Articles | Volume 22, issue 16
https://doi.org/10.5194/acp-22-10827-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-10827-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Secondary organic aerosols from OH oxidation of cyclic volatile methyl siloxanes as an important Si source in the atmosphere
Chong Han
School of Metallurgy, Northeastern University, Shenyang, 110819, China
Hongxing Yang
School of Metallurgy, Northeastern University, Shenyang, 110819, China
Air Quality Research Division, Environment and Climate Change Canada,
Toronto, Ontario M3H 5T4, Canada
Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen
5232, Switzerland
Patrick Lee
Air Quality Research Division, Environment and Climate Change Canada,
Toronto, Ontario M3H 5T4, Canada
John Liggio
Air Quality Research Division, Environment and Climate Change Canada,
Toronto, Ontario M3H 5T4, Canada
Amy Leithead
Air Quality Research Division, Environment and Climate Change Canada,
Toronto, Ontario M3H 5T4, Canada
State Key Joint Laboratory of Environmental Simulation and Pollution
Control, College of Environmental Sciences and Engineering, Peking
University, Beijing, 100871, China
Related authors
Wangjin Yang, Jiawei Ma, Hongxing Yang, Fu Li, and Chong Han
Atmos. Chem. Phys., 24, 6757–6768, https://doi.org/10.5194/acp-24-6757-2024, https://doi.org/10.5194/acp-24-6757-2024, 2024
Short summary
Short summary
We provide evidence that light enhances the conversion of SO2 to sulfates on non-photoactive mineral dust, where triplet states of SO2 (3SO2) can act as a pivotal trigger to generate sulfates. Photochemical sulfate formation depends on H2O, O2, and basicity of mineral dust. The SO2 photochemistry on non-photoactive mineral dust contributes to sulfates, highlighting previously unknown pathways to better explain the missing sources of atmospheric sulfates.
Sophie Bogler, Jun Zhang, Rico K. Y. Cheung, Kun Li, André S. H. Prévôt, Imad El Haddad, and David M. Bell
Atmos. Chem. Phys., 25, 10229–10243, https://doi.org/10.5194/acp-25-10229-2025, https://doi.org/10.5194/acp-25-10229-2025, 2025
Short summary
Short summary
Authentic aerosols emitted from residential wood stoves and open burning processes are only slightly oxidized by ozone in the atmosphere. Under dry conditions, the reaction does not proceed to completion, while under high humidity conditions, the reactivity proceeds further. These results indicate that the reactivity with ozone is likely impacted by aerosol phase state (e.g., aerosol viscosity).
Yanrong Yang, Yuheng Zhang, Tianran Han, Conghui Xie, Yayong Liu, Yufei Huang, Jietao Zhou, Haijiong Sun, Delong Zhao, Kui Zhang, and Shao-Meng Li
Atmos. Meas. Tech., 18, 3035–3050, https://doi.org/10.5194/amt-18-3035-2025, https://doi.org/10.5194/amt-18-3035-2025, 2025
Short summary
Short summary
A wind speed correction algorithm for multirotor unoccupied aerial vehicles (UAVs) was developed using computational fluid dynamics (CFD). An integrated compensation algorithm was designed to account for the effects of UAV motion, attitude changes, and rotor-induced airflow on wind speed measurements. Comparative experimental results confirmed the effectiveness of the proposed compensation algorithm.
Tiantian Wang, Jun Zhang, Houssni Lamkaddam, Kun Li, Ka Yuen Cheung, Lisa Kattner, Erlend Gammelsæter, Michael Bauer, Zachary C. J. Decker, Deepika Bhattu, Rujin Huang, Rob L. Modini, Jay G. Slowik, Imad El Haddad, Andre S. H. Prevot, and David M. Bell
Atmos. Chem. Phys., 25, 2707–2724, https://doi.org/10.5194/acp-25-2707-2025, https://doi.org/10.5194/acp-25-2707-2025, 2025
Short summary
Short summary
Our study analyzes real-time emissions of organic vapors from solid fuel combustion. Using the mass spectrometer, we tested various fuels, finding higher emission factors for organic vapors from wood burning. Intermediate-volatility organic compounds constituted a significant fraction of emissions in solid fuel combustion. Statistical tests identified unique potential markers. Our insights benefit air quality, climate, and health, aiding accurate emission assessments.
Wangjin Yang, Jiawei Ma, Hongxing Yang, Fu Li, and Chong Han
Atmos. Chem. Phys., 24, 6757–6768, https://doi.org/10.5194/acp-24-6757-2024, https://doi.org/10.5194/acp-24-6757-2024, 2024
Short summary
Short summary
We provide evidence that light enhances the conversion of SO2 to sulfates on non-photoactive mineral dust, where triplet states of SO2 (3SO2) can act as a pivotal trigger to generate sulfates. Photochemical sulfate formation depends on H2O, O2, and basicity of mineral dust. The SO2 photochemistry on non-photoactive mineral dust contributes to sulfates, highlighting previously unknown pathways to better explain the missing sources of atmospheric sulfates.
