Articles | Volume 22, issue 3
https://doi.org/10.5194/acp-22-2135-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-2135-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A climatology of open and closed mesoscale cellular convection over the Southern Ocean derived from Himawari-8 observations
School of Earth, Atmosphere and Environment, Monash University, Melbourne, VIC, Australia
Luis Ackermann
School of Earth, Atmosphere and Environment, Monash University, Melbourne, VIC, Australia
Australian Research Council Centre of Excellence for Climate Extremes (CLEX), Melbourne, VIC, Australia
Australian Research Council Centre of Excellence for Climate Extremes (CLEX), Melbourne, VIC, Australia
School of Earth Sciences, University of Melbourne, Melbourne, VIC, Australia
Son C. H. Truong
School of Earth, Atmosphere and Environment, Monash University, Melbourne, VIC, Australia
Australian Research Council Centre of Excellence for Climate Extremes (CLEX), Melbourne, VIC, Australia
Steven T. Siems
School of Earth, Atmosphere and Environment, Monash University, Melbourne, VIC, Australia
Australian Research Council Centre of Excellence for Climate Extremes (CLEX), Melbourne, VIC, Australia
Michael J. Manton
School of Earth, Atmosphere and Environment, Monash University, Melbourne, VIC, Australia
Related authors
Tahereh Alinejadtabrizi, Yi Huang, Francisco Lang, Steven Siems, Michael Manton, Luis Ackermann, Melita Keywood, Ruhi Humphries, Paul Krummel, Alastair Williams, and Greg Ayers
EGUsphere, https://doi.org/10.5194/egusphere-2024-2397, https://doi.org/10.5194/egusphere-2024-2397, 2024
Short summary
Short summary
Our research explores how weather patterns affect cloud-forming particles (CCN) over the Southern Ocean, crucial for more accurately simulate the Earth's climate. We discovered that winter and summer weather systems significantly influence CCN levels. By analysing air mass trajectories and precipitation, we identified a seasonal cycle in CCN driven by synoptic meteorology. This work enhances climate predictions by improving our understanding of cloud-aerosol interactions in this remote region.
Francisco Lang, Steven T. Siems, Yi Huang, Tahereh Alinejadtabrizi, and Luis Ackermann
Atmos. Chem. Phys., 24, 1451–1466, https://doi.org/10.5194/acp-24-1451-2024, https://doi.org/10.5194/acp-24-1451-2024, 2024
Short summary
Short summary
Marine low-level clouds play a crucial role in the Earth's energy balance, trapping heat from the surface and reflecting sunlight back into space. These clouds are distinguishable by their large-scale spatial structures, primarily characterized as hexagonal patterns with either filled (closed) or empty (open) cells. Utilizing satellite observations, these two cloud type patterns have been categorized over the Southern Ocean and North Pacific Ocean through a pattern recognition program.
Anna M. Ukkola, Steven Thomas, Elisabeth Vogel, Ulrike Bende-Michl, Steven Siems, Vjekoslav Matic, and Wendy Sharples
EGUsphere, https://doi.org/10.31223/X56110, https://doi.org/10.31223/X56110, 2024
Short summary
Short summary
Future drought changes in Australia –the driest inhabited continent on Earth– have remained stubbornly uncertain. We assess future drought changes in Australia using projections from climate and hydrological models. We show an increasing probability of drought over highly-populated and agricultural regions of Australia in coming decades, suggesting potential impacts on agricultural activities, ecosystems and urban water supply.
Tahereh Alinejadtabrizi, Yi Huang, Francisco Lang, Steven Siems, Michael Manton, Luis Ackermann, Melita Keywood, Ruhi Humphries, Paul Krummel, Alastair Williams, and Greg Ayers
EGUsphere, https://doi.org/10.5194/egusphere-2024-2397, https://doi.org/10.5194/egusphere-2024-2397, 2024
Short summary
Short summary
Our research explores how weather patterns affect cloud-forming particles (CCN) over the Southern Ocean, crucial for more accurately simulate the Earth's climate. We discovered that winter and summer weather systems significantly influence CCN levels. By analysing air mass trajectories and precipitation, we identified a seasonal cycle in CCN driven by synoptic meteorology. This work enhances climate predictions by improving our understanding of cloud-aerosol interactions in this remote region.
Daniel J. V. Robbins, Caroline A. Poulsen, Steven T. Siems, Simon R. Proud, Andrew T. Prata, Roy G. Grainger, and Adam C. Povey
Atmos. Meas. Tech., 17, 3279–3302, https://doi.org/10.5194/amt-17-3279-2024, https://doi.org/10.5194/amt-17-3279-2024, 2024
Short summary
Short summary
Extreme wildfire events are becoming more common with climate change. The smoke plumes associated with these wildfires are not captured by current operational satellite products due to their high optical thickness. We have developed a novel aerosol retrieval for the Advanced Himawari Imager to study these plumes. We find very high values of optical thickness not observed in other operational satellite products, suggesting these plumes have been missed in previous studies.
Wenhui Zhao, Yi Huang, Steven Siems, Michael Manton, and Daniel Harrison
Atmos. Chem. Phys., 24, 5713–5736, https://doi.org/10.5194/acp-24-5713-2024, https://doi.org/10.5194/acp-24-5713-2024, 2024
Short summary
Short summary
We studied how shallow clouds and rain behave over the Great Barrier Reef (GBR) using a detailed weather model. We found that the shape of the land, especially mountains, and particles in the air play big roles in influencing these clouds. Surprisingly, the sea's temperature had a smaller effect. Our research helps us understand the GBR's climate and how various factors can influence it, where the importance of the local cloud in thermal coral bleaching has recently been identified.
Francisco Lang, Steven T. Siems, Yi Huang, Tahereh Alinejadtabrizi, and Luis Ackermann
Atmos. Chem. Phys., 24, 1451–1466, https://doi.org/10.5194/acp-24-1451-2024, https://doi.org/10.5194/acp-24-1451-2024, 2024
Short summary
Short summary
Marine low-level clouds play a crucial role in the Earth's energy balance, trapping heat from the surface and reflecting sunlight back into space. These clouds are distinguishable by their large-scale spatial structures, primarily characterized as hexagonal patterns with either filled (closed) or empty (open) cells. Utilizing satellite observations, these two cloud type patterns have been categorized over the Southern Ocean and North Pacific Ocean through a pattern recognition program.
Daniel Robbins, Caroline Poulsen, Steven Siems, and Simon Proud
Atmos. Meas. Tech., 15, 3031–3051, https://doi.org/10.5194/amt-15-3031-2022, https://doi.org/10.5194/amt-15-3031-2022, 2022
Short summary
Short summary
A neural network (NN)-based cloud mask for a geostationary satellite instrument, AHI, is developed using collocated data and is better at not classifying thick aerosols as clouds versus the Japanese Meteorological Association and the Bureau of Meteorology masks, identifying 1.13 and 1.29 times as many non-cloud pixels than each mask, respectively. The improvement during the day likely comes from including the shortest wavelength bands from AHI in the NN mask, which the other masks do not use.
Andrew T. Prata, Stuart A. Young, Steven T. Siems, and Michael J. Manton
Atmos. Chem. Phys., 17, 8599–8618, https://doi.org/10.5194/acp-17-8599-2017, https://doi.org/10.5194/acp-17-8599-2017, 2017
Short summary
Short summary
We have studied the optical properties of ash-rich and sulfate-rich volcanic aerosols by analysing satellite observations of three different volcanic eruptions. Our results indicate that ash particles have distinctive optical properties when compared to sulfates. We expect our results will improve space-borne lidar detection of volcanic aerosols and provide new insight into their interaction with the atmosphere and solar radiation.
T. Chubb, Y. Huang, J. Jensen, T. Campos, S. Siems, and M. Manton
Atmos. Chem. Phys., 16, 971–987, https://doi.org/10.5194/acp-16-971-2016, https://doi.org/10.5194/acp-16-971-2016, 2016
Short summary
Short summary
The remote Southern Ocean is known to be one of the most pristine environments on the planet, but we found that cloud droplet and aerosol concentrations during one research flight in June 2009 were higher than expected. We were unable to attribute this to continental aerosol sources, and we hypothesize that strong winds resulted in local aerosol production in the form of sea salt. This has several consequences for climate modelling and cloud physics research.
