Supplement of

Quantifying the effects of mixing state on aerosol optical properties

Yu Yao et al.

Correspondence to: Nicole Riemer (nriemer@illinois.edu), Yu Yao (yuyao3@illinois.edu)

The copyright of individual parts of the supplement might differ from the article licence.

Figure S1. Illustration of single particle diversity D_{i}, per-particle average diversity D_{α}, bulk average diversity D_{γ} and mixing state metric χ.

Figure S2. BC core diameter changes due to composition-averaging. The diameters D_{1} and D_{2} are BC core diameters before compositionaveraging and correspond to BC core masses of m_{1} and m_{2}. The diameter D_{CA} is the BC core diameter after composition-averaging corresponding to the particle BC mass after composition averaging, which is the average of the original BC core masses.

Figure S3. Particle absorption cross section $\sigma_{\text {abs }}$ as a function of dry diameter and core ratio.

Figure S4. Relation between $E_{\text {abs }}$ and bulk BC mass fraction. The bulk BC mass fractions of the populations were binned in increments of 0.1 , and for plotting the data was aligned at the right edge of each bin (i.e. the value 0.1 on the x -axis stands for BC mass fractions between 0 and 0.1).

Figure S5. Two-dimensional distributions of BC mass fraction in (a) Reference scenario and (b) Sensitivity scenario at RH0. This population is from scenario 77 at 2 h .

Figure S6. Box plots of (a) volume scattering coefficients $\beta_{\text {scat }}$, (b) volume absorption coefficients $\beta_{\text {abs }}$ and (c) MAC MC at the RH levels of $0,50,90 \%$. Blue is for populations from the reference library and orange is for the sensitivity library.