Yaru Song, Jianlong Li, Narcisse Tsona Tchinda, Kun Li, and Lin Du
Atmos. Chem. Phys., 24, 5847–5862, https://doi.org/10.5194/acp-24-5847-2024, https://doi.org/10.5194/acp-24-5847-2024, 2024
Short summary
Short summary
Aromatic acids can be transferred from seawater to the atmosphere through bubble bursting. The air–sea transfer efficiency of aromatic acids was evaluated by simulating SSA generation with a plunging jet. As a whole, the transfer capacity of aromatic acids may depend on their functional groups and on the bridging effect of cations, as well as their concentration in seawater, as these factors influence the global emission flux of aromatic acids via SSA.
Xiaowen Chen, Lin Du, Zhaomin Yang, Shan Zhang, Narcisse Tsona Tchinda, Jianlong Li, and Kun Li
EGUsphere, https://doi.org/10.5194/egusphere-2023-2960, https://doi.org/10.5194/egusphere-2023-2960, 2024
Preprint archived
Short summary
Short summary
In this study, the interactions between α-pinene and marine emission dimethyl sulfide (DMS) are investigated. It is found that the yield of secondary organic aerosol initially increases and then decreases with the increasing DMS/α-pinene ratio. This trend can be explained by OH regeneration, acid-catalyzed reactions, and the change in OH reactivity, etc. These findings can improve our understanding of atmospheric processes in coastal areas.
Lin Du, Xiaofan Lv, Makroni Lily, Kun Li, and Narcisse Tsona Tchinda
Atmos. Chem. Phys., 24, 1841–1853, https://doi.org/10.5194/acp-24-1841-2024, https://doi.org/10.5194/acp-24-1841-2024, 2024
Short summary
Short summary
This study explores the pH effect on the reaction of dissolved SO2 with selected organic peroxides. Results show that the formation of organic and/or inorganic sulfate from these peroxides strongly depends on their electronic structures, and these processes are likely to alter the chemical composition of dissolved organic matter in different ways. The rate constants of these reactions exhibit positive pH and temperature dependencies within pH 1–10 and 240–340 K ranges.
Tianran Han, Conghui Xie, Yayong Liu, Yanrong Yang, Yuheng Zhang, Yufei Huang, Xiangyu Gao, Xiaohua Zhang, Fangmin Bao, and Shao-Meng Li
Atmos. Meas. Tech., 17, 677–691, https://doi.org/10.5194/amt-17-677-2024, https://doi.org/10.5194/amt-17-677-2024, 2024
Short summary
Short summary
This study reported an integrated UAV measurement platform for GHG monitoring and its application for emission quantification from a coking plant. The key element of this system is a newly designed air sampler, consisting of a 150 m long tube with remote-controlled time stamping. When comparing the top-down results to those derived from the bottom-up inventory method, the present findings indicate that the use of IPCC emission factors for emission calculations can lead to overestimation.
Yanrong Yang, Yuheng Zhang, Tianran Han, Conghui Xie, Yayong Liu, Yufei Huang, Jietao Zhou, Haijiong Sun, Delong Zhao, Kui Zhang, and Shao-Meng Li
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-248, https://doi.org/10.5194/amt-2023-248, 2024
Preprint withdrawn
Short summary
Short summary
The paper introduces a correction algorithm for accurate wind speed measurement in a multirotor unmanned aerial vehicle (UAV) with a sonic anemometer. Addressing propeller rotation, UAV movement, and attitude changes, it integrates computational fluid dynamics simulation and regression analysis. This comprehensive algorithm corrects rotor disturbances, motion, and attitude variations. Validation against meteorological tower data demonstrates its enhanced reliability in wind speed measurements.
Jun Zhang, Kun Li, Tiantian Wang, Erlend Gammelsæter, Rico K. Y. Cheung, Mihnea Surdu, Sophie Bogler, Deepika Bhattu, Dongyu S. Wang, Tianqu Cui, Lu Qi, Houssni Lamkaddam, Imad El Haddad, Jay G. Slowik, Andre S. H. Prevot, and David M. Bell
Atmos. Chem. Phys., 23, 14561–14576, https://doi.org/10.5194/acp-23-14561-2023, https://doi.org/10.5194/acp-23-14561-2023, 2023
Short summary
Short summary
We conducted burning experiments to simulate various types of solid fuel combustion, including residential burning, wildfires, agricultural burning, cow dung, and plastic bag burning. The chemical composition of the particles was characterized using mass spectrometers, and new potential markers for different fuels were identified using statistical analysis. This work improves our understanding of emissions from solid fuel burning and offers support for refined source apportionment.
Shan Zhang, Lin Du, Zhaomin Yang, Narcisse Tsona Tchinda, Jianlong Li, and Kun Li
Atmos. Chem. Phys., 23, 10809–10822, https://doi.org/10.5194/acp-23-10809-2023, https://doi.org/10.5194/acp-23-10809-2023, 2023
Short summary
Short summary
In this study, we have investigated the distinct impacts of humidity on the ozonolysis of two structurally different monoterpenes (limonene and Δ3-carene). We found that the molecular structure of precursors can largely influence the SOA formation under high RH by impacting the multi-generation reactions. Our results could advance knowledge on the roles of water content in aerosol formation and inform ongoing research on particle environmental effects and applications in models.
