Articles | Volume 22, issue 10
https://doi.org/10.5194/acp-22-6919-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-6919-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Molecular characteristics, sources, and formation pathways of organosulfur compounds in ambient aerosol in Guangzhou, South China
Hongxing Jiang
State Key Laboratory of Organic Geochemistry, Guangdong province Key
Laboratory of Environmental Protection and Resources Utilization, and
Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and
Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences,
Guangzhou, 510640, China
Shanghai Key Laboratory of Atmospheric Particle Pollution and
Prevention (LAP3), Department of Environmental Science and Engineering,
Fudan University, Shanghai 200433, China
CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640,
China
University of Chinese Academy of Sciences, Beijing, 100049, China
State Key Laboratory of Organic Geochemistry, Guangdong province Key
Laboratory of Environmental Protection and Resources Utilization, and
Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and
Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences,
Guangzhou, 510640, China
CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640,
China
Jiao Tang
State Key Laboratory of Organic Geochemistry, Guangdong province Key
Laboratory of Environmental Protection and Resources Utilization, and
Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and
Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences,
Guangzhou, 510640, China
CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640,
China
Min Cui
College of Environmental Science and Engineering, Yangzhou University,
225009, Yangzhou, China
Shizhen Zhao
State Key Laboratory of Organic Geochemistry, Guangdong province Key
Laboratory of Environmental Protection and Resources Utilization, and
Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and
Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences,
Guangzhou, 510640, China
CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640,
China
Yangzhi Mo
State Key Laboratory of Organic Geochemistry, Guangdong province Key
Laboratory of Environmental Protection and Resources Utilization, and
Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and
Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences,
Guangzhou, 510640, China
CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640,
China
Chongguo Tian
Key Laboratory of Coastal Environmental Processes and Ecological
Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of
Sciences, Yantai, 264003, China
Xiangyun Zhang
State Key Laboratory of Organic Geochemistry, Guangdong province Key
Laboratory of Environmental Protection and Resources Utilization, and
Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and
Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences,
Guangzhou, 510640, China
CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640,
China
Bin Jiang
State Key Laboratory of Organic Geochemistry, Guangdong province Key
Laboratory of Environmental Protection and Resources Utilization, and
Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and
Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences,
Guangzhou, 510640, China
CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640,
China
Yuhong Liao
State Key Laboratory of Organic Geochemistry, Guangdong province Key
Laboratory of Environmental Protection and Resources Utilization, and
Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and
Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences,
Guangzhou, 510640, China
CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640,
China
Yingjun Chen
Shanghai Key Laboratory of Atmospheric Particle Pollution and
Prevention (LAP3), Department of Environmental Science and Engineering,
Fudan University, Shanghai 200433, China
Gan Zhang
State Key Laboratory of Organic Geochemistry, Guangdong province Key
Laboratory of Environmental Protection and Resources Utilization, and
Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and
Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences,
Guangzhou, 510640, China
CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640,
China
Related authors
Hongxing Jiang, Yuanghang Deng, Yunxi Huo, Fengwen Wang, Yingjun Chen, and Hai Guo
EGUsphere, https://doi.org/10.5194/egusphere-2025-2264, https://doi.org/10.5194/egusphere-2025-2264, 2025
Short summary
Short summary
We combined the use of a series of online and offline high-resolution mass spectrometer to characterize the chemical composition and sources of organic aerosols in a background site of south China from bulk to molecular levels. We suggested that anthropogenic source dominated the OA origins, and the gas-phase and particle-phase oxidation processes are conducive to the formation of sulfur-containing and nitrogen-containing compounds, respectively.
Yangzhi Mo, Jun Li, Guangcai Zhong, Sanyuan Zhu, Shizhen Zhao, Jiao Tang, Hongxing Jiang, Zhineng Cheng, Chongguo Tian, Yingjun Chen, and Gan Zhang
Atmos. Chem. Phys., 24, 7755–7772, https://doi.org/10.5194/acp-24-7755-2024, https://doi.org/10.5194/acp-24-7755-2024, 2024
Short summary
Short summary
In this study, we found that biomass burning (31.0 %) and coal combustion (31.1 %) were the dominant sources of water-insoluble organic carbon in China, with coal combustion sources exhibiting the strongest light-absorbing capacity. Additionally, we propose a light-absorbing carbonaceous continuum, revealing that components enriched with fossil sources tend to have stronger light-absorbing capacity, higher aromaticity, higher molecular weights, and greater recalcitrance in the atmosphere.
Mengying Bao, Yan-Lin Zhang, Fang Cao, Yihang Hong, Yu-Chi Lin, Mingyuan Yu, Hongxing Jiang, Zhineng Cheng, Rongshuang Xu, and Xiaoying Yang
Atmos. Chem. Phys., 23, 8305–8324, https://doi.org/10.5194/acp-23-8305-2023, https://doi.org/10.5194/acp-23-8305-2023, 2023
Short summary
Short summary
The interaction between the sources and molecular compositions of humic-like substances (HULIS) at Nanjing, China, was explored. Significant fossil fuel source contributions to HULIS were found in the 14C results from biomass burnng and traffic emissions. Increasing biogenic secondary organic aerosol (SOA) products and anthropogenic aromatic compounds were detected in summer and winter, respectively.
Tingting Li, Jun Li, Zeyu Sun, Hongxing Jiang, Chongguo Tian, and Gan Zhang
Atmos. Chem. Phys., 23, 6395–6407, https://doi.org/10.5194/acp-23-6395-2023, https://doi.org/10.5194/acp-23-6395-2023, 2023
Short summary
Short summary
N-NH4+ and N-NO3- were vital components in nitrogenous aerosols and contributed 69 % to total nitrogen in PM2.5. Coal combustion was still the most important source of urban atmospheric NO3-. However, the non-agriculture sources play an increasingly important role in NH4+ emissions.
Jiao Tang, Jun Li, Shizhen Zhao, Guangcai Zhong, Yangzhi Mo, Hongxing Jiang, Bin Jiang, Yingjun Chen, Jianhui Tang, Chongguo Tian, Zheng Zong, Jabir Hussain Syed, Jianzhong Song, and Gan Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2023-403, https://doi.org/10.5194/egusphere-2023-403, 2023
Preprint archived
Short summary
Short summary
This study provides a comprehensive molecular identification of atmospheric common fluorescent components and deciphers their related formation pathways. The fluorescent components varied in molecular composition, and a dominant oxidation pathway for the formation of humic-like fluorescent components was suggested, notwithstanding their different precursor types. Our findings are expected to be helpful to further studies using the EEM-PARAFAC as a tool to study atmospheric BrC.
Jiao Tang, Jiaqi Wang, Guangcai Zhong, Hongxing Jiang, Yangzhi Mo, Bolong Zhang, Xiaofei Geng, Yingjun Chen, Jianhui Tang, Congguo Tian, Surat Bualert, Jun Li, and Gan Zhang
Atmos. Chem. Phys., 21, 11337–11352, https://doi.org/10.5194/acp-21-11337-2021, https://doi.org/10.5194/acp-21-11337-2021, 2021
Short summary
Short summary
This article provides a combined EEM–PARAFAC and statistical analysis method to explore how excitation–emission matrix (EEM) chromophores influence BrC light absorption in soluble organic matter. The application enables us to deduce that BrC absorption is mainly dependent on longer-emission-wavelength chromophores largely associated with biomass burning emissions. This method promotes the application of EEM spectroscopy and helps us understand the light absorption of BrC in the atmosphere.
Yanjie Lu, Xinxin Feng, Yanli Feng, Minjun Jiang, Yu Peng, Tian Chen, and Yingjun Chen
Atmos. Chem. Phys., 25, 8043–8059, https://doi.org/10.5194/acp-25-8043-2025, https://doi.org/10.5194/acp-25-8043-2025, 2025
Short summary
Short summary
Through lab tests and field measurements from typical sources, we found that carbonyl compounds from biomass burning are an order of magnitude higher than those from vehicles. The formation of carbonyl compounds in solid and liquid fuel is governed by combustion temperature and emission standards, respectively. Fuel type determines the chemical composition. Biomass burning and farm machinery are key drivers of atmospheric oxidation capacity. This study provides actionable solutions to safeguard public health.
Binyu Xiao, Fan Zhang, Zeyu Liu, Yan Zhang, Rui Li, Can Wu, Xinyi Wan, Yi Wang, Yubao Chen, Yong Han, Min Cui, Libo Zhang, Yingjun Chen, and Gehui Wang
Atmos. Chem. Phys., 25, 7053–7069, https://doi.org/10.5194/acp-25-7053-2025, https://doi.org/10.5194/acp-25-7053-2025, 2025
Short summary
Short summary
Intermediate-volatility/semi-volatile organic compounds in gas and particle phases from ship exhausts are enhanced due to the switch of fuels from low sulfur to ultra-low sulfur. The findings indicate that optimization is necessary for the forthcoming global implementation of an ultra-low-sulfur oil policy. Besides, we find that organic diagnostic markers of hopanes in conjunction with the ratio of octadecanoic to tetradecanoic could be considered potential tracers for heavy fuel oil exhausts.