Related subject area
Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Weak liquid water path response in ship tracks
Air mass history linked to the development of Arctic mixed-phase clouds
Distinct structure, radiative effects, and precipitation characteristics of deep convection systems in the Tibetan Plateau compared to the tropical Indian Ocean
The correlation between Arctic sea ice, cloud phase and radiation using A-Train satellites
Technical note: Retrieval of the supercooled liquid fraction in mixed-phase clouds from Himawari-8 observations
Characterisation of low-base and mid-base clouds and their thermodynamic phase over the Southern Ocean and Arctic marine regions
Technical note: Applicability of physics-based and machine-learning-based algorithms of geostationary satellite in retrieving the diurnal cycle of cloud base height
A survey of radiative and physical properties of North Atlantic mesoscale cloud morphologies from multiple identification methodologies
Extensive coverage of ultrathin tropical tropopause layer cirrus clouds revealed by balloon-borne lidar observations
The effects of warm-air intrusions in the high Arctic on cirrus clouds
Observing convective activities in the complex organizations and their contributions to the precipitation and anvil amount
The characteristics of cloud macro-parameters caused by the seeder–feeder process inside clouds measured by millimeter-wave cloud radar in Xi'an, China
Shallow- and deep-convection characteristics in the greater Houston, Texas, area using cell tracking methodology
Observations of the macrophysical properties of cumulus cloud fields over the tropical western Pacific and their connection to meteorological variables
A Lagrangian perspective on the lifecycle and cloud radiative effect of deep convective clouds over Africa
How does the lifetime of detrained cirrus impact the high cloud radiative effect in the tropics?
Daytime variation in the aerosol indirect effect for warm marine boundary layer clouds in the eastern North Atlantic
Technical note: Bimodal parameterizations of in situ ice cloud particle size distributions
Inter-relations of precipitation, aerosols, and clouds over Andalusia, southern Spain, revealed by the Andalusian Global ObseRvatory of the Atmosphere (AGORA)
On the relationship between mesoscale cellular convection and meteorological forcing: comparing the Southern Ocean against the North Pacific
Aerosol-related effects on the occurrence of heterogeneous ice formation over Lauder, New Zealand ∕ Aotearoa
Low-level Arctic clouds: a blind zone in our knowledge of the radiation budget
Climatologically invariant scale invariance seen in distributions of cloud horizontal sizes
Variability and properties of liquid-dominated clouds over the ice-free and sea-ice-covered Arctic Ocean
Asymmetries in cloud microphysical properties ascribed to sea ice leads via water vapour transport in the central Arctic
Quantifying the dependence of drop spectrum width on cloud drop number concentration for cloud remote sensing
The evolution of deep convective systems and their associated cirrus outflows
Wildfire smoke triggers cirrus formation: lidar observations over the eastern Mediterranean
Rapid saturation of cloud water adjustments to shipping emissions
Sensitivities of cloud radiative effects to large-scale meteorology and aerosols from global observations
Distinct secondary ice production processes observed in radar Doppler spectra: insights from a case study
Investigating the development of clouds within marine cold-air outbreaks
Detection of large-scale cloud microphysical changes within a major shipping corridor after implementation of the International Maritime Organization 2020 fuel sulfur regulations
Examining cloud vertical structure and radiative effects from satellite retrievals and evaluation of CMIP6 scenarios
Influence of cloud microphysics schemes on weather model predictions of heavy precipitation
Convective organization and 3D structure of tropical cloud systems deduced from synergistic A-Train observations and machine learning
Seasonal controls on isolated convective storm drafts, precipitation intensity, and life cycle as observed during GoAmazon2014/5
Uncertainty in aerosol–cloud radiative forcing is driven by clean conditions
Surface-based observations of cold-air outbreak clouds during the COMBLE field campaign
Boundary layer moisture variability at the Atmospheric Radiation Measurement (ARM) Eastern North Atlantic observatory during marine conditions
Profile-based estimated inversion strength
Characteristics of supersaturation in midlatitude cirrus clouds and their adjacent cloud-free air
Establishment of an analytical model for remote sensing of typical stratocumulus cloud profiles under various precipitation and entrainment conditions
Satellite remote sensing of regional and seasonal Arctic cooling showing a multi-decadal trend towards brighter and more liquid clouds
Microphysical processes of super typhoon Lekima (2019) and their impacts on polarimetric radar remote sensing of precipitation
The impacts of dust aerosol and convective available potential energy on precipitation vertical structure in southeastern China as seen from multisource observations
Heavy snowfall event over the Swiss Alps: did wind shear impact secondary ice production?
On the global relationship between polarimetric radio occultation differential phase shift and ice water content
Observations of microphysical properties and radiative effects of a contrail cirrus outbreak over the North Atlantic
Natural marine cloud brightening in the Southern Ocean
Anna Tippett, Edward Gryspeerdt, Peter Manshausen, Philip Stier, and Tristan W. P. Smith
Atmos. Chem. Phys., 24, 13269–13283, https://doi.org/10.5194/acp-24-13269-2024, https://doi.org/10.5194/acp-24-13269-2024, 2024
Short summary
Short summary
Ship emissions can form artificially brightened clouds, known as ship tracks, and provide us with an opportunity to investigate how aerosols interact with clouds. Previous studies that used ship tracks suggest that clouds can experience large increases in the amount of water (LWP) from aerosols. Here, we show that there is a bias in previous research and that, when we account for this bias, the LWP response to aerosols is much weaker than previously reported.
Rebecca J. Murray-Watson and Edward Gryspeerdt
Atmos. Chem. Phys., 24, 11115–11132, https://doi.org/10.5194/acp-24-11115-2024, https://doi.org/10.5194/acp-24-11115-2024, 2024
Short summary
Short summary
The formation of mixed-phase clouds during marine cold-air outbreaks is not well understood. Our study, using satellite data and Lagrangian trajectories, reveals that the occurrence of these clouds depends on both time and temperature, influenced partly by the presence of biological ice-nucleating particles. This highlights the importance of comprehending local aerosol dynamics for precise modelling of cloud-phase transitions in the Arctic.
Yuxin Zhao, Jiming Li, Deyu Wen, Yarong Li, Yuan Wang, and Jianping Huang
Atmos. Chem. Phys., 24, 9435–9457, https://doi.org/10.5194/acp-24-9435-2024, https://doi.org/10.5194/acp-24-9435-2024, 2024
Short summary
Short summary
This study identifies deep convection systems (DCSs), including deep convection cores and anvils, over the Tibetan Plateau (TP) and tropical Indian Ocean (TO). The DCSs over the TP are less frequent, showing narrower and thinner cores and anvils compared to those over the TO. TP DCSs show a stronger longwave cloud radiative effect at the surface and in the low-level atmosphere. Distinct aerosol–cloud–precipitation interaction is found in TP DCSs, probably due to the cold cloud bases.
Grégory V. Cesana, Olivia Pierpaoli, Matteo Ottaviani, Linh Vu, Zhonghai Jin, and Israel Silber
Atmos. Chem. Phys., 24, 7899–7909, https://doi.org/10.5194/acp-24-7899-2024, https://doi.org/10.5194/acp-24-7899-2024, 2024
Short summary
Short summary
Better characterizing the relationship between sea ice and clouds is key to understanding Arctic climate because clouds and sea ice affect surface radiation and modulate Arctic surface warming. Our results indicate that Arctic liquid clouds robustly increase in response to sea ice decrease. This increase has a cooling effect on the surface because more solar radiation is reflected back to space, and it should contribute to dampening future Arctic surface warming.
Ziming Wang, Husi Letu, Huazhe Shang, and Luca Bugliaro
Atmos. Chem. Phys., 24, 7559–7574, https://doi.org/10.5194/acp-24-7559-2024, https://doi.org/10.5194/acp-24-7559-2024, 2024
Short summary
Short summary
The supercooled liquid fraction (SLF) in mixed-phase clouds is retrieved for the first time using passive geostationary satellite observations based on differences in liquid droplet and ice particle radiative properties. The retrieved results are comparable to global distributions observed by active instruments, and the feasibility of the retrieval method to analyze the observed trends of the SLF has been validated.