Taomou Zong, Zhijun Wu, Junrui Wang, Kai Bi, Wenxu Fang, Yanrong Yang, Xuena Yu, Zhier Bao, Xiangxinyue Meng, Yuheng Zhang, Song Guo, Yang Chen, Chunshan Liu, Yue Zhang, Shao-Meng Li, and Min Hu
Atmos. Meas. Tech., 16, 3679–3692, https://doi.org/10.5194/amt-16-3679-2023, https://doi.org/10.5194/amt-16-3679-2023, 2023
Short summary
Short summary
This study developed and characterized an indoor chamber system (AIR) to simulate atmospheric multiphase chemistry processes. The AIR chamber can accurately control temperature and relative humidity (RH) over a broad range and simulate diurnal variation of ambient atmospheric RH. The aerosol generation unit can generate organic-coating seed particles with different phase states. The AIR chamber demonstrates high-quality performance in simulating secondary aerosol formation.
Zhaomin Yang, Kun Li, Narcisse T. Tsona, Xin Luo, and Lin Du
Atmos. Chem. Phys., 23, 417–430, https://doi.org/10.5194/acp-23-417-2023, https://doi.org/10.5194/acp-23-417-2023, 2023
Short summary
Short summary
SO2 significantly promotes particle formation during cyclooctene ozonolysis. Carboxylic acids and their dimers were major products in particles formed in the absence of SO2. SO2 can induce production of organosulfates with stronger particle formation ability than their precursors, leading to the enhancement in particle formation. Formation mechanisms and structures of organosulfates were proposed, which is helpful for better understanding how SO2 perturbs the formation and fate of particles.
Broghan M. Erland, Cristen Adams, Andrea Darlington, Mackenzie L. Smith, Andrew K. Thorpe, Gregory R. Wentworth, Steve Conley, John Liggio, Shao-Meng Li, Charles E. Miller, and John A. Gamon
Atmos. Meas. Tech., 15, 5841–5859, https://doi.org/10.5194/amt-15-5841-2022, https://doi.org/10.5194/amt-15-5841-2022, 2022
Short summary
Short summary
Accurately estimating greenhouse gas (GHG) emissions is essential to reaching net-zero goals to combat the climate crisis. Airborne box-flights are ideal for assessing regional GHG emissions, as they can attain small error. We compare two box-flight algorithms and found they produce similar results, but daily variability must be considered when deriving emissions inventories. Increasing the consistency and agreement between airborne methods moves us closer to achieving more accurate estimates.
Katherine L. Hayden, Shao-Meng Li, John Liggio, Michael J. Wheeler, Jeremy J. B. Wentzell, Amy Leithead, Peter Brickell, Richard L. Mittermeier, Zachary Oldham, Cristian M. Mihele, Ralf M. Staebler, Samar G. Moussa, Andrea Darlington, Mengistu Wolde, Daniel Thompson, Jack Chen, Debora Griffin, Ellen Eckert, Jenna C. Ditto, Megan He, and Drew R. Gentner
Atmos. Chem. Phys., 22, 12493–12523, https://doi.org/10.5194/acp-22-12493-2022, https://doi.org/10.5194/acp-22-12493-2022, 2022
Short summary
Short summary
In this study, airborne measurements provided the most detailed characterization, to date, of boreal forest wildfire emissions. Measurements showed a large diversity of air pollutants expanding the volatility range typically reported. A large portion of organic species was unidentified, likely comprised of complex organic compounds. Aircraft-derived emissions improve wildfire chemical speciation and can support reliable model predictions of pollution from boreal forest wildfires.
Junling Li, Kun Li, Hao Zhang, Xin Zhang, Yuanyuan Ji, Wanghui Chu, Yuxue Kong, Yangxi Chu, Yanqin Ren, Yujie Zhang, Haijie Zhang, Rui Gao, Zhenhai Wu, Fang Bi, Xuan Chen, Xuezhong Wang, Weigang Wang, Hong Li, and Maofa Ge
Atmos. Chem. Phys., 22, 10489–10504, https://doi.org/10.5194/acp-22-10489-2022, https://doi.org/10.5194/acp-22-10489-2022, 2022
Short summary
Short summary
Ozone formation is enhanced by higher OH concentration and higher temperature but is influenced little by SO2. SO2 can largely enhance the particle formation. Organo-sulfates and organo-nitrates are detected in the formed particles, and the presence of SO2 can promote the formation of organo-sulfates. The results provide a scientific basis for systematically evaluating the effects of SO2, OH concentration, and temperature on the oxidation of mixed organic gases in the atmosphere.