Pingyang Li, Boji Lin, Zhineng Cheng, Jing Li, Jun Li, Duohong Chen, Tao Zhang, Run Lin, Sanyuan Zhu, Jun Liu, Yujun Lin, Shizhen Zhao, Guangcai Zhong, Zhenchuan Niu, Ping Ding, and Gan Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1931, https://doi.org/10.5194/egusphere-2025-1931, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Our study indicates fossil fuel CO2 (CO2ff) reductions in Chinese megacities via atmospheric Δ(14CO2) and δ(13CO2) measurements, driven by coal-to-gas transitions and combustion efficiency improvement. Three-decade data show steeper declined urban RCO/CO2ff ratios than inventory estimates, implying underestimation of efficiency improvements and CO reductions. Integrating top-down observations with inventories is critical to track policy-driven emission shifts and optimize co-benefit strategies.
Hongxing Jiang, Yuanghang Deng, Yunxi Huo, Fengwen Wang, Yingjun Chen, and Hai Guo
EGUsphere, https://doi.org/10.5194/egusphere-2025-2264, https://doi.org/10.5194/egusphere-2025-2264, 2025
Short summary
Short summary
We combined the use of a series of online and offline high-resolution mass spectrometer to characterize the chemical composition and sources of organic aerosols in a background site of south China from bulk to molecular levels. We suggested that anthropogenic source dominated the OA origins, and the gas-phase and particle-phase oxidation processes are conducive to the formation of sulfur-containing and nitrogen-containing compounds, respectively.
Yuying Wu, Yuhan Wang, Wenzheng Yang, Jie Zhang, Yanhong Wu, Jun Li, Gan Zhang, and Haijian Bing
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-302, https://doi.org/10.5194/essd-2025-302, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
We developed a large, open-access dataset of mountain soil chemistry in China, based on over 1,300 samples from 166 sites across diverse climates and vegetation types. The dataset includes concentrations of 24 elements and key environmental variables like temperature, rainfall, and soil properties. This dataset offers a valuable resource for studying mountain ecosystems, supporting Earth system modeling, and predicting how soils respond to environmental change.
Jianfeng Wang, Chao Yang, Yuke Liu, Wenmin Jiang, Yun Li, Ting Zhang, Yijun Zheng, Yuhong Liao, Qiuli Huo, Li Fu, Yusheng Wang, Ping'an Peng, and Yongqiang Xiong
EGUsphere, https://doi.org/10.5194/egusphere-2025-1365, https://doi.org/10.5194/egusphere-2025-1365, 2025
Short summary
Short summary
The Wufeng to Longmaxi (WF-LMX) Formations are the most important shale gas play in China. Here, we present a feasible approach using nanoindentation to characterize the mechanical properties of the WF-LMX Formations. Mechanical properties varied synchronously with mineral and organic content across the vertical drilling profile, reflecting changes in lithology and sedimentary facies. The effect of shale constituents on micromechanics is essentially controlled by the sedimentary environment.
Tao Cao, Cuncun Xu, Hao Chen, Jianzhong Song, Jun Li, Haiyan Song, Bin Jiang, Yin Zhong, and Ping’an Peng
EGUsphere, https://doi.org/10.5194/egusphere-2025-561, https://doi.org/10.5194/egusphere-2025-561, 2025
Short summary
Short summary
This study investigated the evolution of biomass and coal combustion-derived WSOM during aqueous photochemical process. The results indicate that photochemical aging induces distinct changes in the optical and molecular properties of WSOM and more pronounced alterations were observed during ·OH photooxidation than direct photolysis. Notably, our results also demostrated that atmospheric photooxidation may represent a significant source of BC-like substances.
Zihan Song, Leiming Zhang, Chongguo Tian, Qiang Fu, Zhenxing Shen, Renjian Zhang, Dong Liu, and Song Cui
Atmos. Chem. Phys., 24, 13101–13113, https://doi.org/10.5194/acp-24-13101-2024, https://doi.org/10.5194/acp-24-13101-2024, 2024
Short summary
Short summary
A novel concept integrating crop cycle information into fire spot extraction was proposed. Spatiotemporal variations of open straw burning in Northeast China are revealed. Open straw burning in Northeast China emitted a total of 218 Tg of CO2-eq during 2001–2020. The policy of banning straw burning effectively reduced greenhouse gas emissions.
Fan Zhang, Binyu Xiao, Zeyu Liu, Yan Zhang, Chongguo Tian, Rui Li, Can Wu, Yali Lei, Si Zhang, Xinyi Wan, Yubao Chen, Yong Han, Min Cui, Cheng Huang, Hongli Wang, Yingjun Chen, and Gehui Wang
Atmos. Chem. Phys., 24, 8999–9017, https://doi.org/10.5194/acp-24-8999-2024, https://doi.org/10.5194/acp-24-8999-2024, 2024
Short summary
Short summary
Mandatory use of low-sulfur fuel due to global sulfur limit regulations means large uncertainties in volatile organic compound (VOC) emissions. On-board tests of VOCs from nine cargo ships in China were carried out. Results showed that switching from heavy-fuel oil to diesel increased emission factor VOCs by 48 % on average, enhancing O3 and the secondary organic aerosol formation potential. Thus, implementing a global ultra-low-sulfur oil policy needs to be optimized in the near future.
Yangzhi Mo, Jun Li, Guangcai Zhong, Sanyuan Zhu, Shizhen Zhao, Jiao Tang, Hongxing Jiang, Zhineng Cheng, Chongguo Tian, Yingjun Chen, and Gan Zhang
Atmos. Chem. Phys., 24, 7755–7772, https://doi.org/10.5194/acp-24-7755-2024, https://doi.org/10.5194/acp-24-7755-2024, 2024
Short summary
Short summary
In this study, we found that biomass burning (31.0 %) and coal combustion (31.1 %) were the dominant sources of water-insoluble organic carbon in China, with coal combustion sources exhibiting the strongest light-absorbing capacity. Additionally, we propose a light-absorbing carbonaceous continuum, revealing that components enriched with fossil sources tend to have stronger light-absorbing capacity, higher aromaticity, higher molecular weights, and greater recalcitrance in the atmosphere.
Wei Sun, Xiaodong Hu, Yuzhen Fu, Guohua Zhang, Yujiao Zhu, Xinfeng Wang, Caiqing Yan, Likun Xue, He Meng, Bin Jiang, Yuhong Liao, Xinming Wang, Ping'an Peng, and Xinhui Bi
Atmos. Chem. Phys., 24, 6987–6999, https://doi.org/10.5194/acp-24-6987-2024, https://doi.org/10.5194/acp-24-6987-2024, 2024
Short summary
Short summary
The formation pathways of nitrogen-containing compounds (NOCs) in the atmosphere remain unclear. We investigated the composition of aerosols and fog water by state-of-the-art mass spectrometry and compared the formation pathways of NOCs. We found that NOCs in aerosols were mainly formed through nitration reaction, while ammonia addition played a more important role in fog water. The results deepen our understanding of the processes of organic particulate pollution.
Wenwen Ma, Rong Sun, Xiaoping Wang, Zheng Zong, Shizhen Zhao, Zeyu Sun, Chongguo Tian, Jianhui Tang, Song Cui, Jun Li, and Gan Zhang
Atmos. Chem. Phys., 24, 1509–1523, https://doi.org/10.5194/acp-24-1509-2024, https://doi.org/10.5194/acp-24-1509-2024, 2024
Short summary
Short summary
This is the first report of long-term atmospheric PAH monitoring around the Bohai Sea. The results showed that the concentrations of PAHs in the atmosphere around the Bohai Sea decreased from June 2014 to May 2019, especially the concentrations of highly toxic PAHs. This indicates that the contributions from PAH sources changed to a certain extent in different areas, and it also led to reductions in the related health risk and medical costs following pollution prevention and control.
Zeyu Sun, Zheng Zong, Yang Tan, Chongguo Tian, Zeyu Liu, Fan Zhang, Rong Sun, Yingjun Chen, Jun Li, and Gan Zhang
Atmos. Chem. Phys., 23, 12851–12865, https://doi.org/10.5194/acp-23-12851-2023, https://doi.org/10.5194/acp-23-12851-2023, 2023
Short summary
Short summary
This is the first report of ship-emitted nitrogen stable isotope composition (δ15N) of nitrogen oxides (NOx). The results showed that δ15N–NOx from ships was −18.5 ± 10.9 ‰ and increased monotonically with tightening emission regulations. The selective catalytic reduction system was the most vital factor. The temporal variation in δ15N–NOx was evaluated and can be used to select suitable δ15N–NOx for a more accurate assessment of the contribution of ship-emitted exhaust to atmospheric NOx.