Barbara Dietel, Odran Sourdeval, and Corinna Hoose
Atmos. Chem. Phys., 24, 7359–7383, https://doi.org/10.5194/acp-24-7359-2024, https://doi.org/10.5194/acp-24-7359-2024, 2024
Short summary
Short summary
Uncertainty with respect to cloud phases over the Southern Ocean and Arctic marine regions leads to large uncertainties in the radiation budget of weather and climate models. This study investigates the phases of low-base and mid-base clouds using satellite-based remote sensing data. A comprehensive analysis of the correlation of cloud phase with various parameters, such as temperature, aerosols, sea ice, vertical and horizontal cloud extent, and cloud radiative effect, is presented.
Mengyuan Wang, Min Min, Jun Li, Han Lin, Yongen Liang, Binlong Chen, Zhigang Yao, Na Xu, and Miao Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1516, https://doi.org/10.5194/egusphere-2024-1516, 2024
Short summary
Short summary
Although machine learning technology is advanced in the field of satellite remote sensing, the physical inversion algorithm based on cloud base height can better capture the daily variation characteristics of cloud base.
Ryan Eastman, Isabel L. McCoy, Hauke Schulz, and Robert Wood
Atmos. Chem. Phys., 24, 6613–6634, https://doi.org/10.5194/acp-24-6613-2024, https://doi.org/10.5194/acp-24-6613-2024, 2024
Short summary
Short summary
Cloud types are determined using machine learning image classifiers applied to satellite imagery for 1 year in the North Atlantic. This survey of these cloud types shows that the climate impact of a cloud scene is, in part, a function of cloud type. Each type displays a different mix of thick and thin cloud cover, with the fraction of thin cloud cover having the strongest impact on the clouds' radiative effect. Future studies must account for differing properties and processes among cloud types.
Thomas Lesigne, François Ravetta, Aurélien Podglajen, Vincent Mariage, and Jacques Pelon
Atmos. Chem. Phys., 24, 5935–5952, https://doi.org/10.5194/acp-24-5935-2024, https://doi.org/10.5194/acp-24-5935-2024, 2024
Short summary
Short summary
Upper tropical clouds have a strong impact on Earth's climate but are challenging to observe. We report the first long-duration observations of tropical clouds from lidars flying on board stratospheric balloons. Comparisons with spaceborne observations reveal the enhanced sensitivity of balloon-borne lidar to optically thin cirrus. These clouds, which have a significant coverage and lie in the uppermost troposphere, are linked with the dehydration of air masses on their way to the stratosphere.
Georgios Dekoutsidis, Martin Wirth, and Silke Groß
Atmos. Chem. Phys., 24, 5971–5987, https://doi.org/10.5194/acp-24-5971-2024, https://doi.org/10.5194/acp-24-5971-2024, 2024
Short summary
Short summary
For decades the earth's temperature has been rising. The Arctic regions are warming faster. Cirrus clouds can contribute to this phenomenon. During warm-air intrusions, air masses are transported into the Arctic from the mid-latitudes. The HALO-(AC)3 campaign took place to measure cirrus during intrusion events and under normal conditions. We study the two cloud types based on these measurements and find differences in their geometry, relative humidity distribution and vertical structure.
Zhenquan Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1318, https://doi.org/10.5194/egusphere-2024-1318, 2024
Short summary
Short summary
The connected but independent convective systems are divided from the complicated organizations and tracked. The duration, precipitation and anvil amount of the tracked organization segments have a strong log-linear relationship with its brightness temperature structures. Most precipitation are contributed by the cold long-lived but less frequent convective structures, while anvils are produced by both the cold long-lived and the warm short-lived but frequent convective structures.
Huige Di and Yun Yuan
Atmos. Chem. Phys., 24, 5783–5801, https://doi.org/10.5194/acp-24-5783-2024, https://doi.org/10.5194/acp-24-5783-2024, 2024
Short summary
Short summary
We observed the seeder–feeder process among double-layer clouds using a cloud radar and microwave radiometer. By defining the parameters of the seeding depth and seeding time of the upper cloud affecting the lower cloud, we find that the cloud particle terminal velocity is significantly enhanced during the seeder–feeder period, and the lower the height and thinner the thickness of the height difference between double-layer clouds, the lower the height and thicker the thickness of seeding depth.
Kristofer S. Tuftedal, Bernat Puigdomènech Treserras, Mariko Oue, and Pavlos Kollias
Atmos. Chem. Phys., 24, 5637–5657, https://doi.org/10.5194/acp-24-5637-2024, https://doi.org/10.5194/acp-24-5637-2024, 2024
Short summary
Short summary
This study analyzed coastal convective cells from June through September 2018–2021. The cells were classified and their lifecycles were analyzed to better understand their characteristics. Features such as convective-core growth, for example, are shown. The study found differences in the initiation location of shallow convection and in the aerosol loading in deep convective environments. This work provides a foundation for future analyses of convection or other tracked events elsewhere.
Michie Vianca De Vera, Larry Di Girolamo, Guangyu Zhao, Robert M. Rauber, Stephen W. Nesbitt, and Greg M. McFarquhar
Atmos. Chem. Phys., 24, 5603–5623, https://doi.org/10.5194/acp-24-5603-2024, https://doi.org/10.5194/acp-24-5603-2024, 2024
Short summary
Short summary
Tropical oceanic low clouds remain a dominant source of uncertainty in cloud feedback in climate models due to their macrophysical properties (fraction, size, height, shape, distribution) being misrepresented. High-resolution satellite imagery over the Philippine oceans is used here to characterize cumulus macrophysical properties and their relationship to meteorological variables. Such information can act as a benchmark for cloud models and can improve low-cloud generation in climate models.
William K. Jones, Martin Stengel, and Philip Stier
Atmos. Chem. Phys., 24, 5165–5180, https://doi.org/10.5194/acp-24-5165-2024, https://doi.org/10.5194/acp-24-5165-2024, 2024
Short summary
Short summary
Storm clouds cover large areas of the tropics. These clouds both reflect incoming sunlight and trap heat from the atmosphere below, regulating the temperature of the tropics. Over land, storm clouds occur in the late afternoon and evening and so exist both during the daytime and at night. Changes in this timing could upset the balance of the respective cooling and heating effects of these clouds. We find that isolated storms have a larger effect on this balance than their small size suggests.
George Horner and Edward Gryspeerdt
EGUsphere, https://doi.org/10.5194/egusphere-2024-1090, https://doi.org/10.5194/egusphere-2024-1090, 2024
Short summary
Short summary
This work tracks the lifecycle of thin cirrus clouds that flow out of tropical convective storms. These cirrus clouds are found to have a warming effect on the atmosphere over their whole lifetime. Thin cirrus that originate from land origin convection warm more than those of ocean origin. Moreover, if the lifetime of these cirrus clouds increase, the warming they exert over their whole lifetime also increases. These results help us understand how these clouds might change in a future climate.
Shaoyue Qiu, Xue Zheng, David Painemal, Christopher R. Terai, and Xiaoli Zhou
Atmos. Chem. Phys., 24, 2913–2935, https://doi.org/10.5194/acp-24-2913-2024, https://doi.org/10.5194/acp-24-2913-2024, 2024
Short summary
Short summary
The aerosol indirect effect (AIE) depends on cloud states, which exhibit significant diurnal variations in the northeastern Atlantic. Yet the AIE diurnal cycle remains poorly understood. Using satellite retrievals, we find a pronounced “U-shaped” diurnal variation in the AIE, which is contributed to by the transition of cloud states combined with the lagged cloud responses. This suggests that polar-orbiting satellites with overpass times at noon underestimate daytime mean values of the AIE.
Irene Bartolomé García, Odran Sourdeval, Reinhold Spang, and Martina Krämer
Atmos. Chem. Phys., 24, 1699–1716, https://doi.org/10.5194/acp-24-1699-2024, https://doi.org/10.5194/acp-24-1699-2024, 2024
Short summary
Short summary
How many ice crystals of each size are in a cloud is a key parameter for the retrieval of cloud properties. The distribution of ice crystals is obtained from in situ measurements and used to create parameterizations that can be used when analyzing the remote-sensing data. Current parameterizations are based on data sets that do not include reliable measurements of small crystals, but in our study we use a data set that includes very small ice crystals to improve these parameterizations.
Wenyue Wang, Klemens Hocke, Leonardo Nania, Alberto Cazorla, Gloria Titos, Renaud Matthey, Lucas Alados-Arboledas, Agustín Millares, and Francisco Navas-Guzmán
Atmos. Chem. Phys., 24, 1571–1585, https://doi.org/10.5194/acp-24-1571-2024, https://doi.org/10.5194/acp-24-1571-2024, 2024
Short summary
Short summary
The south-central interior of Andalusia experiences complex precipitation patterns as a result of the semi-arid Mediterranean climate and the influence of Saharan dust. This study monitored the inter-relations between aerosols, clouds, meteorological variables, and precipitation systems using ground-based remote sensing and in situ instruments.
