

Supplement of

Source-resolved variability of fine particulate matter and human exposure in an urban area

Pablo Garcia Rivera et al.

Correspondence to: Spyros N. Pandis (spyros@chemeng.upatras.gr)

The copyright of individual parts of the supplement might differ from the article licence.

Table S1. Outer (CONUS) boundary condition concentrations of major aerosol species.

Component	Concentration (µg m ⁻³)			
Component	West	East	South	North
Nitrate	0.01	0.01	0.03	0.03
Ammonium	0.14	0.25	0.24	0.16
Sulfate	0.64	1.12	0.81	0.68
Elemental carbon	0.04	0.05	0.09	0.03
Organic aerosol (Winter)	0.20	0.16	0.58	0.80
Organic aerosol (Summer)	0.80	0.80	0.80	0.80

5	Table S2. Compariso	n of total PM _{2.5} performar	nce with the use of old surrog	ates and new
---	---------------------	--	--------------------------------	--------------

6 surrogates for onroad traffic and commercial cooking. Measurements from EPA-CSN

7	and low-cost sensors (RAMPs) withing the inner 1 x 1 km modeling domain were used.

February 2017					
	Old Surrogates		New Sur	rogates	
	EPA-CSN	RAMPs	EPA-CSN	RAMPs	
Observed Average (µg m ⁻³)	10.38	11.65	10.38	11.65	
Predicted Average (µg m ⁻³)	10.36	11.32	10.52	13.50	
Error (μg m ⁻³)	2.87	4.12	3.02	5.12	
Fractional Error	0.29	0.31	0.30	0.38	
Bias (µg m ⁻³)	-0.02	-0.33	0.18	1.85	
Fractional Bias	0.06	0.08	0.07	0.24	
		July 2017			
	Old Surrogates		New Surrogates		
	EPA-CSN	RAMPs	EPA-CSN	RAMPs	
Observed Average (µg m ⁻³)	11.24	12.58	11.24	12.58	
Predicted Average (µg m ⁻³)	7.13	7.98	7.23	8.83	
Error (µg m ⁻³)	4.70	5.32	4.67	4.89	
Fractional Error	0.49	0.47	0.48	0.42	
Bias (µg m ⁻³)	-4.11	-4.61	-4.01	-3.76	
Fractional Bias	-0.41	-0.37	-0.39	-0.27	

- 11 Figure S1 Average upper air concentration (13 simulated vertical layers above the ground
- 12 layer) of local PM_{2.5} from (A) power generation and (B) biomass burning in February 2017.

Figure S2 Population exposure histograms of the contribution to PM_{2.5} concentrations
from (A) commercial cooking, (B) industrial, (C) on-road traffic and (D) power generation
sources during February 2017. A different scale for population is used for the distribution
from power generation.

23

Figure S3 Population exposure histograms of the contribution to PM_{2.5} concentrations from (A) biomass burning, (B) miscellaneous area sources and (C) all other sources during February 2017. Contributions from long-range transport (D) are shown with a different concentration scale.

28

29 30

Figure S4 Population exposure histograms of the contribution to PM_{2.5} concentrations from (A) commercial cooking, (B) industrial, (C) on-road traffic and (D) power generation sources during July 2017.

Figure S5 Population exposure histograms of the contribution to PM_{2.5} concentrations
 from (A) biomass burning, (B) miscellaneous area sources and (C) all other sources during
 July 2017. Contributions from long-range transport (D) are shown with a different
 concentration scale.

44 Figure S6 Absolute contributions from local sources to population weighted total PM_{2.5}

- 45 concentration for February and July 2017