Mengying Bao, Yan-Lin Zhang, Fang Cao, Yihang Hong, Yu-Chi Lin, Mingyuan Yu, Hongxing Jiang, Zhineng Cheng, Rongshuang Xu, and Xiaoying Yang
Atmos. Chem. Phys., 23, 8305–8324, https://doi.org/10.5194/acp-23-8305-2023, https://doi.org/10.5194/acp-23-8305-2023, 2023
Short summary
Short summary
The interaction between the sources and molecular compositions of humic-like substances (HULIS) at Nanjing, China, was explored. Significant fossil fuel source contributions to HULIS were found in the 14C results from biomass burnng and traffic emissions. Increasing biogenic secondary organic aerosol (SOA) products and anthropogenic aromatic compounds were detected in summer and winter, respectively.
Xiangyun Zhang, Jun Li, Sanyuan Zhu, Junwen Liu, Ping Ding, Shutao Gao, Chongguo Tian, Yingjun Chen, Ping'an Peng, and Gan Zhang
Atmos. Chem. Phys., 23, 7495–7502, https://doi.org/10.5194/acp-23-7495-2023, https://doi.org/10.5194/acp-23-7495-2023, 2023
Short summary
Short summary
The results show that 14C elemental carbon (EC) was not only related to the isolation method but also to the types and proportions of the biomass sources in the sample. The hydropyrolysis (Hypy) method, which can be used to isolate a highly stable portion of ECHypy and avoid charring, is a more effective and stable approach for the matrix-independent 14C quantification of EC in aerosols, and the 13C–ECHypy and non-fossil ECHypy values of SRM1649b were –24.9 ‰ and 11 %, respectively.
Tingting Li, Jun Li, Zeyu Sun, Hongxing Jiang, Chongguo Tian, and Gan Zhang
Atmos. Chem. Phys., 23, 6395–6407, https://doi.org/10.5194/acp-23-6395-2023, https://doi.org/10.5194/acp-23-6395-2023, 2023
Short summary
Short summary
N-NH4+ and N-NO3- were vital components in nitrogenous aerosols and contributed 69 % to total nitrogen in PM2.5. Coal combustion was still the most important source of urban atmospheric NO3-. However, the non-agriculture sources play an increasingly important role in NH4+ emissions.
Jiao Tang, Jun Li, Shizhen Zhao, Guangcai Zhong, Yangzhi Mo, Hongxing Jiang, Bin Jiang, Yingjun Chen, Jianhui Tang, Chongguo Tian, Zheng Zong, Jabir Hussain Syed, Jianzhong Song, and Gan Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2023-403, https://doi.org/10.5194/egusphere-2023-403, 2023
Preprint archived
Short summary
Short summary
This study provides a comprehensive molecular identification of atmospheric common fluorescent components and deciphers their related formation pathways. The fluorescent components varied in molecular composition, and a dominant oxidation pathway for the formation of humic-like fluorescent components was suggested, notwithstanding their different precursor types. Our findings are expected to be helpful to further studies using the EEM-PARAFAC as a tool to study atmospheric BrC.
Tao Cao, Meiju Li, Cuncun Xu, Jianzhong Song, Xingjun Fan, Jun Li, Wanglu Jia, and Ping'an Peng
Atmos. Chem. Phys., 23, 2613–2625, https://doi.org/10.5194/acp-23-2613-2023, https://doi.org/10.5194/acp-23-2613-2023, 2023
Short summary
Short summary
This work comprehensively investigated the fluorescence data of light-absorbing organic compounds, water-soluble organic matter in different types of aerosol samples, soil dust, and fulvic and humic acids using an excitation–emission matrix (EEM) method and parallel factor modeling. The results revealed which light-absorbing species can be detected by EEM and also provided important information for identifying the chemical composition and possible sources of these species in atmospheric samples.
Buqing Xu, Jiao Tang, Tiangang Tang, Shizhen Zhao, Guangcai Zhong, Sanyuan Zhu, Jun Li, and Gan Zhang
Atmos. Chem. Phys., 23, 1565–1578, https://doi.org/10.5194/acp-23-1565-2023, https://doi.org/10.5194/acp-23-1565-2023, 2023
Short summary
Short summary
We analyzed compound-specific dual-carbon isotope signatures (Δ14C and δ13C) of dominant secondary organic aerosol (SOA) tracer molecules (i.e., oxalic acid) to investigate the fates of SOAs in the atmosphere at five emission hotspots in China. The results indicated that SOA carbon sources and chemical processes producing SOAs vary spatially and seasonally, and these variations need to be included in Chinese climate projection models and air quality management practices.
Chunlin Zou, Tao Cao, Meiju Li, Jianzhong Song, Bin Jiang, Wanglu Jia, Jun Li, Xiang Ding, Zhiqiang Yu, Gan Zhang, and Ping'an Peng
Atmos. Chem. Phys., 23, 963–979, https://doi.org/10.5194/acp-23-963-2023, https://doi.org/10.5194/acp-23-963-2023, 2023
Short summary
Short summary
In this study, PM2.5 samples were obtained during a winter haze event in Guangzhou, China, and light absorption and molecular composition of humic-like substances (HULIS) were investigated by UV–Vis spectrophotometry and ultrahigh-resolution mass spectrometry. The findings obtained present some differences from the results reported in other regions of China and significantly enhanced our understanding of HULIS evolution during haze bloom-decay processes in the subtropic region of southern China.
Haoyu Jiang, Yingyao He, Yiqun Wang, Sheng Li, Bin Jiang, Luca Carena, Xue Li, Lihua Yang, Tiangang Luan, Davide Vione, and Sasho Gligorovski
Atmos. Chem. Phys., 22, 4237–4252, https://doi.org/10.5194/acp-22-4237-2022, https://doi.org/10.5194/acp-22-4237-2022, 2022
Short summary
Short summary
Heterogeneous oxidation of SO2 is suggested to be one of the most important pathways for sulfate formation during extreme haze events in China, yet the exact mechanism remains highly uncertain. Our study reveals that ubiquitous compounds at the sea surface PAHS and DMSO, when exposed to SO2 under simulated sunlight irradiation, generate abundant organic sulfur compounds, providing implications for air-sea interaction and secondary organic aerosols formation processes.
Wei Sun, Yuzhen Fu, Guohua Zhang, Yuxiang Yang, Feng Jiang, Xiufeng Lian, Bin Jiang, Yuhong Liao, Xinhui Bi, Duohong Chen, Jianmin Chen, Xinming Wang, Jie Ou, Ping'an Peng, and Guoying Sheng
Atmos. Chem. Phys., 21, 16631–16644, https://doi.org/10.5194/acp-21-16631-2021, https://doi.org/10.5194/acp-21-16631-2021, 2021
Short summary
Short summary
We sampled cloud water at a remote mountain site and investigated the molecular characteristics. CHON and CHO are dominant in cloud water. No statistical difference in the oxidation state is observed between cloud water and interstitial PM2.5. Most of the formulas are aliphatic and olefinic species. CHON, with aromatic structures and organosulfates, are abundant, especially in nighttime samples. The in-cloud and multi-phase dark reactions likely contribute significantly.
Jiao Tang, Jiaqi Wang, Guangcai Zhong, Hongxing Jiang, Yangzhi Mo, Bolong Zhang, Xiaofei Geng, Yingjun Chen, Jianhui Tang, Congguo Tian, Surat Bualert, Jun Li, and Gan Zhang
Atmos. Chem. Phys., 21, 11337–11352, https://doi.org/10.5194/acp-21-11337-2021, https://doi.org/10.5194/acp-21-11337-2021, 2021
Short summary
Short summary
This article provides a combined EEM–PARAFAC and statistical analysis method to explore how excitation–emission matrix (EEM) chromophores influence BrC light absorption in soluble organic matter. The application enables us to deduce that BrC absorption is mainly dependent on longer-emission-wavelength chromophores largely associated with biomass burning emissions. This method promotes the application of EEM spectroscopy and helps us understand the light absorption of BrC in the atmosphere.
Xuewu Fu, Chen Liu, Hui Zhang, Yue Xu, Hui Zhang, Jun Li, Xiaopu Lyu, Gan Zhang, Hai Guo, Xun Wang, Leiming Zhang, and Xinbin Feng
Atmos. Chem. Phys., 21, 6721–6734, https://doi.org/10.5194/acp-21-6721-2021, https://doi.org/10.5194/acp-21-6721-2021, 2021
Short summary
Short summary
TGM concentrations and isotopic compositions in 10 Chinese cities showed strong seasonality with higher TGM concentrations and Δ199Hg and lower δ202Hg in summer. We found the seasonal variations in TGM concentrations and isotopic compositions were highly related to regional surface Hg(0) emissions, suggesting land surface Hg(0) emissions are an important source of atmospheric TGM that contribute dominantly to the seasonal variations in TGM concentrations and isotopic compositions.