Francisco Lang, Steven T. Siems, Yi Huang, Tahereh Alinejadtabrizi, and Luis Ackermann
Atmos. Chem. Phys., 24, 1451–1466, https://doi.org/10.5194/acp-24-1451-2024, https://doi.org/10.5194/acp-24-1451-2024, 2024
Short summary
Short summary
Marine low-level clouds play a crucial role in the Earth's energy balance, trapping heat from the surface and reflecting sunlight back into space. These clouds are distinguishable by their large-scale spatial structures, primarily characterized as hexagonal patterns with either filled (closed) or empty (open) cells. Utilizing satellite observations, these two cloud type patterns have been categorized over the Southern Ocean and North Pacific Ocean through a pattern recognition program.
Julian Hofer, Patric Seifert, J. Ben Liley, Martin Radenz, Osamu Uchino, Isamu Morino, Tetsu Sakai, Tomohiro Nagai, and Albert Ansmann
Atmos. Chem. Phys., 24, 1265–1280, https://doi.org/10.5194/acp-24-1265-2024, https://doi.org/10.5194/acp-24-1265-2024, 2024
Short summary
Short summary
An 11-year dataset of polarization lidar observations from Lauder, New Zealand / Aotearoa, was used to distinguish the thermodynamic phase of natural clouds. The cloud dataset was separated to assess the impact of air mass origin on the frequency of heterogeneous ice formation. Ice formation efficiency in clouds above Lauder was found to be lower than in the polluted Northern Hemisphere midlatitudes but higher than in very clean and pristine environments, such as Punta Arenas in southern Chile.
Hannes Jascha Griesche, Carola Barrientos-Velasco, Hartwig Deneke, Anja Hünerbein, Patric Seifert, and Andreas Macke
Atmos. Chem. Phys., 24, 597–612, https://doi.org/10.5194/acp-24-597-2024, https://doi.org/10.5194/acp-24-597-2024, 2024
Short summary
Short summary
The Arctic is strongly affected by climate change and the role of clouds therein is not yet completely understood. Measurements from the Arctic expedition PS106 were used to simulate radiative fluxes with and without clouds at very low altitudes (below 165 m), and their radiative effect was calculated to be 54 Wm-2. The low heights of these clouds make them hard to observe. This study shows the importance of accurate measurements and simulations of clouds and gives suggestions for improvements.
Thomas D. DeWitt, Timothy J. Garrett, Karlie N. Rees, Corey Bois, Steven K. Krueger, and Nicolas Ferlay
Atmos. Chem. Phys., 24, 109–122, https://doi.org/10.5194/acp-24-109-2024, https://doi.org/10.5194/acp-24-109-2024, 2024
Short summary
Short summary
Viewed from space, a defining feature of Earth's atmosphere is the wide spectrum of cloud sizes. A recent study predicted the distribution of cloud sizes, and this paper compares the prediction to observations. Although there is nuance in viewing perspective, we find robust agreement with theory across different climatological conditions, including land–ocean contrasts, time of year, or latitude, suggesting a minor role for Coriolis forces, aerosol loading, or surface temperature.
Marcus Klingebiel, André Ehrlich, Elena Ruiz-Donoso, Nils Risse, Imke Schirmacher, Evelyn Jäkel, Michael Schäfer, Kevin Wolf, Mario Mech, Manuel Moser, Christiane Voigt, and Manfred Wendisch
Atmos. Chem. Phys., 23, 15289–15304, https://doi.org/10.5194/acp-23-15289-2023, https://doi.org/10.5194/acp-23-15289-2023, 2023
Short summary
Short summary
In this study we explain how we use aircraft measurements from two Arctic research campaigns to identify cloud properties (like droplet size) over sea-ice and ice-free ocean. To make sure that our measurements make sense, we compare them with other observations. Our results show, e.g., larger cloud droplets in early summer than in spring. Moreover, the cloud droplets are also larger over ice-free ocean than compared to sea ice. In the future, our data can be used to improve climate models.
Pablo Saavedra Garfias, Heike Kalesse-Los, Luisa von Albedyll, Hannes Griesche, and Gunnar Spreen
Atmos. Chem. Phys., 23, 14521–14546, https://doi.org/10.5194/acp-23-14521-2023, https://doi.org/10.5194/acp-23-14521-2023, 2023
Short summary
Short summary
An important Arctic climate process is the release of heat fluxes from sea ice openings to the atmosphere that influence the clouds. The characterization of this process is the objective of this study. Using synergistic observations from the MOSAiC expedition, we found that single-layer cloud properties show significant differences when clouds are coupled or decoupled to the water vapour transport which is used as physical link between the upwind sea ice openings and the cloud under observation.
Matthew D. Lebsock and Mikael Witte
Atmos. Chem. Phys., 23, 14293–14305, https://doi.org/10.5194/acp-23-14293-2023, https://doi.org/10.5194/acp-23-14293-2023, 2023
Short summary
Short summary
This paper evaluates measurements of cloud drop size distributions made from airplanes. We find that as the number of cloud drops increases the distribution of the cloud drop sizes narrows. The data are used to develop a simple equation that relates the drop number to the width of the drop sizes. We then use this equation to demonstrate that existing approaches to observe the drop number from satellites contain errors that can be corrected by including the new relationship.
George Horner and Edward Gryspeerdt
Atmos. Chem. Phys., 23, 14239–14253, https://doi.org/10.5194/acp-23-14239-2023, https://doi.org/10.5194/acp-23-14239-2023, 2023
Short summary
Short summary
Tropical deep convective clouds, and the thin cirrus (ice) clouds that flow out from them, are important for modulating the energy budget of the tropical atmosphere. This work uses a new method to track the evolution of the properties of these clouds across their entire lifetimes. We find these clouds cool the atmosphere in the first 6 h before switching to a warming regime after the deep convective core has dissipated, which is sustained beyond 120 h from the initial convective event.
Rodanthi-Elisavet Mamouri, Albert Ansmann, Kevin Ohneiser, Daniel A. Knopf, Argyro Nisantzi, Johannes Bühl, Ronny Engelmann, Annett Skupin, Patric Seifert, Holger Baars, Dragos Ene, Ulla Wandinger, and Diofantos Hadjimitsis
Atmos. Chem. Phys., 23, 14097–14114, https://doi.org/10.5194/acp-23-14097-2023, https://doi.org/10.5194/acp-23-14097-2023, 2023
Short summary
Short summary
For the first time, rather clear evidence is found that wildfire smoke particles can trigger strong cirrus formation. This finding is of importance because intensive and large wildfires may occur increasingly often in the future as climate change proceeds. Based on lidar observations in Cyprus in autumn 2020, we provide detailed insight into the cirrus formation at the tropopause in the presence of aged wildfire smoke (here, 8–9 day old Californian wildfire smoke).
Peter Manshausen, Duncan Watson-Parris, Matthew W. Christensen, Jukka-Pekka Jalkanen, and Philip Stier
Atmos. Chem. Phys., 23, 12545–12555, https://doi.org/10.5194/acp-23-12545-2023, https://doi.org/10.5194/acp-23-12545-2023, 2023
Short summary
Short summary
Aerosol from burning fuel changes cloud properties, e.g., the number of droplets and the content of water. Here, we study how clouds respond to different amounts of shipping aerosol. Droplet numbers increase linearly with increasing aerosol over a broad range until they stop increasing, while the amount of liquid water always increases, independently of emission amount. These changes in cloud properties can make them reflect more or less sunlight, which is important for the earth's climate.
Hendrik Andersen, Jan Cermak, Alyson Douglas, Timothy A. Myers, Peer Nowack, Philip Stier, Casey J. Wall, and Sarah Wilson Kemsley
Atmos. Chem. Phys., 23, 10775–10794, https://doi.org/10.5194/acp-23-10775-2023, https://doi.org/10.5194/acp-23-10775-2023, 2023
Short summary
Short summary
This study uses an observation-based cloud-controlling factor framework to study near-global sensitivities of cloud radiative effects to a large number of meteorological and aerosol controls. We present near-global sensitivity patterns to selected thermodynamic, dynamic, and aerosol factors and discuss the physical mechanisms underlying the derived sensitivities. Our study hopes to guide future analyses aimed at constraining cloud feedbacks and aerosol–cloud interactions.