Debora Griffin, Chris A. McLinden, Enrico Dammers, Cristen Adams, Chelsea E. Stockwell, Carsten Warneke, Ilann Bourgeois, Jeff Peischl, Thomas B. Ryerson, Kyle J. Zarzana, Jake P. Rowe, Rainer Volkamer, Christoph Knote, Natalie Kille, Theodore K. Koenig, Christopher F. Lee, Drew Rollins, Pamela S. Rickly, Jack Chen, Lukas Fehr, Adam Bourassa, Doug Degenstein, Katherine Hayden, Cristian Mihele, Sumi N. Wren, John Liggio, Ayodeji Akingunola, and Paul Makar
Atmos. Meas. Tech., 14, 7929–7957, https://doi.org/10.5194/amt-14-7929-2021, https://doi.org/10.5194/amt-14-7929-2021, 2021
Short summary
Short summary
Satellite-derived NOx emissions from biomass burning are estimated with TROPOMI observations. Two common emission estimation methods are applied, and sensitivity tests with model output were performed to determine the accuracy of these methods. The effect of smoke aerosols on TROPOMI NO2 columns is estimated and compared to aircraft observations from four different aircraft campaigns measuring biomass burning plumes in 2018 and 2019 in North America.
Sepehr Fathi, Mark Gordon, Paul A. Makar, Ayodeji Akingunola, Andrea Darlington, John Liggio, Katherine Hayden, and Shao-Meng Li
Atmos. Chem. Phys., 21, 15461–15491, https://doi.org/10.5194/acp-21-15461-2021, https://doi.org/10.5194/acp-21-15461-2021, 2021
Short summary
Short summary
We have investigated the accuracy of aircraft-based mass balance methodologies through computer model simulations of the atmosphere and air quality at a regional high-resolution scale. We have defined new quantitative metrics to reduce emission retrieval uncertainty by evaluating top-down mass balance estimates against the known simulated meteorology and input emissions. We also recommend methodologies and flight strategies for improved retrievals in future aircraft-based studies.
Konstantin Baibakov, Samuel LeBlanc, Keyvan Ranjbar, Norman T. O'Neill, Mengistu Wolde, Jens Redemann, Kristina Pistone, Shao-Meng Li, John Liggio, Katherine Hayden, Tak W. Chan, Michael J. Wheeler, Leonid Nichman, Connor Flynn, and Roy Johnson
Atmos. Chem. Phys., 21, 10671–10687, https://doi.org/10.5194/acp-21-10671-2021, https://doi.org/10.5194/acp-21-10671-2021, 2021
Short summary
Short summary
We find that the airborne measurements of the vertical extinction due to aerosols (aerosol optical depth, AOD) obtained in the Athabasca Oil Sands Region (AOSR) can significantly exceed ground-based values. This can have an effect on estimating the AOSR radiative impact and is relevant to satellite validation based on ground-based measurements. We also show that the AOD can marginally increase as the plumes are being transported away from the source and the new particles are being formed.
Katherine Hayden, Shao-Meng Li, Paul Makar, John Liggio, Samar G. Moussa, Ayodeji Akingunola, Robert McLaren, Ralf M. Staebler, Andrea Darlington, Jason O'Brien, Junhua Zhang, Mengistu Wolde, and Leiming Zhang
Atmos. Chem. Phys., 21, 8377–8392, https://doi.org/10.5194/acp-21-8377-2021, https://doi.org/10.5194/acp-21-8377-2021, 2021
Short summary
Short summary
We developed a method using aircraft measurements to determine lifetimes with respect to dry deposition for oxidized sulfur and nitrogen compounds over the boreal forest in Alberta, Canada. Atmospheric lifetimes were significantly shorter than derived from chemical transport models with differences related to modelled dry deposition velocities. The shorter lifetimes suggest models need to reassess dry deposition treatment and predictions of sulfur and nitrogen in the atmosphere and ecosystems.
Junling Li, Hong Li, Kun Li, Yan Chen, Hao Zhang, Xin Zhang, Zhenhai Wu, Yongchun Liu, Xuezhong Wang, Weigang Wang, and Maofa Ge
Atmos. Chem. Phys., 21, 7773–7789, https://doi.org/10.5194/acp-21-7773-2021, https://doi.org/10.5194/acp-21-7773-2021, 2021
Short summary
Short summary
SOA formation from the mixed anthropogenic volatile organic compounds was enhanced compared to the predicted SOA mass concentration based on the SOA yield of single species; interaction occurred between intermediate products from the two precursors. Interactions between the intermediate products from the mixtures and the effect on SOA formation give us a further understanding of the SOA formed in the atmosphere.
Jenna C. Ditto, Megan He, Tori N. Hass-Mitchell, Samar G. Moussa, Katherine Hayden, Shao-Meng Li, John Liggio, Amy Leithead, Patrick Lee, Michael J. Wheeler, Jeremy J. B. Wentzell, and Drew R. Gentner
Atmos. Chem. Phys., 21, 255–267, https://doi.org/10.5194/acp-21-255-2021, https://doi.org/10.5194/acp-21-255-2021, 2021
Short summary
Short summary
Forest fires are an important source of reactive organic gases and aerosols to the atmosphere. We analyzed organic aerosols collected from an aircraft above a boreal forest fire and reported an increasing contribution from compounds containing oxygen, nitrogen, and sulfur as the plume aged, with sulfide and ring-bound nitrogen functionality. Our results demonstrated chemistry that is important in biomass burning but also in urban/developing regions with high local nitrogen and sulfur emissions.