Jianzhong Sun, Yuzhe Zhang, Guorui Zhi, Regina Hitzenberger, Wenjing Jin, Yingjun Chen, Lei Wang, Chongguo Tian, Zhengying Li, Rong Chen, Wen Xiao, Yuan Cheng, Wei Yang, Liying Yao, Yang Cao, Duo Huang, Yueyuan Qiu, Jiali Xu, Xiaofei Xia, Xin Yang, Xi Zhang, Zheng Zong, Yuchun Song, and Changdong Wu
Atmos. Chem. Phys., 21, 2329–2341, https://doi.org/10.5194/acp-21-2329-2021, https://doi.org/10.5194/acp-21-2329-2021, 2021
Short summary
Short summary
Brown carbon (BrC) emission factors from household biomass fuels were measured with an integrating sphere optics approach supported by iterative calculations. A novel algorithm to directly estimate the absorption contribution of BrC relative to that of BrC + black carbon (FBrC) was proposed based purely on the absorption exponent (AAE)
(FBrC = 0.5519 lnAAE + 0.0067). The FBrC for household biomass fuels was as high as 50.8 % across the strongest solar spectral range of 350−850 nm.
Qingcai Chen, Haoyao Sun, Wenhuai Song, Fang Cao, Chongguo Tian, and Yan-Lin Zhang
Atmos. Chem. Phys., 20, 14407–14417, https://doi.org/10.5194/acp-20-14407-2020, https://doi.org/10.5194/acp-20-14407-2020, 2020
Short summary
Short summary
This study found environmentally persistent free radicals (EPFRs) are widely present in atmospheric particles of different particle sizes and exhibit significant particle size distribution characteristics. EPFR concentrations are higher in coarse particles than in fine particles in summer and vice versa in winter. The potential toxicity caused by EPFRs may also vary with particle size and season. Combustion is the most important source of EPFRs (>70 %).
Cited articles
Altieri, K. E., Turpin, B. J., and Seitzinger, S. P.: Oligomers, organosulfates, and nitrooxy organosulfates in rainwater identified by ultra-high resolution electrospray ionization FT-ICR mass spectrometry, Atmos. Chem. Phys., 9, 2533–2542, https://doi.org/10.5194/acp-9-2533-2009, 2009.
Aoki, E., Sarrimanolis, J. N., Lyon, S. A., and Elrod, M. J.: Determining
the Relative Reactivity of Sulfate, Bisulfate, and Organosulfates with
Epoxides on Secondary Organic Aerosol, ACS Earth Space Chem., 4,
1793–1801, https://doi.org/10.1021/acsearthspacechem.0c00178, 2020.
Bateman, A. P., Laskin, J., Laskin, A., and Nizkorodov, S. A.: Applications
of high-resolution electrospray ionization mass spectrometry to measurements
of average oxygen to carbon ratios in secondary organic aerosols, Environ.
Sci. Technol., 46, 8315–8324, https://doi.org/10.1021/es3017254, 2012.
Bates, J. T., Fang, T., Verma, V., Zeng, L., Weber, R. J., Tolbert, P. E.,
Abrams, J. Y., Sarnat, S. E., Klein, M., Mulholland, J. A., and Russell, A.
G.: Review of Acellular Assays of Ambient Particulate Matter Oxidative
Potential: Methods and Relationships with Composition, Sources, and Health
Effects, Environ. Sci. Technol., 53, 4003–4019, https://doi.org/10.1021/acs.est.8b03430,
2019.
Bianco, A., Deguillaume, L., Vaitilingom, M., Nicol, E., Baray, J. L.,
Chaumerliac, N., and Bridoux, M.: Molecular Characterization of Cloud Water
Samples Collected at the Puy de Dome (France) by Fourier Transform Ion
Cyclotron Resonance Mass Spectrometry, Environ. Sci. Technol., 52,
10275–10285, https://doi.org/10.1021/acs.est.8b01964, 2018.
Blair, S. L., MacMillan, A. C., Drozd, G. T., Goldstein, A. H., Chu, R. K.,
Pasa-Tolic, L., Shaw, J. B., Tolic, N., Lin, P., Laskin, J., Laskin, A., and
Nizkorodov, S. A.: Molecular Characterization of Organosulfur Compounds in
Biodiesel and Diesel Fuel Secondary Organic Aerosol, Environ. Sci. Technol.,
51, 119–127, https://doi.org/10.1021/acs.est.6b03304, 2017.
Bruggemann, M., Xu, R., Tilgner, A., Kwong, K. C., Mutzel, A., Poon, H. Y.,
Otto, T., Schaefer, T., Poulain, L., Chan, M. N., and Herrmann, H.:
Organosulfates in Ambient Aerosol: State of Knowledge and Future Research
Directions on Formation, Abundance, Fate, and Importance, Environ. Sci.
Technol., 54, 3767–3782, https://doi.org/10.1021/acs.est.9b06751, 2020.
Bryant, D. J., Elzein, A., Newland, M., White, E., Swift, S., Watkins, A.,
Deng, W., Song, W., Wang, S., Zhang, Y., Wang, X., Rickard, A. R., and
Hamilton, J. F.: Importance of Oxidants and Temperature in the Formation of
Biogenic Organosulfates and Nitrooxy Organosulfates, ACS Earth Space Chem.,
5, 2291–2306, https://doi.org/10.1021/acsearthspacechem.1c00204, 2021.
Chen, Y. and Bond, T. C.: Light absorption by organic carbon from wood combustion, Atmos. Chem. Phys., 10, 1773–1787, https://doi.org/10.5194/acp-10-1773-2010, 2010.
Chen, Y., Zhang, Y., Lambe, A. T., Xu, R., Lei, Z., Olson, N. E., Zhang, Z.,
Szalkowski, T., Cui, T., Vizuete, W., Gold, A., Turpin, B. J., Ault, A. P.,
Chan, M. N., and Surratt, J. D.: Heterogeneous Hydroxyl Radical Oxidation of
Isoprene-Epoxydiol-Derived Methyltetrol Sulfates: Plausible Formation
Mechanisms of Previously Unexplained Organosulfates in Ambient Fine
Aerosols, Environ. Sci. Tech. Let., 7, 460–468, https://doi.org/10.1021/acs.estlett.0c00276,
2020.
Chen, Y., Dombek, T., Hand, J., Zhang, Z., Gold, A., Ault, A. P., Levine, K.
E., and Surratt, J. D.: Seasonal Contribution of Isoprene-Derived
Organosulfates to Total Water-Soluble Fine Particulate Organic Sulfur in the
United States, ACS Earth Space Chem., 5, 2419–2432,
https://doi.org/10.1021/acsearthspacechem.1c00102, 2021.
Cheng, Y., He, K. B., Engling, G., Weber, R., Liu, J. M., Du, Z. Y., and
Dong, S. P.: Brown and black carbon in Beijing aerosol: Implications for the
effects of brown coating on light absorption by black carbon, Sci.
Total Environ., 599–600, 1047–1055, https://doi.org/10.1016/j.scitotenv.2017.05.061,
2017.
Cui, M., Li, C., Chen, Y., Zhang, F., Li, J., Jiang, B., Mo, Y., Li, J., Yan, C., Zheng, M., Xie, Z., Zhang, G., and Zheng, J.: Molecular characterization of polar organic aerosol constituents in off-road engine emissions using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS): implications for source apportionment, Atmos. Chem. Phys., 19, 13945–13956, https://doi.org/10.5194/acp-19-13945-2019, 2019.
Daellenbach, K. R., Kourtchev, I., Vogel, A. L., Bruns, E. A., Jiang, J., Petäjä, T., Jaffrezo, J.-L., Aksoyoglu, S., Kalberer, M., Baltensperger, U., El Haddad, I., and Prévôt, A. S. H.: Impact of anthropogenic and biogenic sources on the seasonal variation in the molecular composition of urban organic aerosols: a field and laboratory study using ultra-high-resolution mass spectrometry, Atmos. Chem. Phys., 19, 5973–5991, https://doi.org/10.5194/acp-19-5973-2019, 2019.
Daellenbach, K. R., Uzu, G., Jiang, J., Cassagnes, L. E., Leni, Z., Vlachou,
A., Stefenelli, G., Canonaco, F., Weber, S., Segers, A., Kuenen, J. J. P.,
Schaap, M., Favez, O., Albinet, A., Aksoyoglu, S., Dommen, J.,
Baltensperger, U., Geiser, M., El Haddad, I., Jaffrezo, J. L., and Prevot,
A. S. H.: Sources of particulate-matter air pollution and its oxidative
potential in Europe, Nature, 587, 414–419, https://doi.org/10.1038/s41586-020-2902-8,
2020.
