Articles | Volume 22, issue 14
https://doi.org/10.5194/acp-22-9265-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-22-9265-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantifying the effects of mixing state on aerosol optical properties
Department of Atmospheric Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
Jeffrey H. Curtis
Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
Joseph Ching
Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Ibaraki, 305-0052, Japan
National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo, 190-8518, Japan
Research Institute for Humanity and Nature, 457-4 Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8047, Japan
now at: Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori, 680-0001, Japan
Zhonghua Zheng
Computational and Information Systems Laboratory, National Center for Atmospheric Research, Boulder, CO 80307, USA
Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO 80307, USA
Advanced Study Program, National Center for Atmospheric Research, Boulder, CO 80307, USA
Department of Atmospheric Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
Related authors
Yu Yao, Po-Lun Ma, Yi Qin, Matthew W. Christensen, Hui Wan, Kai Zhang, Balwinder Singh, Meng Huang, and Mikhail Ovchinnikov
EGUsphere, https://doi.org/10.5194/egusphere-2024-523, https://doi.org/10.5194/egusphere-2024-523, 2024
Preprint withdrawn
Short summary
Short summary
Giant aerosols have substantial effects on warm rain formation. However, it remains challenging to quantify the impact of giant particles at global scale. In this work, we applied earth system model to investigate its impacts by implementing new giant aerosol treatments to consider its physical process. We found this approach substantially affect liquid cloud and improved model's precipitation response to aerosols. Our findings demonstrate the significant impact of giant aerosols on climate.
Yijia Sun, Ann M. Fridlind, Israel Silber, Nicole Riemer, and Daniel A. Knopf
EGUsphere, https://doi.org/10.5194/egusphere-2025-3620, https://doi.org/10.5194/egusphere-2025-3620, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The role of Arctic clouds in the regional climate remains uncertain due to insufficient understanding of the amount of liquid droplets and ice crystals present in these clouds. An aerosol-cloud model is employed to examine the role of different aerosol types and freezing parameterizations on the number of ice crystals. The choice of freezing parameterization significantly changes the number of ice crystals impacting the interpretation of the evolution and warming effect of Arctic clouds.
Samuel G. Frederick, Matin Mohebalhojeh, Jeffrey H. Curtis, Matthew West, and Nicole Riemer
EGUsphere, https://doi.org/10.5194/egusphere-2025-4351, https://doi.org/10.5194/egusphere-2025-4351, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We show with detailed computer simulations that spatial patterns of emissions strongly affect aerosols and their ability to seed clouds. Highly variable emissions can raise cloud-forming particle concentrations in the boundary layer by up to 25 %. Because clouds regulate climate and precipitation, these findings underscore the need to represent realistic emission patterns to improve climate predictions.
Oscar H. Díaz-Ibarra, Samuel G. Frederick, Jeffrey H. Curtis, Zachary D'Aquino, Peter A. Bosler, Lekha Patel, Cosmin Safta, Matthew West, and Nicole Riemer
EGUsphere, https://doi.org/10.5194/egusphere-2025-4376, https://doi.org/10.5194/egusphere-2025-4376, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We developed TChem-atm, a new open-source tool for simulating atmospheric chemistry and aerosols. As models become more detailed, traditional methods are too slow. TChem-atm runs on both standard processors and graphics processors, making these simulations faster and more efficient. The tool provides a foundation for next-generation models that improve predictions of air quality and climate.
Wenhan Tang, Sylwester Arabas, Jeffrey H. Curtis, Daniel A. Knopf, Matthew West, and Nicole Riemer
EGUsphere, https://doi.org/10.5194/egusphere-2025-4326, https://doi.org/10.5194/egusphere-2025-4326, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We studied how aerosol particles help form ice in clouds. Using new theory and detailed computer simulations, we found that the way different materials are mixed within these particles has a strong impact on how much ice forms. When ice-forming material is spread across all particles, more droplets freeze than when it is only in a few. This result means that to better predict clouds and climate, models need to account for how particle materials are mixed.
Shengnan Fu, David M. Schultz, Heng Lyu, Zhonghua Zheng, and Chi Zhang
Hydrol. Earth Syst. Sci., 29, 767–783, https://doi.org/10.5194/hess-29-767-2025, https://doi.org/10.5194/hess-29-767-2025, 2025
Short summary
Short summary
We create China’s first open county-level urban flood dataset (2000–2022) using news media data with the help of deep learning. The dataset reflects both natural and societal influences and includes 7595 urban flood events across 2051 counties, covering 46 % of China’s land area. It reveals the predominance of summer floods, an upward trend since 2000, and a decline from southeast to northwest. Notably, some highly developed regions show a decrease, likely due to improved flood management.
Zhouyang Zhang, Jiandong Wang, Jiaping Wang, Nicole Riemer, Chao Liu, Yuzhi Jin, Zeyuan Tian, Jing Cai, Yueyue Cheng, Ganzhen Chen, Bin Wang, Shuxiao Wang, and Aijun Ding
Atmos. Chem. Phys., 25, 1869–1881, https://doi.org/10.5194/acp-25-1869-2025, https://doi.org/10.5194/acp-25-1869-2025, 2025
Short summary
Short summary
Black carbon (BC) exerts notable warming effects. We use a particle-resolved model to investigate the long-term behavior of the BC mixing state, revealing its compositions, coating thickness distribution, and optical properties all stabilize with a characteristic time of less than 1 d. This study can effectively simplify the description of the BC mixing state, which facilitates the precise assessment of the optical properties of BC aerosols in global and chemical transport models.