Anne-Claire Billault-Roux, Paraskevi Georgakaki, Josué Gehring, Louis Jaffeux, Alfons Schwarzenboeck, Pierre Coutris, Athanasios Nenes, and Alexis Berne
Atmos. Chem. Phys., 23, 10207–10234, https://doi.org/10.5194/acp-23-10207-2023, https://doi.org/10.5194/acp-23-10207-2023, 2023
Short summary
Short summary
Secondary ice production plays a key role in clouds and precipitation. In this study, we analyze radar measurements from a snowfall event in the Jura Mountains. Complex signatures are observed, which reveal that ice crystals were formed through various processes. An analysis of multi-sensor data suggests that distinct ice multiplication processes were taking place. Both the methods used and the insights gained through this case study contribute to a better understanding of snowfall microphysics.
Rebecca J. Murray-Watson, Edward Gryspeerdt, and Tom Goren
Atmos. Chem. Phys., 23, 9365–9383, https://doi.org/10.5194/acp-23-9365-2023, https://doi.org/10.5194/acp-23-9365-2023, 2023
Short summary
Short summary
Clouds formed in Arctic marine cold air outbreaks undergo a distinct evolution, but the factors controlling their transition from high-coverage to broken cloud fields are poorly understood. We use satellite and reanalysis data to study how these clouds develop in time and the different influences on their evolution. The aerosol concentration is correlated with cloud break-up; more aerosol is linked to prolonged coverage and a stronger cooling effect, with implications for a more polluted Arctic.
Michael S. Diamond
Atmos. Chem. Phys., 23, 8259–8269, https://doi.org/10.5194/acp-23-8259-2023, https://doi.org/10.5194/acp-23-8259-2023, 2023
Short summary
Short summary
Fuel sulfur regulations were implemented for ships in 2020 to improve air quality but may also accelerate global warming. We use spatial statistics and satellite retrievals to detect changes in the size of cloud droplets and find evidence for a resulting decrease in cloud brightness within a major shipping corridor after the sulfur limits went into effect. Our results confirm both that the regulations are being followed and that they are having a warming influence via their effect on clouds.
Hao Luo, Johannes Quaas, and Yong Han
Atmos. Chem. Phys., 23, 8169–8186, https://doi.org/10.5194/acp-23-8169-2023, https://doi.org/10.5194/acp-23-8169-2023, 2023
Short summary
Short summary
Clouds exhibit a wide range of vertical structures with varying microphysical and radiative properties. We show a global survey of spatial distribution, vertical extent and radiative effect of various classified cloud vertical structures using joint satellite observations from the new CCCM datasets during 2007–2010. Moreover, the long-term trends in CVSs are investigated based on different CMIP6 future scenarios to capture the cloud variations with different, increasing anthropogenic forcings.
Gregor Köcher, Tobias Zinner, and Christoph Knote
Atmos. Chem. Phys., 23, 6255–6269, https://doi.org/10.5194/acp-23-6255-2023, https://doi.org/10.5194/acp-23-6255-2023, 2023
Short summary
Short summary
Polarimetric radar observations of 30 d of convective precipitation events are used to statistically analyze 5 state-of-the-art microphysics schemes of varying complexity. The frequency and area of simulated heavy-precipitation events are in some cases significantly different from those observed, depending on the microphysics scheme. Analysis of simulated particle size distributions and reflectivities shows that some schemes have problems reproducing the correct particle size distributions.
Claudia J. Stubenrauch, Giulio Mandorli, and Elisabeth Lemaitre
Atmos. Chem. Phys., 23, 5867–5884, https://doi.org/10.5194/acp-23-5867-2023, https://doi.org/10.5194/acp-23-5867-2023, 2023
Short summary
Short summary
Organized convection leads to large convective cloud systems and intense rain and may change with a warming climate. Their complete 3D description, attained by machine learning techniques in combination with various satellite observations, together with a cloud system concept, link convection to anvil properties, while convective organization can be identified by the horizontal structure of intense rain.
Scott E. Giangrande, Thiago S. Biscaro, and John M. Peters
Atmos. Chem. Phys., 23, 5297–5316, https://doi.org/10.5194/acp-23-5297-2023, https://doi.org/10.5194/acp-23-5297-2023, 2023
Short summary
Short summary
Our study tracks thunderstorms observed during the wet and dry seasons of the Amazon Basin using weather radar. We couple this precipitation tracking with opportunistic overpasses of a wind profiler and other ground observations to add unique insights into the upwards and downwards air motions within these clouds at various stages in the storm life cycle. The results of a simple updraft model are provided to give physical explanations for observed seasonal differences.
Edward Gryspeerdt, Adam C. Povey, Roy G. Grainger, Otto Hasekamp, N. Christina Hsu, Jane P. Mulcahy, Andrew M. Sayer, and Armin Sorooshian
Atmos. Chem. Phys., 23, 4115–4122, https://doi.org/10.5194/acp-23-4115-2023, https://doi.org/10.5194/acp-23-4115-2023, 2023
Short summary
Short summary
The impact of aerosols on clouds is one of the largest uncertainties in the human forcing of the climate. Aerosol can increase the concentrations of droplets in clouds, but observational and model studies produce widely varying estimates of this effect. We show that these estimates can be reconciled if only polluted clouds are studied, but this is insufficient to constrain the climate impact of aerosol. The uncertainty in aerosol impact on clouds is currently driven by cases with little aerosol.
Zackary Mages, Pavlos Kollias, Zeen Zhu, and Edward P. Luke
Atmos. Chem. Phys., 23, 3561–3574, https://doi.org/10.5194/acp-23-3561-2023, https://doi.org/10.5194/acp-23-3561-2023, 2023
Short summary
Short summary
Cold-air outbreaks (when cold air is advected over warm water and creates low-level convection) are a dominant cloud regime in the Arctic, and we capitalized on ground-based observations, which did not previously exist, from the COMBLE field campaign to study them. We characterized the extent and strength of the convection and turbulence and found evidence of secondary ice production. This information is useful for model intercomparison studies that will represent cold-air outbreak processes.
Maria P. Cadeddu, Virendra P. Ghate, David D. Turner, and Thomas E. Surleta
Atmos. Chem. Phys., 23, 3453–3470, https://doi.org/10.5194/acp-23-3453-2023, https://doi.org/10.5194/acp-23-3453-2023, 2023
Short summary
Short summary
We analyze the variability in marine boundary layer moisture at the Eastern North Atlantic site on a monthly and daily temporal scale and examine its fundamental role in the control of boundary layer cloudiness and precipitation. The study also highlights the complex interaction between large-scale and local processes controlling the boundary layer moisture and the importance of the mesoscale spatial distribution of vapor to support convection and precipitation.
Zhenquan Wang, Jian Yuan, Robert Wood, Yifan Chen, and Tiancheng Tong
Atmos. Chem. Phys., 23, 3247–3266, https://doi.org/10.5194/acp-23-3247-2023, https://doi.org/10.5194/acp-23-3247-2023, 2023
Short summary
Short summary
This study develops a novel profile-based algorithm based on the ERA5 to estimate the inversion strength in the planetary boundary layer better than the previous inversion index, which is a key low-cloud-controlling factor. This improved measure is more effective at representing the meteorological influence on low-cloud variations. It can better constrain the meteorological influence on low clouds to better isolate cloud responses to aerosols or to estimate low cloud feedbacks in climate models.
Georgios Dekoutsidis, Silke Groß, Martin Wirth, Martina Krämer, and Christian Rolf
Atmos. Chem. Phys., 23, 3103–3117, https://doi.org/10.5194/acp-23-3103-2023, https://doi.org/10.5194/acp-23-3103-2023, 2023
Short summary
Short summary
Cirrus clouds affect Earth's atmosphere, deeming our study important. Here we use water vapor measurements by lidar and study the relative humidity (RHi) within and around midlatitude cirrus clouds. We find high supersaturations in the cloud-free air and within the clouds, especially near the cloud top. We study two cloud types with different formation processes. Finally, we conclude that the shape of the distribution of RHi can be used as an indicator of different cloud evolutionary stages.