Dai, S., Bi, X., Chan, L. Y., He, J., Wang, B., Wang, X., Peng, P., Sheng, G., and Fu, J.: Chemical and stable carbon isotopic composition of PM2.5 from on-road vehicle emissions in the PRD region and implications for vehicle emission control policy, Atmos. Chem. Phys., 15, 3097–3108, https://doi.org/10.5194/acp-15-3097-2015, 2015.
Duporte, G., Flaud, P. M., Kammer, J., Geneste, E., Augagneur, S., Pangui,
E., Lamkaddam, H., Gratien, A., Doussin, J. F., Budzinski, H., Villenave,
E., and Perraudin, E.: Experimental Study of the Formation of Organosulfates
from alpha-Pinene Oxidation. 2. Time Evolution and Effect of Particle
Acidity, J. Phys. Chem. A, 124, 409-421, https://doi.org/10.1021/acs.jpca.9b07156, 2020.
Eddingsaas, N. C., VanderVelde, D. G., and Wennberg, P. O.: Kinetics and
Products of the Acid-Catalyzed Ring-Opening of Atmospherically Relevant
Butyl Epoxy Alcohols, J. Phys. Chem. A, 114, 8106–8113,
https://doi.org/10.1021/jp103907c, 2010.
Fleming, L. T., Ali, N. N., Blair, S. L., Roveretto, M., George, C., and
Nizkorodov, S. A.: Formation of Light-Absorbing Organosulfates during
Evaporation of Secondary Organic Material Extracts in the Presence of
Sulfuric Acid, ACS Earth Space Chem., 3, 947–957,
https://doi.org/10.1021/acsearthspacechem.9b00036, 2019.
Frossard, A. A., Shaw, P. M., Russell, L. M., Kroll, J. H., Canagaratna, M.
R., Worsnop, D. R., Quinn, P. K., and Bates, T. S.: Springtime Arctic haze
contributions of submicron organic particles from European and Asian
combustion sources, J. Geophys. Res., 116, D05205,
https://doi.org/10.1029/2010jd015178, 2011.
Gao, K. and Zhu, T.: Analytical methods for organosulfate detection in
aerosol particles: Current status and future perspectives, Sci. Total
Environ., 784, 147244, https://doi.org/10.1016/j.scitotenv.2021.147244, 2021.
Guo, H., Sullivan, A. P., Campuzano-Jost, P., Schroder, J. C.,
Lopez-Hilfiker, F. D., Dibb, J. E., Jimenez, J. L., Thornton, J. A., Brown,
S. S., Nenes, A., and Weber, R. J.: Fine particle pH and the partitioning of
nitric acid during winter in the northeastern United States, J. Geophys.
Res.-Atmos., 121, 10355–10376, https://doi.org/10.1002/2016jd025311, 2016.
Guo, J., Zhou, S., Cai, M., Zhao, J., Song, W., Zhao, W., Hu, W., Sun, Y., He, Y., Yang, C., Xu, X., Zhang, Z., Cheng, P., Fan, Q., Hang, J., Fan, S., Wang, X., and Wang, X.: Characterization of submicron particles by time-of-flight aerosol chemical speciation monitor (ToF-ACSM) during wintertime: aerosol composition, sources, and chemical processes in Guangzhou, China, Atmos. Chem. Phys., 20, 7595–7615, https://doi.org/10.5194/acp-20-7595-2020, 2020.
He, Q. F., Ding, X., Wang, X. M., Yu, J. Z., Fu, X. X., Liu, T. Y., Zhang,
Z., Xue, J., Chen, D. H., Zhong, L. J., and Donahue, N. M.: Organosulfates
from pinene and isoprene over the Pearl River Delta, South China: seasonal
variation and implication in formation mechanisms, Environ. Sci. Technol.,
48, 9236–9245, https://doi.org/10.1021/es501299v, 2014.
He, Q.-F., Ding, X., Tang, M.-J., Wang, X.-M., Fu, X.-X., Zhang, Y.-Q.,
Wang, J.-Q., Liu, Y.-X., and Rudich, Y.: Secondary Organic Aerosol Formation
From Isoprene Epoxides in the Pearl River Delta, South China: IEPOX- and
HMML-Derived Tracers, J. Geophys. Res.-Atmos., 123, 6999–7012,
https://doi.org/10.1029/2017JD028242, 2018.
Hettiyadura, A. P. S., Stone, E. A., Kundu, S., Baker, Z., Geddes, E., Richards, K., and Humphry, T.: Determination of atmospheric organosulfates using HILIC chromatography with MS detection, Atmos. Meas. Tech., 8, 2347–2358, https://doi.org/10.5194/amt-8-2347-2015, 2015.
Hettiyadura, A. P. S., Jayarathne, T., Baumann, K., Goldstein, A. H., de Gouw, J. A., Koss, A., Keutsch, F. N., Skog, K., and Stone, E. A.: Qualitative and quantitative analysis of atmospheric organosulfates in Centreville, Alabama, Atmos. Chem. Phys., 17, 1343–1359, https://doi.org/10.5194/acp-17-1343-2017, 2017.
Hettiyadura, A. P. S., Al-Naiema, I. M., Hughes, D. D., Fang, T., and Stone, E. A.: Organosulfates in Atlanta, Georgia: anthropogenic influences on biogenic secondary organic aerosol formation, Atmos. Chem. Phys., 19, 3191–3206, https://doi.org/10.5194/acp-19-3191-2019, 2019.
Huang, D. D., Li, Y. J., Lee, B. P., and Chan, C. K.: Analysis of organic
sulfur compounds in atmospheric aerosols at the HKUST supersite in Hong Kong
using HR-ToF-AMS, Environ. Sci. Technol., 49, 3672–3679, https://doi.org/10.1021/es5056269,
2015.
Huang, L., Coddens, E. M., and Grassian, V. H.: Formation of Organosulfur
Compounds from Aqueous Phase Reactions of S(IV) with Methacrolein and Methyl
Vinyl Ketone in the Presence of Transition Metal Ions, ACS Earth Space
Chem., 3, 1749–1755, https://doi.org/10.1021/acsearthspacechem.9b00173, 2019.
Huang, L., Liu, T., and Grassian, V. H.: Radical-Initiated Formation of
Aromatic Organosulfates and Sulfonates in the Aqueous Phase, Environ. Sci.
Technol., 54, 11857–11864, https://doi.org/10.1021/acs.est.0c05644, 2020.
Huang, R.-J., Cao, J., Chen, Y., Yang, L., Shen, J., You, Q., Wang, K., Lin, C., Xu, W., Gao, B., Li, Y., Chen, Q., Hoffmann, T., O'Dowd, C. D., Bilde, M., and Glasius, M.: Organosulfates in atmospheric aerosol: synthesis and quantitative analysis of PM2.5 from Xi'an, northwestern China, Atmos. Meas. Tech., 11, 3447–3456, https://doi.org/10.5194/amt-11-3447-2018, 2018a.
Huang, R. J., Yang, L., Cao, J. J., Chen, Y., Chen, Q., Li, Y., Duan, J.,
Zhu, C., Dai, W., Wang, K., Lin, C., Ni, H., Corbin, J. C., Wu, Y., Zhang,
R., Tie, X., Hoffmann, T., O'Dowd, C., and Dusek, U.: Brown Carbon Aerosol
in Urban Xi'an, Northwest China: The Composition and Light Absorption
Properties, Environ. Sci. Technol., 52, 6825–6833,
https://doi.org/10.1021/acs.est.8b02386, 2018b.
Iinuma, Y., Müller, C., Böge, O., Gnauk, T., and Herrmann, H.: The
formation of organic sulfate esters in the limonene ozonolysis secondary
organic aerosol (SOA) under acidic conditions, Atmos. Environ., 41,
5571–5583, https://doi.org/10.1016/j.atmosenv.2007.03.007, 2007a.
Iinuma, Y., Müller, C., Berndt, T., Böge, O., Claeys, M., and Herrmann, H.: Evidence for the Existence of
Organosulfates from β-Pinene Ozonolysis in Ambient Secondary Organic
Aerosol, Environ. Sci. Technol., 41, 6678–6683, https://doi.org/10.1021/es070938t, 2007b.
Jiang, B., Kuang, B. Y., Liang, Y., Zhang, J., Huang, X. H. H., Xu, C., Yu,
J. Z., and Shi, Q.: Molecular composition of urban organic aerosols on clear
and hazy days in Beijing: a comparative study using FT-ICR MS, Environ.
Chem., 13, 888–901, https://doi.org/10.1071/en15230, 2016.
Jiang, H., Li, J., Chen, D., Tang, J., Cheng, Z., Mo, Y., Su, T., Tian, C.,
Jiang, B., Liao, Y., and Zhang, G.: Biomass burning organic aerosols
significantly influence the light absorption properties of
polarity-dependent organic compounds in the Pearl River Delta Region, China,
Environ. Int., 144, 106079, https://doi.org/10.1016/j.envint.2020.106079, 2020.