Jeffrey H. Curtis, Nicole Riemer, and Matthew West
Geosci. Model Dev., 17, 8399–8420, https://doi.org/10.5194/gmd-17-8399-2024, https://doi.org/10.5194/gmd-17-8399-2024, 2024
Short summary
Short summary
This paper introduces a numerical method for simulating particle-based aerosol transport in atmospheric models. We detail the various numerical properties of the advection order method and demonstrate its implementation in a 3D weather prediction model (WRF) for the first time. Particle-based techniques improve the accuracy of aerosol size and composition predictions, which are key for aerosol–cloud and aerosol–radiation interactions.
Yu Yao, Po-Lun Ma, Yi Qin, Matthew W. Christensen, Hui Wan, Kai Zhang, Balwinder Singh, Meng Huang, and Mikhail Ovchinnikov
EGUsphere, https://doi.org/10.5194/egusphere-2024-523, https://doi.org/10.5194/egusphere-2024-523, 2024
Preprint withdrawn
Short summary
Short summary
Giant aerosols have substantial effects on warm rain formation. However, it remains challenging to quantify the impact of giant particles at global scale. In this work, we applied earth system model to investigate its impacts by implementing new giant aerosol treatments to consider its physical process. We found this approach substantially affect liquid cloud and improved model's precipitation response to aerosols. Our findings demonstrate the significant impact of giant aerosols on climate.
Wenfu Tang, Louisa K. Emmons, Helen M. Worden, Rajesh Kumar, Cenlin He, Benjamin Gaubert, Zhonghua Zheng, Simone Tilmes, Rebecca R. Buchholz, Sara-Eva Martinez-Alonso, Claire Granier, Antonin Soulie, Kathryn McKain, Bruce C. Daube, Jeff Peischl, Chelsea Thompson, and Pieternel Levelt
Geosci. Model Dev., 16, 6001–6028, https://doi.org/10.5194/gmd-16-6001-2023, https://doi.org/10.5194/gmd-16-6001-2023, 2023
Short summary
Short summary
The new MUSICAv0 model enables the study of atmospheric chemistry across all relevant scales. We develop a MUSICAv0 grid for Africa. We evaluate MUSICAv0 with observations and compare it with a previously used model – WRF-Chem. Overall, the performance of MUSICAv0 is comparable to WRF-Chem. Based on model–satellite discrepancies, we find that future field campaigns in an eastern African region (30°E–45°E, 5°S–5°N) could substantially improve the predictive skill of air quality models.
Lingcheng Li, Yilin Fang, Zhonghua Zheng, Mingjie Shi, Marcos Longo, Charles D. Koven, Jennifer A. Holm, Rosie A. Fisher, Nate G. McDowell, Jeffrey Chambers, and L. Ruby Leung
Geosci. Model Dev., 16, 4017–4040, https://doi.org/10.5194/gmd-16-4017-2023, https://doi.org/10.5194/gmd-16-4017-2023, 2023
Short summary
Short summary
Accurately modeling plant coexistence in vegetation demographic models like ELM-FATES is challenging. This study proposes a repeatable method that uses machine-learning-based surrogate models to optimize plant trait parameters in ELM-FATES. Our approach significantly improves plant coexistence modeling, thus reducing errors. It has important implications for modeling ecosystem dynamics in response to climate change.
Sudipta Ghosh, Sagnik Dey, Sushant Das, Nicole Riemer, Graziano Giuliani, Dilip Ganguly, Chandra Venkataraman, Filippo Giorgi, Sachchida Nand Tripathi, Srikanthan Ramachandran, Thazhathakal Ayyappen Rajesh, Harish Gadhavi, and Atul Kumar Srivastava
Geosci. Model Dev., 16, 1–15, https://doi.org/10.5194/gmd-16-1-2023, https://doi.org/10.5194/gmd-16-1-2023, 2023
Short summary
Short summary
Accurate representation of aerosols in climate models is critical for minimizing the uncertainty in climate projections. Here, we implement region-specific emission fluxes and a more accurate scheme for carbonaceous aerosol ageing processes in a regional climate model (RegCM4) and show that it improves model performance significantly against in situ, reanalysis, and satellite data over the Indian subcontinent. We recommend improving the model performance before using them for climate studies.
Matthew L. Dawson, Christian Guzman, Jeffrey H. Curtis, Mario Acosta, Shupeng Zhu, Donald Dabdub, Andrew Conley, Matthew West, Nicole Riemer, and Oriol Jorba
Geosci. Model Dev., 15, 3663–3689, https://doi.org/10.5194/gmd-15-3663-2022, https://doi.org/10.5194/gmd-15-3663-2022, 2022
Short summary
Short summary
Progress in identifying complex, mixed-phase physicochemical processes has resulted in an advanced understanding of the evolution of atmospheric systems but has also introduced a level of complexity that few atmospheric models were designed to handle. We present a flexible treatment for multiphase chemical processes for models of diverse scale, from box up to global models. This enables users to build a customized multiphase mechanism that is accessible to a much wider community.
