Articles | Volume 22, issue 4
https://doi.org/10.5194/acp-22-2669-2022
https://doi.org/10.5194/acp-22-2669-2022
Research article
 | 
25 Feb 2022
Research article |  | 25 Feb 2022

Comparison of six approaches to predicting droplet activation of surface active aerosol – Part 1: moderately surface active organics​​​​​​​

Sampo Vepsäläinen, Silvia M. Calderón, Jussi Malila, and Nønne L. Prisle

Related authors

Comparison of six approaches to predicting droplet activation of surface active aerosol – Part 2: Strong surfactants
Sampo Vepsäläinen, Silvia M. Calderón, and Nønne L. Prisle
Atmos. Chem. Phys., 23, 15149–15164, https://doi.org/10.5194/acp-23-15149-2023,https://doi.org/10.5194/acp-23-15149-2023, 2023
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Gaps in our understanding of ice-nucleating particle sources exposed by global simulation of the UK Earth System Model
Ross J. Herbert, Alberto Sanchez-Marroquin, Daniel P. Grosvenor, Kirsty J. Pringle, Stephen R. Arnold, Benjamin J. Murray, and Kenneth S. Carslaw
Atmos. Chem. Phys., 25, 291–325, https://doi.org/10.5194/acp-25-291-2025,https://doi.org/10.5194/acp-25-291-2025, 2025
Short summary
The role of interfacial tension in the size-dependent phase separation of atmospheric aerosol particles
Ryan Schmedding and Andreas Zuend
Atmos. Chem. Phys., 25, 327–346, https://doi.org/10.5194/acp-25-327-2025,https://doi.org/10.5194/acp-25-327-2025, 2025
Short summary
Warming effects of reduced sulfur emissions from shipping
Masaru Yoshioka, Daniel P. Grosvenor, Ben B. B. Booth, Colin P. Morice, and Ken S. Carslaw
Atmos. Chem. Phys., 24, 13681–13692, https://doi.org/10.5194/acp-24-13681-2024,https://doi.org/10.5194/acp-24-13681-2024, 2024
Short summary
The key role of atmospheric absorption in the Asian summer monsoon response to dust emissions in CMIP6 models
Alcide Zhao, Laura J. Wilcox, and Claire L. Ryder
Atmos. Chem. Phys., 24, 13385–13402, https://doi.org/10.5194/acp-24-13385-2024,https://doi.org/10.5194/acp-24-13385-2024, 2024
Short summary
Multi-model effective radiative forcing of the 2020 sulfur cap for shipping
Ragnhild Bieltvedt Skeie, Rachael Byrom, Øivind Hodnebrog, Caroline Jouan, and Gunnar Myhre
Atmos. Chem. Phys., 24, 13361–13370, https://doi.org/10.5194/acp-24-13361-2024,https://doi.org/10.5194/acp-24-13361-2024, 2024
Short summary

Cited articles

Abbatt, J., Broekhuizen, K., and Pradeep Kumar, P.: Cloud condensation nucleus activity of internally mixed ammonium sulfate/organic acid aerosol particles, Atmos. Environ., 39, 4767–4778, https://doi.org/10.1016/j.atmosenv.2005.04.029, 2005. a, b, c
AIOMFAC-web: version 2.32, available at: https://aiomfac.lab.mcgill.ca, last access: 19 August 2020. a, b, c
Aumann, E., Hildemann, L. M., and Tabazadeh, A.: Measuring and modeling the composition and temperature-dependence of surface tension for organic solutions, Atmos. Environ., 44, 329–337, https://doi.org/10.1016/j.atmosenv.2009.10.033, 2010. a
Bondi, A.: Van der Waals Volumes and Radii, J. Phys. Chem., 68, 441–451, https://doi.org/10.1021/j100785a001, 1964. a
Booth, A. M., Topping, D. O., McFiggans, G., and Percival, C. J.: Surface tension of mixed inorganic and dicarboxylic acid aqueous solutions at 298.15 K and their importance for cloud activation predictions, Phys. Chem. Chem. Phys., 11, 8021–8028, https://doi.org/10.1039/B906849J, 2009. a, b, c, d
Short summary
Atmospheric aerosols act as seeds for cloud formation. Many aerosols contain surface active material that accumulates at the surface of growing droplets. This can affect cloud droplet activation, but the broad significance of the effect and the best way to model it are still debated. We compare predictions of six different model approaches to surface activity of organic aerosols and find significant differences between the models, especially with large fractions of organics in the dry particles.
Altmetrics
Final-revised paper
Preprint