Huazhe Shang, Souichiro Hioki, Guillaume Penide, Céline Cornet, Husi Letu, and Jérôme Riedi
Atmos. Chem. Phys., 23, 2729–2746, https://doi.org/10.5194/acp-23-2729-2023, https://doi.org/10.5194/acp-23-2729-2023, 2023
Short summary
Short summary
We find that cloud profiles can be divided into four prominent patterns, and the frequency of these four patterns is related to intensities of cloud-top entrainment and precipitation. Based on these analyses, we further propose a cloud profile parameterization scheme allowing us to represent these patterns. Our results shed light on how to facilitate the representation of cloud profiles and how to link them to cloud entrainment or precipitating status in future remote-sensing applications.
Luca Lelli, Marco Vountas, Narges Khosravi, and John Philipp Burrows
Atmos. Chem. Phys., 23, 2579–2611, https://doi.org/10.5194/acp-23-2579-2023, https://doi.org/10.5194/acp-23-2579-2023, 2023
Short summary
Short summary
Arctic amplification describes the recent period in which temperatures have been rising twice as fast as or more than the global average and sea ice and the Greenland ice shelf are approaching a tipping point. Hence, the Arctic ability to reflect solar energy decreases and absorption by the surface increases. Using 2 decades of complementary satellite data, we discover that clouds unexpectedly increase the pan-Arctic reflectance by increasing their liquid water content, thus cooling the Arctic.
Yabin Gou, Haonan Chen, Hong Zhu, and Lulin Xue
Atmos. Chem. Phys., 23, 2439–2463, https://doi.org/10.5194/acp-23-2439-2023, https://doi.org/10.5194/acp-23-2439-2023, 2023
Short summary
Short summary
This article investigates the complex precipitation microphysics associated with super typhoon Lekima using a host of in situ and remote sensing observations, including rain gauge and disdrometer data, as well as polarimetric radar observations. The impacts of precipitation microphysics on multi-source data consistency and radar precipitation estimation are quantified. It is concluded that the dynamical precipitation microphysical processes must be considered in radar precipitation estimation.
Hongxia Zhu, Rui Li, Shuping Yang, Chun Zhao, Zhe Jiang, and Chen Huang
Atmos. Chem. Phys., 23, 2421–2437, https://doi.org/10.5194/acp-23-2421-2023, https://doi.org/10.5194/acp-23-2421-2023, 2023
Short summary
Short summary
The impacts of atmospheric dust aerosols and cloud dynamic conditions on precipitation vertical development in southeastern China were studied using multiple satellite observations. It was found that the precipitating drops under dusty conditions grow faster in the middle layer but slower in the upper and lower layers compared with their pristine counterparts. Quantitative estimation of the sensitivity of the precipitation top temperature to the dust aerosol optical depth is also provided.
Zane Dedekind, Jacopo Grazioli, Philip H. Austin, and Ulrike Lohmann
Atmos. Chem. Phys., 23, 2345–2364, https://doi.org/10.5194/acp-23-2345-2023, https://doi.org/10.5194/acp-23-2345-2023, 2023
Short summary
Short summary
Simulations allowing ice particles to collide with one another producing more ice particles represented surface observations of ice particles accurately. An increase in ice particles formed through collisions was related to sharp changes in the wind direction and speed with height. Changes in wind speed and direction can therefore cause more enhanced collisions between ice particles and alter how fast and how much precipitation forms. Simulations were conducted with the atmospheric model COSMO.
Ramon Padullés, Estel Cardellach, and F. Joseph Turk
Atmos. Chem. Phys., 23, 2199–2214, https://doi.org/10.5194/acp-23-2199-2023, https://doi.org/10.5194/acp-23-2199-2023, 2023
Short summary
Short summary
The results of comparing the polarimetric radio occultation observables and the ice water content retrieved from the CloudSat radar in a global and statistical way show a strong correlation between the geographical patterns of both quantities for a wide range of heights. This implies that horizontally oriented hydrometeors are systematically present through the whole globe and through all vertical levels, which could provide insights on the physical processes leading to precipitation.
Ziming Wang, Luca Bugliaro, Tina Jurkat-Witschas, Romy Heller, Ulrike Burkhardt, Helmut Ziereis, Georgios Dekoutsidis, Martin Wirth, Silke Groß, Simon Kirschler, Stefan Kaufmann, and Christiane Voigt
Atmos. Chem. Phys., 23, 1941–1961, https://doi.org/10.5194/acp-23-1941-2023, https://doi.org/10.5194/acp-23-1941-2023, 2023
Short summary
Short summary
Differences in the microphysical properties of contrail cirrus and natural cirrus in a contrail outbreak situation during the ML-CIRRUS campaign over the North Atlantic flight corridor can be observed from in situ measurements. The cirrus radiative effect in the area of the outbreak, derived from satellite observation-based radiative transfer modeling, is warming in the early morning and cooling during the day.
Gerald G. Mace, Sally Benson, Ruhi Humphries, Peter M. Gombert, and Elizabeth Sterner
Atmos. Chem. Phys., 23, 1677–1685, https://doi.org/10.5194/acp-23-1677-2023, https://doi.org/10.5194/acp-23-1677-2023, 2023
Short summary
Short summary
The number of cloud droplets per unit volume is a significantly important property of clouds that controls their reflective properties. Computer models of the Earth's atmosphere and climate have low skill at predicting the reflective properties of Southern Ocean clouds. Here we investigate the properties of those clouds using satellite data and find that the cloud droplet number and cloud albedo in the Southern Ocean are related to the oceanic phytoplankton abundance near Antarctica.
Cited articles
Abel, S. J., Boutle, I. A., Waite, K., Fox, S., Brown, P. R., Cotton, R.,
Lloyd, G., Choularton, T. W., and Bower, K. N.: The role of precipitation in
controlling the transition from stratocumulus to cumulus clouds in a Northern
Hemisphere cold-air outbreak, J. Atmos. Sci., 74,
2293–2314, https://doi.org/10.1175/JAS-D-16-0362.1, 2017. a, b
Ahn, E., Huang, Y., Chubb, T. H., Baumgardner, D., Isaac, P., de Hoog, M.,
Siems, S. T., and Manton, M. J.: In situ observations of wintertime
low-altitude clouds over the Southern Ocean, Q. J. Roy.
Meteorol. Soc., 143, 1381–1394,
https://doi.org/10.1002/qj.3011, 2017. a, b, c
Atkinson, B. W. and Zhang, J. W.: Mesoscale shallow convection in the
atmosphere, Rev. Geophys., 34, 403–431,
https://doi.org/10.1029/96RG02623, 1996. a, b, c
Bauer, M. and Del Genio, A. D.: Composite analysis of winter cyclones in a GCM:
Influence on climatological humidity, J. Clim., 19, 1652–1672,
https://doi.org/10.1175/JCLI3690.1, 2006. a
Bates, T. S., Huebert, B. J., Gras, J. L., Griffiths, F. B., and Durkee, P. A.:
International Global Atmospheric Chemistry (IGAC) project's first aerosol
characterization experiment (ACE 1): Overview, J. Geophys.
Res.-Atmos., 103, 16297–16318,
https://doi.org/10.1029/97JD03741, 1998. a
Behrangi, A., Lebsock, M., Wong, S., and Lambrigtsen, B.: On the
quantification of oceanic rainfall using spaceborne sensors, J.
Geophys. Res.-Atmos., 117, D20105, https://doi.org/10.1029/2012JD017979,
2012. a
Behrangi, A., Stephens, G., Adler, R. F., Huffman, G. J., Lambrigtsen, B., and
Lebsock, M.: An update on the oceanic precipitation rate and its zonal
distribution in light of advanced observations from space, J.
