007gl029979, 2007. a
Zhao, G., Tan, T., Zhu, Y., Hu, M., and Zhao, C.: Method to quantify black carbon aerosol light absorption enhancement with a mixing state index, Atmos. Chem. Phys., 21, 18055–18063, https://doi.org/10.5194/acp-21-18055-2021, 2021. a, b
Zheng, Z., Curtis, J. H., Yao, Y., Gasparik, J. T., Anantharaj, V. G., Zhao,
L., West, M., and Riemer, N.: Estimating submicron aerosol mixing state at
the global scale with machine learning and Earth system modeling, Earth
Space Sci., 8, e2020EA001500, https://doi.org/10.1029/2020EA001500, 2021.
a, b
Zieger, P., Fierz-Schmidhauser, R., Weingartner, E., and Baltensperger, U.: Effects of relative humidity on aerosol light scattering: results from different European sites, Atmos. Chem. Phys., 13, 10609–10631, https://doi.org/10.5194/acp-13-10609-2013, 2013. a
Short summary
Investigating the impacts of aerosol mixing state on aerosol optical properties has a long history from both the modeling and experimental perspective. In this study, we used particle-resolved simulations as a benchmark to determine the error in optical properties when using simplified aerosol representations. We found that errors in single scattering albedo due to the internal mixture assumptions can have substantial effects on calculating aerosol direct radiative forcing.
Investigating the impacts of aerosol mixing state on aerosol optical properties has a long...
Altmetrics
Final-revised paper
Preprint