Zhonghua Zheng, Matthew West, Lei Zhao, Po-Lun Ma, Xiaohong Liu, and Nicole Riemer
Atmos. Chem. Phys., 21, 17727–17741, https://doi.org/10.5194/acp-21-17727-2021, https://doi.org/10.5194/acp-21-17727-2021, 2021
Short summary
Short summary
Aerosol mixing state is an important emergent property that affects aerosol radiative forcing and aerosol–cloud interactions, but it has not been easy to constrain this property globally. We present a framework for evaluating the error in aerosol mixing state induced by aerosol representation assumptions, which is one of the important contributors to structural uncertainty in aerosol models. Our study provides insights into potential improvements to model process representation for aerosols.
Mizuo Kajino, Makoto Deushi, Tsuyoshi Thomas Sekiyama, Naga Oshima, Keiya Yumimoto, Taichu Yasumichi Tanaka, Joseph Ching, Akihiro Hashimoto, Tetsuya Yamamoto, Masaaki Ikegami, Akane Kamada, Makoto Miyashita, Yayoi Inomata, Shin-ichiro Shima, Pradeep Khatri, Atsushi Shimizu, Hitoshi Irie, Kouji Adachi, Yuji Zaizen, Yasuhito Igarashi, Hiromasa Ueda, Takashi Maki, and Masao Mikami
Geosci. Model Dev., 14, 2235–2264, https://doi.org/10.5194/gmd-14-2235-2021, https://doi.org/10.5194/gmd-14-2235-2021, 2021
Short summary
Short summary
This study compares performance of aerosol representation methods of the Japan Meteorological Agency's regional-scale nonhydrostatic meteorology–chemistry model (NHM-Chem). It indicates separate treatment of sea salt and dust in coarse mode and that of light-absorptive and non-absorptive particles in fine mode could provide accurate assessments on aerosol feedback processes.
Cited articles
Appel, K. W., Napelenok, S. L., Foley, K. M., Pye, H. O. T., Hogrefe, C., Luecken, D. J., Bash, J. O., Roselle, S. J., Pleim, J. E., Foroutan, H., Hutzell, W. T., Pouliot, G. A., Sarwar, G., Fahey, K. M., Gantt, B., Gilliam, R. C., Heath, N. K., Kang, D., Mathur, R., Schwede, D. B., Spero, T. L., Wong, D. C., and Young, J. O.: Description and evaluation of the Community Multiscale Air Quality (CMAQ) modeling system version 5.1, Geosci. Model Dev., 10, 1703–1732, https://doi.org/10.5194/gmd-10-1703-2017, 2017. a
Asmi, A., Wiedensohler, A., Laj, P., Fjaeraa, A.-M., Sellegri, K., Birmili, W., Weingartner, E., Baltensperger, U., Zdimal, V., Zikova, N., Putaud, J.-P., Marinoni, A., Tunved, P., Hansson, H.-C., Fiebig, M., Kivekäs, N., Lihavainen, H., Asmi, E., Ulevicius, V., Aalto, P. P., Swietlicki, E., Kristensson, A., Mihalopoulos, N., Kalivitis, N., Kalapov, I., Kiss, G., de Leeuw, G., Henzing, B., Harrison, R. M., Beddows, D., O'Dowd, C., Jennings, S. G., Flentje, H., Weinhold, K., Meinhardt, F., Ries, L., and Kulmala, M.: Number size distributions and seasonality of submicron particles in Europe 2008–2009, Atmos. Chem. Phys., 11, 5505–5538, https://doi.org/10.5194/acp-11-5505-2011, 2011. a
Binkowski, F. S., Arunachalam, S., Adelman, Z., and Pinto, J. P.: Examining
photolysis rates with a prototype online photolysis module in CMAQ, J. Appl. Meteorol. Clim., 46, 1252–1256,
https://doi.org/10.1175/JAM2531.1, 2007. a
Bond, T. C. and Bergstrom, R. W.: Light absorption by carbonaceous particles:
An investigative review, Aerosol Sci. Tech., 40, 27–67,
https://doi.org/10.1080/02786820500421521, 2006. a
Bond, T. C., Habib, G., and Bergstrom, R. W.: Limitations in the enhancement
of visible light absorption due to mixing state,
J. Geophys. Res.-Atmos., 111, 1–13, https://doi.org/10.1029/2006JD007315, 2006. a
Bondy, A. L., Bonanno, D., Moffet, R. C., Wang, B., Laskin, A., and Ault, A. P.: The diverse chemical mixing state of aerosol particles in the southeastern United States, Atmos. Chem. Phys., 18, 12595–12612, https://doi.org/10.5194/acp-18-12595-2018, 2018. a, b
Burgos, M. A., Andrews, E., Titos, G., Benedetti, A., Bian, H., Buchard, V., Curci, G., Kipling, Z., Kirkevåg, A., Kokkola, H., Laakso, A., Letertre-Danczak, J., Lund, M. T., Matsui, H., Myhre, G., Randles, C., Schulz, M., van Noije, T., Zhang, K., Alados-Arboledas, L., Baltensperger, U., Jefferson, A., Sherman, J., Sun, J., Weingartner, E., and Zieger, P.: A global model–measurement evaluation of particle light scattering coefficients at elevated relative humidity, Atmos. Chem. Phys., 20, 10231–10258, https://doi.org/10.5194/acp-20-10231-2020, 2020. a
Bzdek, B. R., Pennington, M. R., and Johnston, M. V.: Single particle chemical