Cited articles
Ahrens, L., Harner, T., and Shoeib, M.: Temporal Variations of Cyclic and
Linear Volatile Methylsiloxanes in the Atmosphere Using Passive Samplers and
High-Volume Air Samplers, Environ. Sci. Technol., 48, 9374–9381, https://doi.org/10.1021/es502081j, 2014.
Allen, R., Kochs, P., and Chandra, G.: Industrial Organosilicon Materials,
Their Environmental Entry and Predicted Fate, edited by: Chandra, G., Springer, 3, 1–25,
https://doi.org/10.1007/978-3-540-68331-5_1, 1997.
Alton, M. and Browne, E.: Atmospheric Chemistry of Volatile Methyl
Siloxanes: Kinetics and Products of Oxidation by OH Radicals and Cl Atoms,
Environ. Sci. Technol., 54, 5992–5999,
https://doi.org/10.1021/acs.est.0c01368, 2020.
Atkinson, R.: Kinetics of the Gas-Phase Reactions of a Series of
Organosilicon Compounds with OH and NO3 Radicals and O3 at 297±2 K, Environ. Sci. Technol., 25, 863–866,
https://doi.org/10.1021/es00017a005, 1991.
Bein, K., Zhao, Y., Wexler, A., and Johnston, M.: Speciation of Size-Resolved
Individual Ultrafine Particles in Pittsburgh, Pennsylvania, J. Geophys.
Res., 110, D07S05, https://doi.org/10.1029/2004jd004708, 2005.
Berndt, T., Richters, S., Jokinen, T., Hyttinen, N., Kurtén, T.,
Otkjaer, R., Kjaergaard, H., Stratmann, F., Herrmann, H., Sipilä, M.,
Kulmala, M., and Ehn, M.: Hydroxyl Radical-Induced Formation of Highly
Oxidized Organic Compounds, Nat. Commun., 7, 1–8,
https://doi.org/10.1038/ncomms13677, 2016.
Bruns, E. A., El Haddad, I., Keller, A., Klein, F., Kumar, N. K., Pieber, S. M., Corbin, J. C., Slowik, J. G., Brune, W. H., Baltensperger, U., and Prévôt, A. S. H.: Inter-comparison of laboratory smog chamber and flow reactor systems on organic aerosol yield and composition, Atmos. Meas. Tech., 8, 2315–2332, https://doi.org/10.5194/amt-8-2315-2015, 2015.
Bzdek, B., Horan, A., Pennington, M., Janechek, N., Baek, J., Stanier, C.,
and Johnston, M.: Silicon is a Frequent Component of Atmospheric
Nanoparticles, Environ. Sci. Technol., 48, 11137–11145,
https://doi.org/10.1021/es5026933, 2014.
Canada, E. C. H. C.:
https://www.ec.gc.ca/ese-ees/FC0D11E7-DB34-41AA-B1B3-E66EFD8813F1/batch2_540-97-6_en.pdf (last access: 9 February 2022), 2008.
Chan, A. W. H., Kautzman, K. E., Chhabra, P. S., Surratt, J. D., Chan, M. N., Crounse, J. D., Kürten, A., Wennberg, P. O., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol formation from photooxidation of naphthalene and alkylnaphthalenes: implications for oxidation of intermediate volatility organic compounds (IVOCs), Atmos. Chem. Phys., 9, 3049–3060, https://doi.org/10.5194/acp-9-3049-2009, 2009.
Chandramouli, B. and Kamens, R.: The Photochemical Formation and Gas-Particle
Partitioning of Oxidation Products of Decamethyl Cyclopentasiloxane and
Decamethyl Tetrasiloxane in the Atmosphere, Atmos. Environ., 35, 87–95,
https://doi.org/10.1016/S1352-2310(00)00289-2, 2001.
Charan, S. M., Huang, Y., Buenconsejo, R. S., Li, Q., Cocker III, D. R., and Seinfeld, J. H.: Secondary organic aerosol formation from the oxidation of decamethylcyclopentasiloxane at atmospherically relevant OH concentrations, Atmos. Chem. Phys., 22, 917–928, https://doi.org/10.5194/acp-22-917-2022, 2022.
Coggon, M., McDonald, B., Vlasenko, A., Veres, P., Bernard, F., Koss, A.,
Yuan, B., Gilman, J., Peischl, J., Aikin, K., DuRant, J., Warneke, C., Li,
S.-M., and Gouw, J.: Diurnal Variability and Emission Pattern of
Decamethylcyclopentasiloxane (D5) from the Application of Personal Care
Products in Two North American Cities, Environ. Sci. Technol., 52,
5610–5618, https://doi.org/10.1021/acs.est.8b00506, 2018.
EUR-Lex:
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2018.006.01.0045.01.ENG&toc=OJ:L:2018:006:TOCECHA
(last access: 25 November 2021), 2018.