Clim., 27, 3957–3965, https://doi.org/10.1175/JCLI-D-13-00679.1, 2014. a
Berry, G., Reeder, M. J., and Jakob, C.: A global climatology of atmospheric
fronts, Geophys. Res. Lett., 38, L04809,
https://doi.org/10.1029/2010GL046451, 2011. a, b, c
Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Kumagai, Y.,
Miyakawa, T., Murata, H., Ohno, T., Okuyama, A., Oyama, R.,
Sasaki, Y., Shimazu, Y., Shimoji, K., Sumida, Y., Suzuki, M., Taniguchi, H.,
Tsuchiyama, H., Uesawa, D., Yokota, H., and Yoshida, R.: An introduction to
Himawari-8/9 – Japan's new-generation geostationary meteorological
satellites, J. Meteorol. Soc. Japn.. Ser. II, 94,
151–183, https://doi.org/10.2151/jmsj.2016-009, 2016. a
Bodas-Salcedo, A., Williams, K., Field, P., and Lock, A.: The surface
downwelling solar radiation surplus over the Southern Ocean in the Met Office
model: The role of midlatitude cyclone clouds, J. Clim., 25,
7467–7486, https://doi.org/10.1175/JCLI-D-11-00702.1, 2012. a, b
Bodas-Salcedo, A., Williams, K. D., Ringer, M. A., Beau, I., Cole, J. N.,
Dufresne, J.-L., Koshiro, T., Stevens, B., Wang, Z., and Yokohata, T.:
Origins of the solar radiation biases over the Southern Ocean in CFMIP2
models, J. Clim., 27, 41–56,
https://doi.org/10.1175/JCLI-D-13-00169.1, 2014. a
Bodas-Salcedo, A., Hill, P., Furtado, K., Williams, K., Field, P., Manners, J.,
Hyder, P., and Kato, S.: Large contribution of supercooled liquid clouds to
the solar radiation budget of the Southern Ocean, J. Clim., 29,
4213–4228, https://doi.org/10.1175/JCLI-D-15-0564.1, 2016. a, b
Brümmer, B.: Boundary-layer modification in wintertime cold-air outbreaks
from the Arctic sea ice, Bound.-Lay. Meteorol., 80, 109–125,
https://doi.org/10.1007/BF00119014, 1996. a
Dai, A.: Global precipitation and thunderstorm frequencies. Part II: Diurnal
variations, J. Clim., 14, 1112–1128, 2001. a
Dai, A., Lin, X., and Hsu, K.-L.: The frequency, intensity, and diurnal cycle
of precipitation in surface and satellite observations over low-and
mid-latitudes, Clim. Dynam., 29, 727–744,
https://doi.org/10.1007/s00382-007-0260-y, 2007. a
Diner, D. J., Asner, G. P., Davies, R., Knyazikhin, Y., Muller, J.-P., Nolin,
A. W., Pinty, B., Schaaf, C. B., and Stroeve, J.: New directions in earth
observing: Scientific applications of multiangle remote sensing, Bull. Am. Meteorol. Soc., 80, 2209–2228,
https://doi.org/10.1175/1520-0477(1999)080<2209:NDIEOS>2.0.CO;2, 1999. a
Dong, S., Sprintall, J., and Gille, S. T.: Location of the Antarctic polar
front from AMSR-E satellite sea surface temperature measurements, J.
Phys. Oceanogr., 36, 2075–2089,
https://doi.org/10.1175/JPO2973.1, 2006. a, b, c, d
Field, P., Bodas-Salcedo, A., and Brooks, M.: Using model analysis and
satellite data to assess cloud and precipitation in midlatitude cyclones,
Q. J. Roy. Meteorol. Soc., 137, 1501–1515,
https://doi.org/10.1002/qj.858, 2011. a
Field, P. R., Cotton, R. J., Mcbeath, K., Lock, A. P., Webster, S., and Allan,
R. P.: Improving a convection-permitting model simulation of a cold air
outbreak, Q. J. Roy. Meteorol. Soc., 140,
124–138, https://doi.org/10.1002/qj.2116, 2014. a
Fletcher, J., Mason, S., and Jakob, C.: The climatology, meteorology, and
boundary layer structure of marine cold air outbreaks in both hemispheres,
J. Clim., 29, 1999–2014,
https://doi.org/10.1175/JCLI-D-15-0268.1, 2016a. a
Fletcher, J. K., Mason, S., and Jakob, C.: A climatology of clouds in marine
cold air outbreaks in both hemispheres, J. Clim., 29, 6677–6692,
https://doi.org/10.1175/JCLI-D-15-0783.1, 2016b. a, b, c
Hartmann, D. L. and Short, D. A.: On the use of earth radiation budget
statistics for studies of clouds and climate, J. Atmos.
Sci., 37, 1233–1250,
https://doi.org/10.1175/1520-0469(1980)037<1233:OTUOER>2.0.CO;2, 1980. a
Haynes, J. M., Jakob, C., Rossow, W. B., Tselioudis, G., and Brown, J.: Major
characteristics of Southern Ocean cloud regimes and their effects on the
energy budget, J. Clim., 24, 5061–5080,
https://doi.org/10.1175/2011JCLI4052.1, 2011. a
Hersbach, H., Bell, B., Berrisford, P.,
et al.: The ERA5 global reanalysis, Q. J. Roy.
Meteorol. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020. a
Hewson, T. D.: Objective fronts, Meteorol. Appl., 5, 37–65,
https://doi.org/10.1017/S1350482798000553, 1998. a
Hoskins, B. J. and Hodges, K. I.: A new perspective on Southern Hemisphere
storm tracks, J. Clim., 18, 4108–4129,
https://doi.org/10.1175/JCLI3570.1, 2005. a
Huang, Y., Chubb, T., Baumgardner, D., deHoog, M., Siems, S. T., and Manton,
M. J.: Evidence for secondary ice production in Southern Ocean open cellular
convection, Q. J. Roy. Meteorol. Soc., 143,
1685–1703, https://doi.org/10.1002/qj.3041, 2017. a, b
Inatsu, M. and Hoskins, B. J.: The zonal asymmetry of the Southern Hemisphere
winter storm track, J. Clim., 17, 4882–4892,
https://doi.org/10.1175/JCLI-3232.1, 2004. a
Japan Meteorological Agency (JMA): Himawari L1 Gridded data, EORC [data set], https://www.eorc.jaxa.jp/ptree/index.html, last access: 25 January 2021. a
Kay, J. E., Wall, C., Yettella, V., Medeiros, B., Hannay, C., Caldwell, P., and
Bitz, C.: Global climate impacts of fixing the Southern Ocean shortwave
radiation bias in the Community Earth System Model (CESM), J.
Clim., 29, 4617–4636, https://doi.org/10.1175/JCLI-D-15-0358.1,
2016. a, b
Kazil, J., Feingold, G., Wang, H., and Yamaguchi, T.: On the interaction
between marine boundary layer cellular cloudiness and surface heat fluxes,
Atmos. Chem. Phys., 14, 61–79,
https://doi.org/10.5194/acp-14-61-2014, 2014. a
Klein, S. A. and Hartmann, D. L.: The seasonal cycle of low stratiform clouds,
J. Clim., 6, 1587–1606,
https://doi.org/10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2, 1993. a, b, c
Lang, F., Huang, Y., Siems, S. T., and Manton, M. J.: Evidence of a Diurnal
Cycle in Precipitation over the Southern Ocean as Observed at Macquarie
Island, Atmosphere, 11, 181, https://doi.org/10.3390/atmos11020181,
2020. a, b, c
Lang, F., Huang, Y., Protat, A., Truong, S., Siems, S., and Manton, M.: Shallow
Convection and Precipitation Over the Southern Ocean: A Case Study During the
CAPRICORN 2016 Field Campaign, J. Geophys. Res.-Atmos.,
126, e2020JD034088, https://doi.org/10.1029/2020JD034088, 2021. a, b, c
Lim, E.-P. and Simmonds, I.: Southern Hemisphere winter extratropical cyclone
characteristics and vertical organization observed with the ERA-40 data in
1979–2001, J. Clim., 20, 2675–2690,
https://doi.org/10.1175/JCLI4135.1, 2007. a
Mace, G. G. and Zhang, Q.: The CloudSat radar-lidar geometrical profile product
(RL-GeoProf): Updates, improvements, and selected results, J.
Geophys. Res.-Atmos., 119, 9441–9462,
https://doi.org/10.1002/2013JD021374, 2014. a
Mace, G. G., Zhang, Q., Vaughan, M., Marchand, R., Stephens, G., Trepte, C.,
and Winker, D.: A description of hydrometeor layer occurrence statistics
derived from the first year of merged Cloudsat and CALIPSO data, J.