analysis of ambient ultrafine aerosol: A review,
J. Aerosol Sci.,
52, 109–120, 2012. a
Cappa, C. D., Onasch, T. B., Massoli, P., Worsnop, D. R., Bates, T. S., Cross, E. S., Davidovits, P., Hakala, J., Hayden, K. L., Jobson, B. T., Kolesar, K. R., Lack, D. A., Lerner, B. M., Li, S. M., Mellon, D., Nuaaman, I., Olfert, J. S., Petäjä, T., Quinn, P. K., Song, C., Subramanian, R., Williams, E. J., and Zaveri, R. A.:
Radiative absorption enhancements due to the mixing state of atmospheric
black carbon, Science, 337, 1078–1081, 2012. a
Cappa, C. D., Zhang, X., Russell, L. M., Collier, S., Lee, A. K. Y., Chen, C. L., Betha, R., Chen, S., Liu, J., Price, D. J., Sanchez, K. J., McMeeking, G. R., Williams, L. R., Onasch, T. B., Worsnop, D. R., Abbatt, J., and Zhang, Q.: Light absorption by
ambient black and brown carbon and its dependence on black carbon coating
state for two California, USA, cities in winter and summer,
J. Geophys. Res.-Atmos., 124, 1550–1577, 2019. a, b
Charlson, R. J., Schwartz, S., Hales, J., Cess, R. D., Coakley, J. J., Hansen,
J., and Hofmann, D.: Climate forcing by anthropogenic aerosols, Science, 255,
423–430, 1992. a
China, S., Mazzoleni, C., Gorkowski, K., Aiken, A. C., and Dubey, M. K.:
Morphology and mixing state of individual freshly emitted wildfire
carbonaceous particles, Nat. Commun., 4, 1–7, 2013. a
China, S., Scarnato, B., Owen, R. C., Zhang, B., Ampadu, M. T., Kumar, S., Dzepina, K., Dziobak, M. P., Fialho, P., Perlinger, J. A., Hueber, J., Helmig, D., Mazzoleni, L. R., and Mazzoleni, C.: Morphology
and mixing state of aged soot particles at a remote marine free troposphere
site: Implications for optical properties, Geophys. Res. Lett., 42,
1243–1250, 2015. a
Ching, J., Riemer, N., and West, M.: Impacts of black carbon mixing state on
black carbon nucleation scavenging: Insights from a particle-resolved model,
J. Geophys. Res.-Atmos., 117, D23209, https://doi.org/10.1029/2012JD018269, 2012. a
Ching, J., Riemer, N., and West, M.: Black carbon mixing state impacts on
cloud microphysical properties: Effects of aerosol plume and environmental
conditions, J. Geophys. Res.-Atmos., 121, 5990–6013,
https://doi.org/10.1002/2016JD024851, 2016. a
Ching, J., Fast, J., West, M., and Riemer, N.: Metrics to quantify the importance of mixing state for CCN activity, Atmos. Chem. Phys., 17, 7445–7458, https://doi.org/10.5194/acp-17-7445-2017, 2017. a, b
Corbin, J. C., Pieber, S. M., Czech, H., Zanatta, M., Jakobi, G., Massabò, D., Orasche, J., El Haddad, I., Mensah, A. A., Stengel, B., Drinovec, L., Mocnik, G., Zimmermann, R., Prévôt, A. S. H., and Gysel, M.: Brown and
black carbon emitted by a marine engine operated on heavy fuel oil and
distillate fuels: Optical properties, size distributions, and emission
factors, J. Geophys. Res.-Atmos., 123, 6175–6195, 2018. a, b
Curci, G., Hogrefe, C., Bianconi, R., Im, U., Balzarini, A., Baró, R.,
Brunner, D., Forkel, R., Giordano, L., Hirtl, M., Honzak, L.,
Jiménez-Guerrero, P., Knote, C., Langer, M., Makar, P. A., Pirovano,
G., Pérez, J. L., San José, R., Syrakov, D., Tuccella, P.,
Werhahn, J., Wolke, R., Žabkar, R., Zhang, J., and Galmarini, S.:
Uncertainties of simulated aerosol optical properties induced by assumptions
on aerosol physical and chemical properties: An AQMEII-2 perspective,
Atmos. Environ., 115, 541–552, https://doi.org/10.1016/j.atmosenv.2014.09.009,
2015. a
Curtis, D. B., Meland, B., Aycibin, M., Arnold, N. P., Grassian, V. H., Young,
M. A., and Kleiber, P. D.: A laboratory investigation of light scattering
from representative components of mineral dust aerosol at a wavelength of 550
nm, J. Geophys. Res.-Atmos., 113, D08210, https://doi.org/10.1029/2007JD009387, 2008. a
DeVille, L., Riemer, N., and West, M.: Convergence of a generalized Weighted
Flow Algorithm for stochastic particle coagulation,
Journal of Computational Dynamics, 6, 69–94, 1–18, https://doi.org/10.3934/jcd.2019003, 2019. a
DeVille, R. E. L., Riemer, N., and West, M.: Weighted Flow Algorithms
(WFA) for stochastic particle coagulation, J. Computational Phys., 230,
8427–8451, https://doi.org/10.1016/j.jcp.2011.07.027, 2011. a
Esteve, A. R., Highwood, E. J., Morgan, W. T., Allen, G., Coe, H., Grainger,
R. G., Brown, P., and Szpek, K.: A study on the sensitivities of simulated
aerosol optical properties to composition and size distribution using