Jiang, H., Li, J., Sun, R., Tian, C., Tang, J., Jiang, B., Liao, Y., Chen,
C. E., and Zhang, G.: Molecular Dynamics and Light Absorption Properties of
Atmospheric Dissolved Organic Matter, Environ. Sci. Technol., 55,
10268–10279, https://doi.org/10.1021/acs.est.1c01770, 2021a.
Jiang, H., Li, J., Sun, R., Liu, G., Tian, C., Tang, J., Cheng, Z., Zhu, S.,
Zhong, G., Ding, X., and Zhang, G.: Determining the Sources and Transport of
Brown Carbon Using Radionuclide Tracers and Modeling, J. Geophys. Res.-Atmos., 126, e2021JD034616, https://doi.org/10.1029/2021jd034616, 2021b.
Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang,
Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken,
A. C., Docherty, K. S., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L.,
Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun, Y.
L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara,
P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J.,
Dunlea, J., Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P. I.,
Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S.,
Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A., Miyoshi,
T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina, K.,
Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A. M.,
Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E.,
Baltensperger, U., and Worsnop, D. R.: Evolution of Organic Aerosols in the
Atmosphere, Science, 326, 1525, https://doi.org/10.1126/science.1180353, 2009.
Kellerman, A. M., Dittmar, T., Kothawala, D. N., and Tranvik, L. J.:
Chemodiversity of dissolved organic matter in lakes driven by climate and
hydrology, Nat. Commun., 5, 3804, https://doi.org/10.1038/ncomms4804, 2014.
Kourtchev, I., Giorio, C., Manninen, A., Wilson, E., Mahon, B., Aalto, J.,
Kajos, M., Venables, D., Ruuskanen, T., Levula, J., Loponen, M., Connors,
S., Harris, N., Zhao, D., Kiendler-Scharr, A., Mentel, T., Rudich, Y.,
Hallquist, M., Doussin, J. F., Maenhaut, W., Back, J., Petaja, T., Wenger,
J., Kulmala, M., and Kalberer, M.: Enhanced Volatile Organic Compounds
emissions and organic aerosol mass increase the oligomer content of
atmospheric aerosols, Sci. Rep.-UK, 6, 35038, https://doi.org/10.1038/srep35038, 2016.
Kristensen, K., Bilde, M., Aalto, P. P., Petäjä, T., and Glasius,
M.: Denuder/filter sampling of organic acids and organosulfates at urban and
boreal forest sites: Gas/particle distribution and possible sampling
artifacts, Atmos. Environ., 130, 36–53, https://doi.org/10.1016/j.atmosenv.2015.10.046,
2016.
Kuang, B. Y., Lin, P., Hu, M., and Yu, J. Z.: Aerosol size distribution
characteristics of organosulfates in the Pearl River Delta region, China,
Atmos. Environ., 130, 23–35, https://doi.org/10.1016/j.atmosenv.2015.09.024, 2016.
Lam, H. K., Kwong, K. C., Poon, H. Y., Davies, J. F., Zhang, Z., Gold, A., Surratt, J. D., and Chan, M. N.: Heterogeneous OH oxidation of isoprene-epoxydiol-derived organosulfates: kinetics, chemistry and formation of inorganic sulfate, Atmos. Chem. Phys., 19, 2433–2440, https://doi.org/10.5194/acp-19-2433-2019, 2019.
Le Breton, M., Wang, Y., Hallquist, Å. M., Pathak, R. K., Zheng, J., Yang, Y., Shang, D., Glasius, M., Bannan, T. J., Liu, Q., Chan, C. K., Percival, C. J., Zhu, W., Lou, S., Topping, D., Wang, Y., Yu, J., Lu, K., Guo, S., Hu, M., and Hallquist, M.: Online gas- and particle-phase measurements of organosulfates, organosulfonates and nitrooxy organosulfates in Beijing utilizing a FIGAERO ToF-CIMS, Atmos. Chem. Phys., 18, 10355–10371, https://doi.org/10.5194/acp-18-10355-2018, 2018.
Li, J. J., Wang, G. H., Cao, J. J., Wang, X. M., and Zhang, R. J.: Observation of biogenic secondary organic aerosols in the atmosphere of a mountain site in central China: temperature and relative humidity effects, Atmos. Chem. Phys., 13, 11535–11549, https://doi.org/10.5194/acp-13-11535-2013, 2013.
Lin, P., Yu, J. Z., Engling, G., and Kalberer, M.: Organosulfates in
Humic-like Substance Fraction Isolated from Aerosols at Seven Locations in
East Asia: A Study by Ultra-High-Resolution Mass Spectrometry, Environ. Sci.
Technol., 46, 13118–13127, https://doi.org/10.1021/es303570v, 2012.
Lin, Y.-H., Knipping, E. M., Edgerton, E. S., Shaw, S. L., and Surratt, J. D.: Investigating the influences of SO2 and NH3 levels on isoprene-derived secondary organic aerosol formation using conditional sampling approaches, Atmos. Chem. Phys., 13, 8457–8470, https://doi.org/10.5194/acp-13-8457-2013, 2013.
Lin, Y.-H., Arashiro, M., Martin, E., Chen, Y., Zhang, Z., Sexton, K. G.,
Gold, A., Jaspers, I., Fry, R. C., and Surratt, J. D.: Isoprene-Derived
Secondary Organic Aerosol Induces the Expression of Oxidative Stress
Response Genes in Human Lung Cells, Environ. Sci. Tech. Let., 3,
250–254, https://doi.org/10.1021/acs.estlett.6b00151, 2016.
Lind, J. A., Lazrus, A. L., and Kok, G. L.: Aqueous phase oxidation of
sulfur(IV) by hydrogen peroxide, methylhydroperoxide, and peroxyacetic acid,
J. Geophys. Res.-Atmos., 92, 4171–4177, https://doi.org/10.1029/JD092iD04p04171, 1987.
Liu, J., Li, J., Zhang, Y., Liu, D., Ding, P., Shen, C., Shen, K., He, Q.,
Ding, X., Wang, X., Chen, D., Szidat, S., and Zhang, G.: Source
apportionment using radiocarbon and organic tracers for PM2.5 carbonaceous
aerosols in Guangzhou, South China: contrasting local- and regional-scale
haze events, Environ. Sci. Technol., 48, 12002–12011, https://doi.org/10.1021/es503102w,
2014.
Liu, M., Song, Y., Zhou, T., Xu, Z., Yan, C., Zheng, M., Wu, Z., Hu, M., Wu,
Y., and Zhu, T.: Fine particle pH during severe haze episodes in northern
China, Geophys. Res. Lett., 44, 5213–5221, https://doi.org/10.1002/2017gl073210, 2017.
Lukács, H., Gelencsér, A., Hoffer, A., Kiss, G., Horváth, K., and Hartyáni, Z.: Quantitative assessment of organosulfates in size-segregated rural fine aerosol, Atmos. Chem. Phys., 9, 231–238, https://doi.org/10.5194/acp-9-231-2009, 2009.
Mazzoleni, L. R., Ehrmann, B. M., Shen, X., Marshall, A. G., and Collett, J.
L.: Water-Soluble Atmospheric Organic Matter in Fog: Exact Masses and
Chemical Formula Identification by Ultrahigh-Resolution Fourier Transform
Ion Cyclotron Resonance Mass Spectrometry, Environ. Sci. Technol., 44,
3690–3697, https://doi.org/10.1021/es903409k, 2010.
Meade, L. E., Riva, M., Blomberg, M. Z., Brock, A. K., Qualters, E. M.,
Siejack, R. A., Ramakrishnan, K., Surratt, J. D., and Kautzman, K. E.:
Seasonal variations of fine particulate organosulfates derived from biogenic
and anthropogenic hydrocarbons in the mid-Atlantic United States, Atmos.
Environ., 145, 405–414, https://doi.org/10.1016/j.atmosenv.2016.09.028, 2016.
Nguyen, T. B., Lee, P. B., Updyke, K. M., Bones, D. L., Laskin, J., Laskin,
A., and Nizkorodov, S. A.: Formation of nitrogen- and sulfur-containing
light-absorbing compounds accelerated by evaporation of water from secondary
organic aerosols, J. Geophys. Res.-Atmos., 117, D01207,
https://doi.org/10.1029/2011jd016944, 2012.
Nozière, B., Ekström, S., Alsberg, T., and Holmström, S.:
Radical-initiated formation of organosulfates and surfactants in atmospheric
aerosols, Geophys. Res. Lett., 37, L05806, https://doi.org/10.1029/2009gl041683, 2010.
Nozière, B., Kalberer, M., Claeys, M., Allan, J., D'Anna, B., Decesari, S.,
Finessi, E., Glasius, M., Grgic, I., Hamilton, J. F., Hoffmann, T., Iinuma,
Y., Jaoui, M., Kahnt, A., Kampf, C. J., Kourtchev, I., Maenhaut, W.,
Marsden, N., Saarikoski, S., Schnelle-Kreis, J., Surratt, J. D., Szidat, S.,
Szmigielski, R., and Wisthaler, A.: The molecular identification of organic
compounds in the atmosphere: state of the art and challenges, Chem. Rev.,
115, 3919–3983, https://doi.org/10.1021/cr5003485, 2015.