Farasani, A. and Darbre, P.: Exposure to Cyclic Volatile Methylsiloxanes
(cVMS) Causes Anchorage-Independent Growth and Reduction of BRCA1 in
Non-Transformed Human Breast Epithelial Cells, J. Appl. Toxicol., 37,
454–461, https://doi.org/10.1002/jat.3378, 2017.
Genualdi, S., Harner, T., Cheng, Y., Macleod, M., Hansen, K., Egmond, R.,
Shoeib, M., and Lee, S.: Global Distribution of Linear and Cyclic Volatile
Methyl Siloxanes in Air, Environ. Sci. Technol., 45, 3349–3354,
https://doi.org/10.1021/es200301j, 2011.
Glasius, M. and Goldstein, A.: Recent Discoveries and Future Challenges in
Atmospheric Organic Chemistry, Environ. Sci. Technol., 50, 2754–2764,
https://doi.org/10.1021/acs.est.5b05105, 2016.
Guo, J., Zhou, Y., Cui, J., Zhang, B., and Zhang, J.: Assessment of Volatile
Methylsiloxanes in Environmental Matrices and Human Plasma, Sci. Total.
Environ., 668, 1175–1182,
https://doi.org/10.1016/j.scitotenv.2019.03.092, 2019.
Huang, Y., Coggon, M. M., Zhao, R., Lignell, H., Bauer, M. U., Flagan, R. C., and Seinfeld, J. H.: The Caltech Photooxidation Flow Tube reactor: design, fluid dynamics and characterization, Atmos. Meas. Tech., 10, 839–867, https://doi.org/10.5194/amt-10-839-2017, 2017.
Janechek, N. J., Hansen, K. M., and Stanier, C. O.: Comprehensive atmospheric modeling of reactive cyclic siloxanes and their oxidation products, Atmos. Chem. Phys., 17, 8357–8370, https://doi.org/10.5194/acp-17-8357-2017, 2017.
Janechek, N. J., Marek, R. F., Bryngelson, N., Singh, A., Bullard, R. L., Brune, W. H., and Stanier, C. O.: Physical properties of secondary photochemical aerosol from OH oxidation of a cyclic siloxane, Atmos. Chem. Phys., 19, 1649–1664, https://doi.org/10.5194/acp-19-1649-2019, 2019.
Jokinen, T., Berndt, T., Makkonen, R., Kerminen, V., Junninen, H., Paasonen,
P., Stratmann, F., Herrmann, H., Guenther, A., Worsnop, D., Kulmala, M.,
Ehn, M., and Sipilä, M.: Production of Extremely Low Volatile Organic
Compounds from Biogenic Emissions: Measured Yields and Atmospheric
Implications, P. Natl. Acad. Sci. USA, 112, 7123–7128,
https://doi.org/10.1073/pnas.1423977112, 2015.
Kierkegaard, A. and McLachlan, M.: Determination of Linear and Cyclic
Volatile Methylsiloxanes in Air at a Regional Background Site in Sweden,
Atmos. Environ., 80, 322–329,
https://doi.org/10.1016/j.atmosenv.2013.08.001, 2013.
Kim, J. and Xu, S.: Quantitative Structure-Reactivity Relationships of
Hydroxyl Radical Rate Constants for Linear and Cyclic Volatile
Methylsiloxanes, Environ. Toxicol. Chem., 36, 3240–3245,
https://doi.org/10.1002/etc.3914, 2017.
Kim, J., Mackay, D., and Whelan, M.: Predicted Persistence and Response
Times of Linear and Cyclic Volatile Methylsiloxanes in Global and Local
Environments, Chemosphere, 195, 325–335,
https://doi.org/10.1016/j.chemosphere.2017.12.071, 2018.
Krogseth, I., Zhang, X., Lei, Y., Wania, F., and Breivik, K.: Calibration
and Application of a Passive Air Sampler (XAD-PAS) for Volatile Methyl
Siloxanes, Environ. Sci. Technol., 47, 4463–4470,
https://doi.org/10.1021/es400427h, 2013a.
Krogseth, I., Kierkegaard, A., McLachlan, M., Breivik, K., Hansen, K., and
Schlabach, M.: Occurrence and Seasonality of Cyclic Volatile Methyl
Siloxanes in Arctic Air, Environ. Sci. Technol., 47, 502–509,
https://doi.org/10.1021/es3040208, 2013b.
Lambe, A. T., Ahern, A. T., Williams, L. R., Slowik, J. G., Wong, J. P. S., Abbatt, J. P. D., Brune, W. H., Ng, N. L., Wright, J. P., Croasdale, D. R., Worsnop, D. R., Davidovits, P., and Onasch, T. B.: Characterization of aerosol photooxidation flow reactors: heterogeneous oxidation, secondary organic aerosol formation and cloud condensation nuclei activity measurements, Atmos. Meas. Tech., 4, 445–461, https://doi.org/10.5194/amt-4-445-2011, 2011.