airborne measurements, Atmos. Environ., 89, 517–524,
https://doi.org/10.1016/j.atmosenv.2014.02.063, 2014. a, b
Fast, J. D., Gustafson Jr., W. I., Easter, R. C., Zaveri, R. A., Barnard, J. C.,
Chapman, E. G., Grell, G. A., and Peckham, S. E.: Evolution of ozone,
particulates, and aerosol direct radiative forcing in the vicinity of Houston
using a fully coupled meteorology-chemistry-aerosol model, J. Geophys. Res.-Atmos., 111, D21305, https://doi.org/10.1029/2005JD006721, 2006. a
Fierce, L., Bond, T. C., Bauer, S. E., Mena, F., and Riemer, N.: Black carbon
absorption at the global scale is affected by particle-scale diversity in
composition, Nat. Commun., 7, 1–8, https://doi.org/10.1038/ncomms12361,
2016. a, b
Fierce, L., Riemer, N., and Bond, T. C.: Toward reduced representation of
mixing state for simulating aerosol effects on climate,
B. Am. Meteorol. Soc., 98, 971–980,
https://doi.org/10.1175/BAMS-D-16-0028.1, 2017. a
Fierce, L., Onasch, T. B., Cappa, C. D., Mazzoleni, C., China, S., Bhandari,
J., Davidovits, P., Al Fischer, D., Helgestad, T., Lambe, A. T., Sedlacek,
A. J., Smith, G. D., and Wolff, L.: Radiative absorption enhancements by
black carbon controlled by particle-to-particle heterogeneity in
composition,
P. Natl. Acad. Sci. USA, 117, 5196–5203, https://doi.org/10.1073/pnas.1919723117, 2020. a, b, c
Forster, P., Storelvmo, T., Armour, K., Collins, W., Dufresne, J.-L., Frame,
D., Lunt, D., Mauritsen, T., Palmer, M., Watanabe, M., Wild, M., and Zhang,
H.: The Earth's Energy Budget, Climate Feedbacks, and Climate Sensitivity,
923–1054, Cambridge University Press, Cambridge, United Kingdom and New
York, NY, USA, 2021. a
Healy, R. M., Riemer, N., Wenger, J. C., Murphy, M., West, M., Poulain, L., Wiedensohler, A., O'Connor, I. P., McGillicuddy, E., Sodeau, J. R., and Evans, G. J.: Single particle diversity and mixing state measurements, Atmos. Chem. Phys., 14, 6289–6299, https://doi.org/10.5194/acp-14-6289-2014, 2014. a, b, c
Hu, K., Liu, D., Tian, P., Wu, Y., Deng, Z., Wu, Y., Zhao, D., Li, R., Sheng, J., Huang, M., Ding, D., Li, W., Wang, Y., and Wu, Y.: Measurements of the diversity of shape and mixing
state for ambient black carbon particles, Geophys. Res. Lett., 48,
e2021GL094522, https://doi.org/10.1029/2021gl094522, 2021. a, b
Hughes, M., Kodros, J. K., Pierce, J. R., West, M., and Riemer, N.: Machine
learning to predict the global distribution of aerosol mixing state metrics,
Atmosphere, 9, 15, https://doi.org/10.3390/atmos9010015, 2018. a
Kodros, J. K., Hanna, S. J., Bertram, A. K., Leaitch, W. R., Schulz, H., Herber, A. B., Zanatta, M., Burkart, J., Willis, M. D., Abbatt, J. P. D., and Pierce, J. R.: Size-resolved mixing state of black carbon in the Canadian high Arctic and implications for simulated direct radiative effect, Atmos. Chem. Phys., 18, 11345–11361, https://doi.org/10.5194/acp-18-11345-2018, 2018. a, b
Koike, M., Moteki, N., Khatri, P., Takamura, T., Takegawa, N., Kondo, Y.,
Hashioka, H., Matsui, H., Shimizu, A., and Sugimoto, N.: Case study of
absorption aerosol optical depth closure of black carbon over the East China
Sea, J. Geophys. Res.-Atmos., 119, 122–136, 2014. a
Lanz, V. A., Prévôt, A. S. H., Alfarra, M. R., Weimer, S., Mohr, C., DeCarlo, P. F., Gianini, M. F. D., Hueglin, C., Schneider, J., Favez, O., D'Anna, B., George, C., and Baltensperger, U.: Characterization of aerosol chemical composition with aerosol mass spectrometry in Central Europe: an overview, Atmos. Chem. Phys., 10, 10453–10471, https://doi.org/10.5194/acp-10-10453-2010, 2010. a
Laskin, A., Cowin, J., and Iedema, M.: Analysis of individual environmental
particles using modern methods of electron microscopy and X-ray
microanalysis, J. Electron Spectrosc., 150,
260–274, https://doi.org/10.1016/j.elspec.2005.06.008, 2006. a
Levy, R. C., Remer, L. A., and Dubovik, O.: Global aerosol optical properties
and application to Moderate Resolution Imaging Spectroradiometer aerosol
retrieval over land, J. Geophys. Res.-Atmos., 112, D13210, https://doi.org/10.1029/2006jd007815, 2007. a
Liu, D., Allan, J., Whitehead, J., Young, D., Flynn, M., Coe, H., McFiggans, G., Fleming, Z. L., and Bandy, B.: Ambient black carbon particle hygroscopic properties controlled by mixing state and composition, Atmos. Chem. Phys., 13, 2015–2029, https://doi.org/10.5194/acp-13-2015-2013, 2013. a
Liu, D., Whitehead, J., Alfarra, M. R., Reyes-Villegas, E., Spracklen, D. V.,