O'Brien, R. E., Laskin, A., Laskin, J., Rubitschun, C. L., Surratt, J. D.,
and Goldstein, A. H.: Molecular characterization of S- and N-containing
organic constituents in ambient aerosols by negative ion mode
high-resolution Nanospray Desorption Electrospray Ionization Mass
Spectrometry: CalNex 2010 field study, J. Geophys. Res.-Atmos., 119,
12706–12720, https://doi.org/10.1002/2014jd021955, 2014.
Olson, C. N., Galloway, M. M., Yu, G., Hedman, C. J., Lockett, M. R., Yoon,
T., Stone, E. A., Smith, L. M., and Keutsch, F. N.: Hydroxycarboxylic
acid-derived organosulfates: synthesis, stability, and quantification in
ambient aerosol, Environ. Sci. Technol., 45, 6468–6474,
https://doi.org/10.1021/es201039p, 2011.
Passananti, M., Kong, L., Shang, J., Dupart, Y., Perrier, S., Chen, J.,
Donaldson, D. J., and George, C.: Organosulfate Formation through the
Heterogeneous Reaction of Sulfur Dioxide with Unsaturated Fatty Acids and
Long-Chain Alkenes, Angew. Chem. Int. Ed., 55, 10336–10339,
https://doi.org/10.1002/anie.201605266, 2016.
Peng, C., Razafindrambinina, P. N., Malek, K. A., Chen, L., Wang, W., Huang, R.-J., Zhang, Y., Ding, X., Ge, M., Wang, X., Asa-Awuku, A. A., and Tang, M.: Interactions of organosulfates with water vapor under sub- and supersaturated conditions, Atmos. Chem. Phys., 21, 7135–7148, https://doi.org/10.5194/acp-21-7135-2021, 2021.
Riva, M., Tomaz, S., Cui, T., Lin, Y. H., Perraudin, E., Gold, A., Stone, E.
A., Villenave, E., and Surratt, J. D.: Evidence for an unrecognized
secondary anthropogenic source of organosulfates and sulfonates: gas-phase
oxidation of polycyclic aromatic hydrocarbons in the presence of sulfate
aerosol, Environ. Sci. Technol., 49, 6654–6664, https://doi.org/10.1021/acs.est.5b00836,
2015.
Riva, M., Da Silva Barbosa, T., Lin, Y.-H., Stone, E. A., Gold, A., and Surratt, J. D.: Chemical characterization of organosulfates in secondary organic aerosol derived from the photooxidation of alkanes, Atmos. Chem. Phys., 16, 11001–11018, https://doi.org/10.5194/acp-16-11001-2016, 2016a.
Riva, M., Da Silva Barbosa, T., Lin, Y.-H., Stone, E. A., Gold, A., and Surratt, J. D.: Chemical characterization of organosulfates in secondary organic aerosol derived from the photooxidation of alkanes, Atmos. Chem. Phys., 16, 11001–11018, https://doi.org/10.5194/acp-16-11001-2016, 2016b.
Riva, M., Budisulistiorini, S. H., Chen, Y., Zhang, Z., D'Ambro, E. L.,
Zhang, X., Gold, A., Turpin, B. J., Thornton, J. A., Canagaratna, M. R., and
Surratt, J. D.: Chemical Characterization of Secondary Organic Aerosol from
Oxidation of Isoprene Hydroxyhydroperoxides, Environ. Sci. Technol., 50,
9889–9899, https://doi.org/10.1021/acs.est.6b02511, 2016c.
Rudziński, K. J., Gmachowski, L., and Kuznietsova, I.: Reactions of isoprene and sulphoxy radical-anions – a possible source of atmospheric organosulphites and organosulphates, Atmos. Chem. Phys., 9, 2129–2140, https://doi.org/10.5194/acp-9-2129-2009, 2009.
Shakya, K. M. and Peltier, R. E.: Investigating missing sources of sulfur at
Fairbanks, Alaska, Environ. Sci. Technol., 47, 9332–9338,
https://doi.org/10.1021/es402020b, 2013.
Shakya, K. M. and Peltier, R. E.: Non-sulfate sulfur in fine aerosols across
the United States: Insight for organosulfate prevalence, Atmos. Environ.,
100, 159–166, https://doi.org/10.1016/j.atmosenv.2014.10.058, 2015.
Shang, J., Passananti, M., Dupart, Y., Ciuraru, R., Tinel, L., Rossignol,
S., Perrier, S., Zhu, T., and George, C.: SO2 Uptake on Oleic Acid: A New
Formation Pathway of Organosulfur Compounds in the Atmosphere, Environ. Sci.
Tech. Let., 3, 67–72, https://doi.org/10.1021/acs.estlett.6b00006, 2016.
Song, J., Li, M., Jiang, B., Wei, S., Fan, X., and Peng, P. A.: Molecular
Characterization of Water-Soluble Humic like Substances in Smoke Particles
Emitted from Combustion of Biomass Materials and Coal Using
Ultrahigh-Resolution Electrospray Ionization Fourier Transform Ion Cyclotron
Resonance Mass Spectrometry, Environ. Sci. Technol., 52, 2575–2585,
https://doi.org/10.1021/acs.est.7b06126, 2018.
Stone, E. A., Yang, L., Yu, L. E., and Rupakheti, M.: Characterization of
organosulfates in atmospheric aerosols at Four Asian locations, Atmos.
Environ., 47, 323–329, https://doi.org/10.1016/j.atmosenv.2011.10.058, 2012.
Surratt, J. D., Kroll, J. H., Kleindienst, X. T. E., Edney, E. O., Claeys,
M., Sorooshian, A., Ng, N. L., Offenberg, J. H., Lewandowski, M., Jaoui, M.,
Flagan, R. C., and Seinfeld, J. H.: Evidence for Organosulfates in Secondary
Organic Aerosol, Environ. Sci. Technol., 41, 517–527, https://doi.org/10.1021/es062081q,
2007.
Surratt, J. D., Gómez-González, Y., Chan, A. W. H., Vermeylen, R.,
Shahgholi, M., Kleindienst, T. E., Edney, E. O., Offenberg, J. H.,
Lewandowski, M., Jaoui, M., Maenhaut, W., Claeys, M., Flagan, R. C., and
Seinfeld, J. H.: Organosulfate Formation in Biogenic Secondary Organic
Aerosol, J. Phys. Chem. A, 112, 8345–8378, https://doi.org/10.1021/jp802310p, 2008.
Surratt, J. D., Chan, A. W., Eddingsaas, N. C., Chan, M., Loza, C. L., Kwan,
A. J., Hersey, S. P., Flagan, R. C., Wennberg, P. O., and Seinfeld, J. H.:
Reactive intermediates revealed in secondary organic aerosol formation from
isoprene, P. Natl. Acad. Sci. USA, 107, 6640–6645, https://doi.org/10.1073/pnas.0911114107, 2010.
Tang, J., Li, J., Su, T., Han, Y., Mo, Y., Jiang, H., Cui, M., Jiang, B., Chen, Y., Tang, J., Song, J., Peng, P., and Zhang, G.: Molecular compositions and optical properties of dissolved brown carbon in biomass burning, coal combustion, and vehicle emission aerosols illuminated by excitation–emission matrix spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry analysis, Atmos. Chem. Phys., 20, 2513–2532, https://doi.org/10.5194/acp-20-2513-2020, 2020.
Tao, S., Lu, X., Levac, N., Bateman, A. P., Nguyen, T. B., Bones, D. L.,
Nizkorodov, S. A., Laskin, J., Laskin, A., and Yang, X.: Molecular
characterization of organosulfates in organic aerosols from Shanghai and Los
Angeles urban areas by nanospray-desorption electrospray ionization
high-resolution mass spectrometry, Environ. Sci. Technol., 48, 10993–11001,
https://doi.org/10.1021/es5024674, 2014.
Tolocka, M. P. and Turpin, B.: Contribution of organosulfur compounds to
organic aerosol mass, Environ. Sci. Technol., 46, 7978–7983,
https://doi.org/10.1021/es300651v, 2012.
Vogel, A. L., Schneider, J., Muller-Tautges, C., Phillips, G. J., Pohlker,
M. L., Rose, D., Zuth, C., Makkonen, U., Hakola, H., Crowley, J. N.,
Andreae, M. O., Poschl, U., and Hoffmann, T.: Aerosol Chemistry Resolved by
Mass Spectrometry: Linking Field Measurements of Cloud Condensation Nuclei
Activity to Organic Aerosol Composition, Environ. Sci. Technol., 50,
10823–10832, https://doi.org/10.1021/acs.est.6b01675, 2016.