Lambe, A. T., Chhabra, P. S., Onasch, T. B., Brune, W. H., Hunter, J. F., Kroll, J. H., Cummings, M. J., Brogan, J. F., Parmar, Y., Worsnop, D. R., Kolb, C. E., and Davidovits, P.: Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield, Atmos. Chem. Phys., 15, 3063–3075, https://doi.org/10.5194/acp-15-3063-2015, 2015.
Lambe, A., Massoli, P., Zhang, X., Canagaratna, M., Nowak, J., Daube, C., Yan, C., Nie, W., Onasch, T., Jayne, J., Kolb, C., Davidovits, P., Worsnop, D., and Brune, W.: Controlled nitric oxide production via O(1D) + N2O reactions for use in oxidation flow reactor studies, Atmos. Meas. Tech., 10, 2283–2298, https://doi.org/10.5194/amt-10-2283-2017, 2017.
Lamkaddam, H., Gratien, A., Pangui, E., Cazaunau, M., Varrault, B., and
Doussin, J.: High-NOx Photooxidation of n-Dodecane: Temperature
Dependence of SOA Formation, Environ. Sci. Technol., 51, 192–201,
https://doi.org/10.1021/acs.est.6b03821, 2017.
Lee, A. K. Y., Hayden, K. L., Herckes, P., Leaitch, W. R., Liggio, J., Macdonald, A. M., and Abbatt, J. P. D.: Characterization of aerosol and cloud water at a mountain site during WACS 2010: secondary organic aerosol formation through oxidative cloud processing, Atmos. Chem. Phys., 12, 7103–7116, https://doi.org/10.5194/acp-12-7103-2012, 2012.
Li, K., Liggio, J., Lee, P., Han, C., Liu, Q., and Li, S.-M.: Secondary organic aerosol formation from α-pinene, alkanes, and oil-sands-related precursors in a new oxidation flow reactor, Atmos. Chem. Phys., 19, 9715–9731, https://doi.org/10.5194/acp-19-9715-2019, 2019a.
Li, K., Liggio, J., Han, C., Liu, Q., Moussa, S., Lee, P., and Li, S.-M.:
Understanding the Impact of High-NOx Conditions on the Formation of
Secondary Organic Aerosol in the Photooxidation of Oil Sand-Related
Precursors, Environ. Sci. Technol., 53, 14420–14429,
https://doi.org/10.1021/acs.est.9b05404, 2019b.
Li, Q., Lan, Y., Liu, Z., Wang, X., Wang, X., Hu, J., and Geng, H.: Cyclic
Volatile Methylsiloxanes (cVMSs) in the Air of the Wastewater Treatment
Plants in Dalian, China-Levels, Emissions, and Trends, Chemosphere, 256,
1–8, https://doi.org/10.1016/j.chemosphere.2020.127064, 2020.
Li, S.-M. and Winchester, J.: Particle Size Distribution and Chemistry of
Late Winter Arctic Aerosols, J. Geophys. Res., 95, 13897–13908,
https://doi.org/10.1029/JD095iD09p13897, 1990.
Li, S.-M. and Winchester, J.: Aerosol Silicon and Associated Elements in the
Arctic High and Mid-Troposphere, Atmos. Environ., 27, 2907–2912,
https://doi.org/10.1016/0960-1686(93)90322-P, 1993.
Liggio, J., Li, S.-M., Hayden, K., Taha, Y., Stroud, C., Darlington, A.,
Drollette, B., Gordon, M., Lee, P., Liu, P., Leithead, A., Moussa, S., Wang,
D., Brien, J., Mittermeier, R., Brook, J., Lu, G., Staebler, R., Han, Y.,
Tokarek, T., Osthoff, H., Makar, P., Zhang, J., Plata, D., and Gentner, D.:
Oil Sands Operations as a Large Source of Secondary Organic Aerosols,
Nature, 534, 91–94, https://doi.org/10.1038/nature17646, 2016.
Liu, N., Xu, L., and Cai, Y.: Methyl Siloxanes in Barbershops and Residence
Indoor Dust and the Implication for Human Exposures, Sci. Total. Environ.,
618, 1324–1330,
https://doi.org/10.1016/j.scitotenv.2017.09.250, 2018.
Mao, J., Ren, X., Brune, W. H., Olson, J. R., Crawford, J. H., Fried, A., Huey, L. G., Cohen, R. C., Heikes, B., Singh, H. B., Blake, D. R., Sachse, G. W., Diskin, G. S., Hall, S. R., and Shetter, R. E.: Airborne measurement of OH reactivity during INTEX-B, Atmos. Chem. Phys., 9, 163–173, https://doi.org/10.5194/acp-9-163-2009, 2009.
McFiggans, G., Mentel, T., Wildt, J., Pullinen, I., Kang, S., Kleist, E.,
Schmitt, S., Springer, M., Tillmann, R., Wu, C., Zhao, D., Hallquist, M.,
Faxon, C., Breton, M., Hallquist, A., Simpson, D., Bergström, R.,
Jenkin, M., Ehn, M., Thornton, J., Alfarra, M., Bannan, T., Percival, C.,
Priestley, M., Topping, D., and Scharr, A.: Secondary Organic Aerosol
Reduced by Mixture of Atmospheric Vapours, Nature, 565, 587–593,
https://doi.org/10.1038/s41586-018-0871-y, 2019.