Geophys. Res.-Atmos., 114, D00A26,
https://doi.org/10.1029/2007JD009755, 2009. a, b, c
McCoy, I. L., Wood, R., and Fletcher, J. K.: Identifying Meteorological
Controls on Open and Closed Mesoscale Cellular Convection Associated with
Marine Cold Air Outbreaks, J. Geophys. Res.-Atmos.,
122, 11678–11702, https://doi.org/10.1002/2017JD027031, 2017. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p
McFarquhar, G. M., Bretherton, C. S., Marchand, R.,
et al.: Observations of clouds, aerosols, precipitation, and surface
radiation over the southern ocean: An overview of CAPRICORN, MARCUS, MICRE,
and SOCRATES, Bull. Am. Meteorol. Soc., 102,
E894–E928, https://doi.org/10.1175/BAMS-D-20-0132.1, 2021. a
Mohrmann, J., Wood, R., Yuan, T., Song, H., Eastman, R., and Oreopoulos, L.:
Identifying meteorological influences on marine low-cloud mesoscale
morphology using satellite classifications, Atmos. Chem.
Phys., 21, 9629–9642, https://doi.org/10.5194/acp-21-9629-2021,
2021. a
Moore, J. K., Abbott, M. R., and Richman, J. G.: Location and dynamics of the
Antarctic Polar Front from satellite sea surface temperature data, J.
Geophys. Res.-Ocean., 104, 3059–3073,
https://doi.org/10.1029/1998JC900032, 1999. a
Murray, R. J. and Simmonds, I.: A numerical scheme for tracking cyclone centres
from digital data, Part I: Development and operation of the scheme,
Austr. Meteorol. Mag., 39, 155–166, 1991. a
Naud, C. M., Booth, J. F., and Del Genio, A. D.: Evaluation of ERA-Interim and
MERRA cloudiness in the Southern Ocean, J. Clim., 27, 2109–2124,
https://doi.org/10.1175/JCLI-D-13-00432.1, 2014. a, b, c, d
Papritz, L., Pfahl, S., Sodemann, H., and Wernli, H.: A climatology of cold air
outbreaks and their impact on air–sea heat fluxes in the high-latitude South
Pacific, J. Clim., 28, 342–364,
https://doi.org/10.1175/JCLI-D-14-00482.1, 2015. a, b
Pezza, A. B., Durrant, T., Simmonds, I., and Smith, I.: Southern Hemisphere
synoptic behavior in extreme phases of SAM, ENSO, sea ice extent, and
southern Australia rainfall, J. Clim., 21, 5566–5584,
https://doi.org/10.1175/2008JCLI2128.1, 2008. a
Platnick, S., King, M. D., Ackerman, S. A., Menzel, W. P., Baum, B. A.,
Riédi, J. C., and Frey, R. A.: The MODIS cloud products: Algorithms and
examples from Terra, IEEE T. Geosci. Remote Sens., 41,
459–473, https://doi.org/10.1109/TGRS.2002.808301, 2003. a
Rozendaal, M. A., Leovy, C. B., and Klein, S. A.: An observational study of
diurnal variations of marine stratiform cloud, J. Clim., 8,
1795–1809,
https://doi.org/10.1175/1520-0442(1995)008<1795:AOSODV>2.0.CO;2, 1995. a
Simmonds, I. and Keay, K.: Mean Southern Hemisphere extratropical cyclone
behavior in the 40-year NCEP–NCAR reanalysis, J. Clim., 13,
873–885,
https://doi.org/10.1175/1520-0442(2000)013<0873:MSHECB>2.0.CO;2, 2000. a, b
Stevens, B., Vali, G., Comstock, K., Wood, R., Van Zanten, M. C., Austin,
P. H., Bretherton, C. S., and Lenschow, D. H.: Pockets of open cells and
drizzle in marine stratocumulus, Bull. Am. Meteorol.
Soc., 86, 51–58, https://doi.org/10.1175/BAMS-86-1-51, 2005. a
Suhre, K., Mari, C., Bates, T. S., Johnson, J. E., Rosset, R., Wang, Q., Bandy,
A. R., Blake, D. R., Businger, S., Eisele, F. L., Huebert, B. J., Kok, G. L.,
Mauldin III, R. L., Prévôt, A. S. H., Schillawski, R. D., Tanner, D. J., and Thornton, D. C.: Physico-chemical
modeling of the First Aerosol Characterization Experiment (ACE 1) Lagrangian B: 1. A moving column approach, J. Geophys. Res.-Atmos.,
103, 16433–16455, 1998. a
Trenberth, K. E. and Fasullo, J. T.: Simulation of present-day and
twenty-first-century energy budgets of the southern oceans, J.
Clim., 23, 440–454, https://doi.org/10.1175/2009JCLI3152.1, 2010. a
Truong, S., Huang, Y., Lang, F., Messmer, M., Simmonds, I., Siems, S., and
Manton, M.: A climatology of the marine atmospheric boundary layer over the
Southern Ocean from four field campaigns during 2016–2018, J.
Geophys. Res.- Atmos., 125, e2020JD033214,
https://doi.org/10.1029/2020JD033214, 2020. a, b, c, d
Vial, J., Vogel, R., Bony, S., Stevens, B., Winker, D. M., Cai, X., Hohenegger,
C., Naumann, A. K., and Brogniez, H.: A new look at the daily cycle of trade
wind cumuli, J. Adv. Model. Earth Syst., 11, 3148–3166,
https://doi.org/10.1029/2019MS001746, 2019. a
Vial, J., Vogel, R., and Schulz, H.: On the daily cycle of mesoscale cloud
organization in the winter trades, Q. J. Roy.
Meteorol. Soc., 47, 2850–2873, https://doi.org/10.1002/qj.4103, 2021. a
Wang, H. and Feingold, G.: Modeling mesoscale cellular structures and drizzle
in marine stratocumulus, Part II: The microphysics and dynamics of the
boundary region between open and closed cells, J. Atmos.
Sci., 66, 3257–3275, https://doi.org/10.1175/2009JAS3120.1, 2009a. a
Wang, H. and Feingold, G.: Modeling mesoscale cellular structures and drizzle
in marine stratocumulus, Part I: Impact of drizzle on the formation and
evolution of open cells, J. Atmos. Sci., 66,
3237–3256, https://doi.org/10.1175/2009JAS3022.1, 2009b. a, b, c
Watson-Parris, D., Sutherland, S., Christensen, M., Eastman, R., and Stier, P.:
A Large-Scale Analysis of Pockets of Open Cells and Their Radiative Impact,
Geophys. Res. Lett., 48, e2020GL092213,
https://doi.org/10.1029/2020GL092213, 2021. a, b, c, d
Williams, K. D., Bodas-Salcedo, A., Déqué, M., Fermepin, S.,
Medeiros, B., Watanabe, M., Jakob, C., Klein, S. A., Senior, C. A., and
Williamson, D. L.: The Transpose-AMIP II experiment and its application to
the understanding of Southern Ocean cloud biases in climate models, J. Clim., 26, 3258–3274, https://doi.org/10.1175/JCLI-D-12-00429.1,
2013.
a, b, c
Wood, R.: Stratocumulus clouds, Month. Weather Rev., 140, 2373–2423,
https://doi.org/10.1175/MWR-D-11-00121.1, 2012. a, b
Wood, R., Bretherton, C. S., Leon, D., Clarke, A. D., Zuidema, P., Allen, G.,
and Coe, H.: An aircraft case study of the spatial transition from closed to
open mesoscale cellular convection over the Southeast Pacific, Atmos.
Chem. Phys., 11, 2341–2370,
https://doi.org/10.5194/acp-11-2341-2011, 2011. a
Yamaguchi, T. and Feingold, G.: On the relationship between open cellular
convective cloud patterns and the spatial distribution of precipitation,
Atmos. Chem. Phys., 15, 1237–1251,
https://doi.org/10.5194/acp-15-1237-2015, 2015. a
Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M.,
Ceppi, P., Klein, S. A., and Taylor, K. E.: Causes of higher climate
sensitivity in CMIP6 models, Geophys. Res. Lett., 47,
e2019GL085782, https://doi.org/10.1029/2019GL085782, 2020. a
Short summary
Marine low-level clouds cover vast areas of the Southern Ocean, and they are essential to the Earth system energy balance. We use 3 years of satellite observations to group low-level clouds by their spatial structure using a pattern-recognizing program. We studied two primary cloud type patterns, i.e. open and closed clouds. Open clouds are uniformly distributed over the storm track, while closed clouds are most predominant in the southeastern Indian Ocean. Closed clouds exhibit a daily cycle.
Marine low-level clouds cover vast areas of the Southern Ocean, and they are essential to the...
Altmetrics
Final-revised paper
Preprint