Wach, P., Spolnik, G., Rudzinski, K. J., Skotak, K., Claeys, M.,
Danikiewicz, W., and Szmigielski, R.: Radical oxidation of methyl vinyl
ketone and methacrolein in aqueous droplets: Characterization of
organosulfates and atmospheric implications, Chemosphere, 214, 1–9,
https://doi.org/10.1016/j.chemosphere.2018.09.026, 2019.
Wang, J., Ye, J., Zhang, Q., Zhao, J., Wu, Y., Li, J., Liu, D., Li, W.,
Zhang, Y., Wu, C., Xie, C., Qin, Y., Lei, Y., Huang, X., Guo, J., Liu, P.,
Fu, P., Li, Y., Lee, H. C., Choi, H., Zhang, J., Liao, H., Chen, M., Sun,
Y., Ge, X., Martin, S. T., and Jacob, D. J.: Aqueous production of secondary
organic aerosol from fossil-fuel emissions in winter Beijing haze, P.
Natl. Acad. Sci. USA, 118, e2022179118, https://doi.org/10.1073/pnas.2022179118, 2021.
Wang, K., Zhang, Y., Huang, R. J., Wang, M., Ni, H., Kampf, C. J., Cheng,
Y., Bilde, M., Glasius, M., and Hoffmann, T.: Molecular Characterization and
Source Identification of Atmospheric Particulate Organosulfates Using
Ultrahigh Resolution Mass Spectrometry, Environ. Sci. Technol., 53,
6192–6202, https://doi.org/10.1021/acs.est.9b02628, 2019.
Wang, K., Huang, R.-J., Brüggemann, M., Zhang, Y., Yang, L., Ni, H., Guo, J., Wang, M., Han, J., Bilde, M., Glasius, M., and Hoffmann, T.: Urban organic aerosol composition in eastern China differs from north to south: molecular insight from a liquid chromatography–mass spectrometry (Orbitrap) study, Atmos. Chem. Phys., 21, 9089–9104, https://doi.org/10.5194/acp-21-9089-2021, 2021.
Wang, X., Hayeck, N., Brüggemann, M., Yao, L., Chen, H., Zhang, C.,
Emmelin, C., Chen, J., George, C., and Wang, L.: Chemical Characteristics of
Organic Aerosols in Shanghai: A Study by Ultrahigh-Performance Liquid
Chromatography Coupled With Orbitrap Mass Spectrometry, J. Geophys. Res.-Atmos., 122, 11703–11722, https://doi.org/10.1002/2017jd026930, 2017.
Wang, X. K., Rossignol, S., Ma, Y., Yao, L., Wang, M. Y., Chen, J. M., George, C., and Wang, L.: Molecular characterization of atmospheric particulate organosulfates in three megacities at the middle and lower reaches of the Yangtze River, Atmos. Chem. Phys., 16, 2285–2298, https://doi.org/10.5194/acp-16-2285-2016, 2016.
Wang, Y., Ren, J., Huang, X. H. H., Tong, R., and Yu, J. Z.: Synthesis of
Four Monoterpene-Derived Organosulfates and Their Quantification in
Atmospheric Aerosol Samples, Environ. Sci. Technol., 51, 6791–6801,
https://doi.org/10.1021/acs.est.7b01179, 2017.
Wang, Y., Hu, M., Guo, S., Wang, Y., Zheng, J., Yang, Y., Zhu, W., Tang, R., Li, X., Liu, Y., Le Breton, M., Du, Z., Shang, D., Wu, Y., Wu, Z., Song, Y., Lou, S., Hallquist, M., and Yu, J.: The secondary formation of organosulfates under interactions between biogenic emissions and anthropogenic pollutants in summer in Beijing, Atmos. Chem. Phys., 18, 10693–10713, https://doi.org/10.5194/acp-18-10693-2018, 2018.
Wang, Y., Hu, M., Wang, Y.-C., Li, X., Fang, X., Tang, R., Lu, S., Wu, Y.,
Guo, S., Wu, Z., Hallquist, M., and Yu, J. Z.: Comparative Study of
Particulate Organosulfates in Contrasting Atmospheric Environments: Field
Evidence for the Significant Influence of Anthropogenic Sulfate and NOx,
Environ. Sci. Tech. Let., 7, 787–794, https://doi.org/10.1021/acs.estlett.0c00550,
2020.
Willoughby, A. S., Wozniak, A. S., and Hatcher, P. G.: A molecular-level approach for characterizing water-insoluble components of ambient organic aerosol particulates using ultrahigh-resolution mass spectrometry, Atmos. Chem. Phys., 14, 10299–10314, https://doi.org/10.5194/acp-14-10299-2014, 2014.
Worton, D. R., Surratt, J. D., Lafranchi, B. W., Chan, A. W., Zhao, Y.,
Weber, R. J., Park, J. H., Gilman, J. B., de Gouw, J., Park, C., Schade, G.,
Beaver, M., Clair, J. M., Crounse, J., Wennberg, P., Wolfe, G. M., Harrold,
S., Thornton, J. A., Farmer, D. K., Docherty, K. S., Cubison, M. J.,
Jimenez, J. L., Frossard, A. A., Russell, L. M., Kristensen, K., Glasius,
M., Mao, J., Ren, X., Brune, W., Browne, E. C., Pusede, S. E., Cohen, R. C.,
Seinfeld, J. H., and Goldstein, A. H.: Observational insights into aerosol
formation from isoprene, Environ. Sci. Technol., 47, 11403–11413,
https://doi.org/10.1021/es4011064, 2013.
Xu, L., Yang, Z., Tsona, N. T., Wang, X., George, C., and Du, L.:
Anthropogenic-Biogenic Interactions at Night: Enhanced Formation of
Secondary Aerosols and Particulate Nitrogen- and Sulfur-Containing Organics
from beta-Pinene Oxidation, Environ. Sci. Technol., 55, 7794–7807,
https://doi.org/10.1021/acs.est.0c07879, 2021.
Xu, B., Zhang, G., Gustafsson, Ö., Kawamura, K., Li, J., Andersson, A.,
Bikkina, S., Kunwar, B., Pokhrel, A., Zhong, G., Zhao, S., Li, J., Huang,
C., Cheng, Z., Zhu, S., Peng, P. A., and Sheng, G.: Large contribution of
fossil anthropogenic source components to aqueous secondary organic
aerosols, https://doi.org/10.21203/rs.3.rs-1155038/v1, in review, 2022.
Yassine, M. M., Harir, M., Dabek-Zlotorzynska, E., and Schmitt-Kopplin, P.:
Structural characterization of organic aerosol using Fourier transform ion
cyclotron resonance mass spectrometry: aromaticity equivalent approach,
Rapid Commun. Mass Sp., 28, 2445–2454, https://doi.org/10.1002/rcm.7038, 2014.
Ye, J., Abbatt, J. P. D., and Chan, A. W. H.: Novel pathway of SO2 oxidation in the atmosphere: reactions with monoterpene ozonolysis intermediates and secondary organic aerosol, Atmos. Chem. Phys., 18, 5549–5565, https://doi.org/10.5194/acp-18-5549-2018, 2018.
Ye, Y., Zhan, H., Yu, X., Li, J., Wang, X., and Xie, Z.: Detection of
organosulfates and nitrooxy-organosulfates in Arctic and Antarctic
atmospheric aerosols, using ultra-high resolution FT-ICR mass spectrometry,
Sci. Total Environ., 767, 144339, https://doi.org/10.1016/j.scitotenv.2020.144339, 2020.
Zhao, Y., Hallar, A. G., and Mazzoleni, L. R.: Atmospheric organic matter in clouds: exact masses and molecular formula identification using ultrahigh-resolution FT-ICR mass spectrometry, Atmos. Chem. Phys., 13, 12343–12362, https://doi.org/10.5194/acp-13-12343-2013, 2013.
Zhu, M., Jiang, B., Li, S., Yu, Q., Yu, X., Zhang, Y., Bi, X., Yu, J.,
George, C., Yu, Z., and Wang, X.: Organosulfur Compounds Formed from
Heterogeneous Reaction between SO2 and Particulate-Bound Unsaturated Fatty
Acids in Ambient Air, Environ. Sci. Tech. Let., 6, 318–322,
https://doi.org/10.1021/acs.estlett.9b00218, 2019.
Short summary
We conducted field observation employing Fourier transform ion cyclotron resonance mass spectrometry to characterize the molecular composition and major formation pathways or sources of organosulfur compounds in Guangzhou, where is heavily influenced by biogenic–anthropogenic interactions and has high relative humidity and temperature. We suggested that heterogeneous reactions such as SO2 uptake and heterogeneous oxidations are important to the molecular variations of organosulfur compounds.
We conducted field observation employing Fourier transform ion cyclotron resonance mass...
Altmetrics
Final-revised paper
Preprint