Reddington, C. L., Kong, S., Williams, P. I., Ting, Y. C., Haslett, S.,
Taylor, J. W., Flynn, M. J., Morgan, W. T., McFiggans, G., Coe, H., and
Allan, J. D.: Black-carbon absorption enhancement in the atmosphere
determined by particle mixing state, Nat. Geosci., 10, 184–188,
https://doi.org/10.1038/ngeo2901, 2017. a
Liu, X., Easter, R. C., Ghan, S. J., Zaveri, R., Rasch, P., Shi, X., Lamarque, J.-F., Gettelman, A., Morrison, H., Vitt, F., Conley, A., Park, S., Neale, R., Hannay, C., Ekman, A. M. L., Hess, P., Mahowald, N., Collins, W., Iacono, M. J., Bretherton, C. S., Flanner, M. G., and Mitchell, D.: Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere Model CAM5, Geosci. Model Dev., 5, 709–739, https://doi.org/10.5194/gmd-5-709-2012, 2012. a
Luo, J., Zhang, Q., Luo, J., Liu, J., Huo, Y., and Zhang, Y.: Optical modeling
of black carbon with different coating materials: The effect of coating
configurations, J. Geophys. Res.-Atmos., 124,
13230–13253, 2019. a
Ma, X., Yu, F., and Luo, G.: Aerosol direct radiative forcing based on GEOS-Chem-APM and uncertainties, Atmos. Chem. Phys., 12, 5563–5581, https://doi.org/10.5194/acp-12-5563-2012, 2012. a
Majdi, M., Kim, Y., Turquety, S., and Sartelet, K.: Impact of mixing state on
aerosol optical properties during severe wildfires over the
Euro-Mediterranean region, Atmos. Environ., 220, 117042,
https://doi.org/10.1016/j.atmosenv.2019.117042, 2020. a
Matsui, H.: Development of a global aerosol model using a two-dimensional
sectional method: 1. Model design,
J. Adv. Model. Earth Sy., 9, 1921–1947, 2017. a
Matsui, H. and Mahowald, N.: Development of a global aerosol model using a
two-dimensional sectional method: 2. Evaluation and sensitivity simulations,
J. Adv. Model. Earth Sy., 9, 1887–1920, 2017. a
Matsui, H., Koike, M., Kondo, Y., Moteki, N., Fast, J. D., and Zaveri, R. A.:
Development and validation of a black carbon mixing state resolved
three-dimensional model: Aging processes and radiative impact,
J. Geophys. Res.-Atmos., 118, 2304–2326, 2013. a
Matsui, H., Hamilton, D. S., and Mahowald, N. M.: Black carbon radiative
effects highly sensitive to emitted particle size when resolving mixing-state
diversity, Nat. Commun., 9, 1–11, 2018. a
McComiskey, A., Schwartz, S. E., Schmid, B., Guan, H., Lewis, E. R.,
Ricchiazzi, P., and Ogren, J. A.: Direct aerosol forcing: Calculation from
observables and sensitivities to inputs, J. Geophys. Res.-Atmos., 113, D09202, https://doi.org/10.1029/2007JD009170, 2008. a
McKay, M. D., Beckman, R. J., and Conover, W. J.: A comparison of three methods
for selecting values of input variables in the analysis of output from a
computer code, Technometrics, 42, 55–61, 2000. a
Michel Flores, J., Bar-Or, R. Z., Bluvshtein, N., Abo-Riziq, A., Kostinski, A., Borrmann, S., Koren, I., Koren, I., and Rudich, Y.: Absorbing aerosols at high relative humidity: linking hygroscopic growth to optical properties, Atmos. Chem. Phys., 12, 5511–5521, https://doi.org/10.5194/acp-12-5511-2012, 2012. a
Mitchell Jr., J. M.: The effect of atmospheric aerosols on climate with special
reference to temperature near the earth's surface, J. Appl. Meteorol. Clim., 10, 703–714, 1971. a
Moffet, R. C. and Prather, K. A.: In-situ measurements of the mixing state and
optical properties of soot with implications for radiative forcing
estimates, P. Natl. Acad. Sci. USA, 106, 11872–11877, https://doi.org/10.1073/pnas.0900040106,
2009. a
Nandy, L., Yao, Y., Zheng, Z., and Riemer, N.: Water uptake and optical
properties of mixed organic-inorganic particles, Aerosol Sci. Tech., 55, 1398–1413, https://doi.org/10.1080/02786826.2021.1966378, 2021. a
Oikawa, E., Nakajima, T., Inoue, T., and Winker, D.: A study of the shortwave
direct aerosol forcing using ESSP/CALIPSO observation and GCM simulation,
J. Geophys. Res.-Atmos., 118, 3687–3708, 2013. a
Riemer, N. and West, M.: Quantifying aerosol mixing state with entropy and diversity measures, Atmos. Chem. Phys., 13, 11423–11439, https://doi.org/10.5194/acp-13-11423-2013, 2013. a, b, c, d
Riemer, N., West, M., Zaveri, R. A., and Easter, R. C.: Simulating the
evolution of soot mixing state with a particle-resolved aerosol model,
J. Geophys. Res.-Atmos., 114, 1–22,
https://doi.org/10.1029/2008JD011073, 2009. a, b
Riemer, N., West, M., Zaveri, R., and Easter, R.: Estimating black carbon aging
