Articles | Volume 22, issue 3
https://doi.org/10.5194/acp-22-2011-2022
https://doi.org/10.5194/acp-22-2011-2022
Research article
 | 
11 Feb 2022
Research article |  | 11 Feb 2022

Source-resolved variability of fine particulate matter and human exposure in an urban area

Pablo Garcia Rivera, Brian T. Dinkelacker, Ioannis Kioutsioukis, Peter J. Adams, and Spyros N. Pandis

Related authors

Evaluation of high-resolution predictions of fine particulate matter and its composition in an urban area using PMCAMx-v2.0
Brian T. Dinkelacker, Pablo Garcia Rivera, Ioannis Kioutsioukis, Peter J. Adams, and Spyros N. Pandis
Geosci. Model Dev., 15, 8899–8912, https://doi.org/10.5194/gmd-15-8899-2022,https://doi.org/10.5194/gmd-15-8899-2022, 2022
Short summary
Predicted and Observed Changes in Summertime Biogenic and Total Organic Aerosol in the Southeast United States from 2001 to 2010
Brian T. Dinkelacker, Pablo Garcia Rivera, Ksakousti Skyllakou, Peter J. Adams, and Spyros N. Pandis
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-648,https://doi.org/10.5194/acp-2022-648, 2022
Revised manuscript not accepted
Short summary
Changes in PM2.5 concentrations and their sources in the US from 1990 to 2010
Ksakousti Skyllakou, Pablo Garcia Rivera, Brian Dinkelacker, Eleni Karnezi, Ioannis Kioutsioukis, Carlos Hernandez, Peter J. Adams, and Spyros N. Pandis
Atmos. Chem. Phys., 21, 17115–17132, https://doi.org/10.5194/acp-21-17115-2021,https://doi.org/10.5194/acp-21-17115-2021, 2021
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Modeling the drivers of fine PM pollution over Central Europe: impacts and contributions of emissions from different sources
Lukáš Bartík, Peter Huszár, Jan Karlický, Ondřej Vlček, and Kryštof Eben
Atmos. Chem. Phys., 24, 4347–4387, https://doi.org/10.5194/acp-24-4347-2024,https://doi.org/10.5194/acp-24-4347-2024, 2024
Short summary
Reaction of SO3 with H2SO4 and its implications for aerosol particle formation in the gas phase and at the air–water interface
Rui Wang, Yang Cheng, Shasha Chen, Rongrong Li, Yue Hu, Xiaokai Guo, Tianlei Zhang, Fengmin Song, and Hao Li
Atmos. Chem. Phys., 24, 4029–4046, https://doi.org/10.5194/acp-24-4029-2024,https://doi.org/10.5194/acp-24-4029-2024, 2024
Short summary
Weakened aerosol–radiation interaction exacerbating ozone pollution in eastern China since China's clean air actions
Hao Yang, Lei Chen, Hong Liao, Jia Zhu, Wenjie Wang, and Xin Li
Atmos. Chem. Phys., 24, 4001–4015, https://doi.org/10.5194/acp-24-4001-2024,https://doi.org/10.5194/acp-24-4001-2024, 2024
Short summary
Uncertainties from biomass burning aerosols in air quality models obscure public health impacts in Southeast Asia
Margaret R. Marvin, Paul I. Palmer, Fei Yao, Mohd Talib Latif, and Md Firoz Khan
Atmos. Chem. Phys., 24, 3699–3715, https://doi.org/10.5194/acp-24-3699-2024,https://doi.org/10.5194/acp-24-3699-2024, 2024
Short summary
Oxidative potential apportionment of atmospheric PM1: a new approach combining high-sensitive online analysers for chemical composition and offline OP measurement technique
Julie Camman, Benjamin Chazeau, Nicolas Marchand, Amandine Durand, Grégory Gille, Ludovic Lanzi, Jean-Luc Jaffrezo, Henri Wortham, and Gaëlle Uzu
Atmos. Chem. Phys., 24, 3257–3278, https://doi.org/10.5194/acp-24-3257-2024,https://doi.org/10.5194/acp-24-3257-2024, 2024
Short summary

Cited articles

Anand, S.: The concern for equity in health, J. Epidemiol. Commun. H., 56, 485–487, 2002. 
Arunachalam, S., Holland, A., Do, B., and Abraczinskas, M.: A quantitative assessment of the influence of grid resolution on predictions of future-year air quality in North Carolina, USA, Atmos. Environ., 40, 5010–5026, 2006. 
Carter, W. P. L.: Documentation of the SAPRC-99 chemical mechanism for VOC reactivity assessment, Final Report to California Air Resources Board Contract 92-329 and Contract 95-308, Air Pollution Research Center and College of Engineering Center for Environmental Research and Technology, University of California Riverside, California, 2000. 
Day, M., Pouliot, G., Hunt, S., Baker, K. R., Beardsley, M., Frost, G., Mobley, D., Simon, H., Henderson, B., Yelverton, T., and Rao, V.: Reflecting on progress since the 2005 NARSTO emissions inventory report, J. Air Waste Manage., 69, 1025–1050, 2019. 
Dinkelacker, B. T., Garcia Rivera, P., Kioutsioukis, I., Adams, P., and Pandis, S. N.: Source Code for PMCAMx-v2.0: High-resolution modeling of fine particulate matter in an urban area using PMCAMx-v2.0, Zenodo [code], https://doi.org/10.5281/zenodo.5094477, 2021. 
Download
Short summary
The contribution of various pollution sources to the variability of fine PM in an urban area was examined using as an example the city of Pittsburgh. Biomass burning aerosol shows the largest variability during the winter with local maxima within the city and in the suburbs. During both periods the largest contributing source to the average PM2.5 is particles from outside the modeling domain. The average population-weighted PM2.5 concentration does not change significantly with resolution.
Altmetrics
Final-revised paper
Preprint