time-scales with a particle-resolved aerosol model, J. Aerosol Sci., 41, 143–158, 2010. a
Riemer, N., Ault, A. P., West, M., Craig, R. L., and Curtis, J. H.: Aerosol
Mixing State: Measurements, Modeling, and Impacts, Rev. Geophys.,
57, 187–249, https://doi.org/10.1029/2018RG000615, 2019. a
Rissler, J., Nordin, E. Z., Eriksson, A. C., Nilsson, P. T., Frosch, M.,
Sporre, M. K., Wierzbicka, A., Svenningsson, B., Löndahl, J., Messing,
M. E., Sjogren, S., Hemmingsen, J. G., Loft, S., Pagels, J. H., and
Swietlicki, E.: Effective density and mixing state of aerosol particles in a
near-traffic urban environment, Environ. Sci. Technol., 48,
6300–6308, https://doi.org/10.1021/es5000353, 2014. a
Scarnato, B. V., Vahidinia, S., Richard, D. T., and Kirchstetter, T. W.: Effects of internal mixing and aggregate morphology on optical properties of black carbon using a discrete dipole approximation model, Atmos. Chem. Phys., 13, 5089–5101, https://doi.org/10.5194/acp-13-5089-2013, 2013. a, b
Schell, B., Ackermann, I. J., Hass, H., Binkowski, F. S., and Ebel, A.:
Modeling the formation of secondary organic aerosol within a comprehensive
air quality model system, J. Geophys. Res.-Atmos., 106,
28275–28293, 2001. a
Spracklen, D. V., Pringle, K. J., Carslaw, K. S., Chipperfield, M. P., and Mann, G. W.: A global off-line model of size-resolved aerosol microphysics: I. Model development and prediction of aerosol properties, Atmos. Chem. Phys., 5, 2227–2252, https://doi.org/10.5194/acp-5-2227-2005, 2005. a
Stokes, R. and Robinson, R.: Interactions in aqueous nonelectrolyte solutions.
I. Solute-solvent equilibria, J. Phys. Chem., 70,
2126–2131, 1966. a
Subba, T., Gogoi, M. M., Pathak, B., Bhuyan, P. K., and Babu, S. S.: Recent
trend in the global distribution of aerosol direct radiative forcing from
satellite measurements, Atmos. Sci. Lett., 21, e975, https://doi.org/10.1002/asl.975, 2020. a
Szopa, S., Naik, V., Adhikary, B., Artaxo, P., Berntsen, T., Collins, W.,
Fuzzi, S., Gallardo, L., Kiendler-Scharr, A., Klimont, Z., Liao, H., Unger,
N., and Zanis, P.: Short-Lived Climate Forcers, Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA,
817–922, 2021. a
Thornhill, G. D., Collins, W. J., Kramer, R. J., Olivié, D., Skeie, R. B., O'Connor, F. M., Abraham, N. L., Checa-Garcia, R., Bauer, S. E., Deushi, M., Emmons, L. K., Forster, P. M., Horowitz, L. W., Johnson, B., Keeble, J., Lamarque, J.-F., Michou, M., Mills, M. J., Mulcahy, J. P., Myhre, G., Nabat, P., Naik, V., Oshima, N., Schulz, M., Smith, C. J., Takemura, T., Tilmes, S., Wu, T., Zeng, G., and Zhang, J.: Effective radiative forcing from emissions of reactive gases and aerosols – a multi-model comparison, Atmos. Chem. Phys., 21, 853–874, https://doi.org/10.5194/acp-21-853-2021, 2021. a
Titos, G., Jefferson, A., Sheridan, P. J., Andrews, E., Lyamani, H., Alados-Arboledas, L., and Ogren, J. A.: Aerosol light-scattering enhancement due to water uptake during the TCAP campaign, Atmos. Chem. Phys., 14, 7031–7043, https://doi.org/10.5194/acp-14-7031-2014, 2014. a
Titos, G., Cazorla, A., Zieger, P., Andrews, E., Lyamani, H.,
Granados-Muñoz, M. J., Olmo, F. J., and Alados-Arboledas, L.: Effect
of hygroscopic growth on the aerosol light-scattering coefficient: A review
of measurements, techniques and error sources, Atmos. Environ., 141,
494–507, https://doi.org/10.1016/j.atmosenv.2016.07.021, 2016. a, b
Wang, J., Cubison, M. J., Aiken, A. C., Jimenez, J. L., and Collins, D. R.: The importance of aerosol mixing state and size-resolved composition on CCN concentration and the variation of the importance with atmospheric aging of aerosols, Atmos. Chem. Phys., 10, 7267–7283, https://doi.org/10.5194/acp-10-7267-2010, 2010. a
West, M., Riemer, N., Curtis, J., Michelotti, M., Zaveri, R. A., Tian, J., and Arabas, S.: compdyn/partmc: Version 2.6.0 (2.6.0), Zenodo [code], https://doi.org/10.5281/zenodo.5644422, 2021. a
Winker, D. M., Pelon, J., Coakley, J. A., Ackerman, S. A., Charlson, R. J., Colarco, P. R., Flamant, P., Fu, Q., Hoff, R. M., Kittaka, C., Kubar, T. L., le Treut, H., Mccormick, M. P., Mégie, G., Poole, L., Powell, K., Trepte, C., Vaughan, M. A., and Wielicki, B. A.: The CALIPSO mission: A
global 3D view of aerosols and clouds, B. Am. Meteorol. Soc., 91, 1211–1230, 2010. a
Wu, Y., Cheng, T., and Zheng, L.: Light absorption of black carbon aerosols
strongly influenced by particle morphology distribution, Environ.
Res. Lett., 15, 094051, https://doi.org/10.1088/1748-9326/aba2ff, 2020. a, b
Yao, Y., Curtis, J., Ching, J., Zheng, Z., and Riemer, N.: Data for: Quantifying the effects of mixing state on aerosol optical properties, University of Illinois at Urbana-Champaign [data set], https://doi.org/10.13012/B2IDB-8157303_V1, 2022. a
Ye, Q., Gu, P., Li, H. Z., Robinson, E. S., Lipsky, E., Kaltsonoudis, C., Lee, A. K., Apte, J. S., Robinson, A. L., Sullivan, R. C., Presto, A. A., and Donahue, N. M.: Spatial
variability of sources and mixing state of atmospheric particles in a
metropolitan area, Environ. Sci. Technol., 52, 6807–6815, 2018. a
Yu, C., Liu, D., Broda, K., Joshi, R., Olfert, J., Sun, Y., Fu, P., Coe, H., and Allan, J. D.: Characterising mass-resolved mixing state of black carbon in Beijing using a morphology-independent measurement method, Atmos. Chem. Phys., 20, 3645–3661, https://doi.org/10.5194/acp-20-3645-2020, 2020. a, b
Yu, H., Kaufman, Y. J., Chin, M., Feingold, G., Remer, L. A., Anderson, T. L., Balkanski, Y., Bellouin, N., Boucher, O., Christopher, S., DeCola, P., Kahn, R., Koch, D., Loeb, N., Reddy, M. S., Schulz, M., Takemura, T., and Zhou, M.: A review of measurement-based assessments of the aerosol direct radiative effect and forcing, Atmos. Chem. Phys., 6, 613–666, https://doi.org/10.5194/acp-6-613-2006, 2006. a
Zaveri, R. A. and Peters, L. K.: A new lumped structure photochemical mechanism
for large-scale applications, J. Geophys. Res.-Atmos.,
104, 30387–30415, 1999. a
Zaveri, R. A., Easter, R. C., and Peters, L. K.: A computationally efficient
multicomponent equilibrium solver for aerosols (MESA), J. Geophys.
Res.-Atmos., 110, D24203, https://doi.org/10.1029/2004JD005618, 2005. a
Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for
Simulating Aerosol Interactions and Chemistry (MOSAIC), J. Geophys. Res.-Atmos., 113, 1–29, https://doi.org/10.1029/2007JD008782,
2008. a, b
Zaveri, R. A., Barnard, J. C., Easter, R. C., Riemer, N., and West, M.:
Particle-resolved simulation of aerosol size, composition, mixing state, and
the associated optical and cloud condensation nuclei activation properties in
an evolving urban plume, J. Geophys. Res.-Atmos., 115,
1–19, https://doi.org/10.1029/2009JD013616, 2010. a, b, c
Zdanovskii, A.: New methods for calculating solubilities of electrolytes in
multicomponent systems, Zh. Fiz. Khim, 22, 1475–1485, 1948. a
Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich, I., Alfarra, M. R., Takami, A., Middlebrook, A. M., Sun, Y. L., Dzepina, K., Dunlea, E., Docherty, K., DeCarlo, P. F., Salcedo, D., Onasch, T., Jayne, J. T., Miyoshi, T., Shimono, A., Hatakeyama, S., Takegawa, N., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R. J., Rautiainen, J., Sun, J. Y., Zhang, Y. M., and Worsnop, D. R.: Ubiquity and
dominance of oxygenated species in organic aerosols in
anthropogenically-influenced Northern Hemisphere midlatitudes, Geophys.
Res. Lett., 34, L13801, https://doi.org/10.1029/2007gl029979, 2007. a
Zhao, G., Tan, T., Zhu, Y., Hu, M., and Zhao, C.: Method to quantify black carbon aerosol light absorption enhancement with a mixing state index, Atmos. Chem. Phys., 21, 18055–18063, https://doi.org/10.5194/acp-21-18055-2021, 2021. a, b
Zheng, Z., Curtis, J. H., Yao, Y., Gasparik, J. T., Anantharaj, V. G., Zhao,
L., West, M., and Riemer, N.: Estimating submicron aerosol mixing state at
the global scale with machine learning and Earth system modeling, Earth
Space Sci., 8, e2020EA001500, https://doi.org/10.1029/2020EA001500, 2021.
a, b
Zieger, P., Fierz-Schmidhauser, R., Weingartner, E., and Baltensperger, U.: Effects of relative humidity on aerosol light scattering: results from different European sites, Atmos. Chem. Phys., 13, 10609–10631, https://doi.org/10.5194/acp-13-10609-2013, 2013. a
Short summary
Investigating the impacts of aerosol mixing state on aerosol optical properties has a long history from both the modeling and experimental perspective. In this study, we used particle-resolved simulations as a benchmark to determine the error in optical properties when using simplified aerosol representations. We found that errors in single scattering albedo due to the internal mixture assumptions can have substantial effects on calculating aerosol direct radiative forcing.
Investigating the impacts of aerosol mixing state on aerosol optical properties has a long...
Altmetrics
Final-revised paper
Preprint