Milani, A., Al-Naiema, I., and Stone, E.: Detection of a Secondary Organic
Aerosol Tracer Derived from Personal Care Products, Atmos. Environ., 246, 118078, https://doi.org/10.1016/j.atmosenv.2020.118078, 2021.
Ng, N. L., Kroll, J. H., Chan, A. W. H., Chhabra, P. S., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol formation from m-xylene, toluene, and benzene, Atmos. Chem. Phys., 7, 3909–3922, https://doi.org/10.5194/acp-7-3909-2007, 2007a.
Ng, N. L., Chhabra, P. S., Chan, A. W. H., Surratt, J. D., Kroll, J. H., Kwan, A. J., McCabe, D. C., Wennberg, P. O., Sorooshian, A., Murphy, S. M., Dalleska, N. F., Flagan, R. C., and Seinfeld, J. H.: Effect of NOx level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes, Atmos. Chem. Phys., 7, 5159–5174, https://doi.org/10.5194/acp-7-5159-2007, 2007b.
Ng, N., Canagaratna, M., Zhang, Q., Jimenez, J., Tian, J., Ulbrich, I.,
Kroll, J., Docherty, K., Chhabra, P., Bahreini, R., Murphy, S., Seinfeld,
J., Hildebrandt, L., Donahue, N., DeCarlo, P., Lanz, V., Prévôt, A.,
Dinar, E., Rudich, Y., and Worsnop, D.: Organic Aerosol Components Observed
in Northern Hemispheric Datasets from Aerosol Mass Spectrometry, Atmos.
Chem. Phys., 10, 4625–4641,
https://doi.org/10.5194/acp-10-4625-2010, 2010.
Peng, Z., Palm, B., Day, D., Talukdar, R., Hu, W., Lambe, A., Brune, W., and
Jimenez, J.: Model Evaluation of New Techniques for Maintaining High-NO
Conditions in Oxidation Flow Reactors for the Study of OH-Initiated
Atmospheric Chemistry, ACS. Earth. Space. Chem., 2, 72–86,
https://doi.org/10.1021/acsearthspacechem.7b00070, 2018.
Peng, Z., Lee-Taylor, J., Orlando, J. J., Tyndall, G. S., and Jimenez, J. L.: Organic peroxy radical chemistry in oxidation flow reactors and environmental chambers and their atmospheric relevance, Atmos. Chem. Phys., 19, 813–834, https://doi.org/10.5194/acp-19-813-2019, 2019.
Pennington, E. A., Seltzer, K. M., Murphy, B. N., Qin, M., Seinfeld, J. H., and Pye, H. O. T.: Modeling secondary organic aerosol formation from volatile chemical products, Atmos. Chem. Phys., 21, 18247–18261, https://doi.org/10.5194/acp-21-18247-2021, 2021.
Phares, D., Rhoads, K., Johnston, M., and Wexler, A.: Size-Resolved
Ultrafine Particle Composition Analysis 2. Houston, J. Geophys. Res., 108,
1–14, https://doi.org/10.1029/2001jd001212, 2003.
Presto, A., Hartz, K., and Donahue, N.: Secondary Organic Aerosol Production
from Terpene Ozonolysis. 2. Effect of NOx Concentration, Environ. Sci.
Technol., 39, 7046–7054, https://doi.org/10.1021/es050400s,
2005.
Rauert, C., Shoieb, M., Schuster, J., Eng, A., and Harner, T.: Atmospheric
Concentrations and Trends of Poly- and Perfluoroalkyl Substances (PFAS) and
Volatile Methyl Siloxanes (VMS) over 7 Years of Sampling in the Global
Atmospheric Passive Sampling (GAPS) Network, Environ. Pollut., 238, 94–102,
https://doi.org/10.1016/j.envpol.2018.03.017, 2018.
Rhoads, K., Phares, D., Wexler, A., and Johnston, M.: Size-Resolved Ultrafine
Particle Composition Analysis 1. Atlanta, J. Geophys. Res., 108, 1–13,
https://doi.org/10.1029/2001jd001211, 2003.
Riipinen, I., Juuti, T., Pierce, J., Petäjä, T., Worsnop, D.,
Kulmala, M., and Donahue, N.: The Contribution of Organics to Atmospheric
Nanoparticle Growth, Nat. Geosci., 5, 453–458,
https://doi.org/10.1038/ngeo1499, 2012.
Rücker, C. and Kümmerer, K.: Environmental Chemistry of
Organosiloxanes, Chem. Rev., 115, 466–524,
https://doi.org/10.1021/cr500319v, 2015.
Safron, A., Strandell, M., Kierkegaard, A., and Macleod, M.: Rate Constants
and Activation Energies for Gas-Phase Reactions of Three Cyclic Volatile
Methyl Siloxanes with the Hydroxyl Radical, Int. J. Chem. Kinet., 47,
420–428, https://doi.org/10.1002/kin.20919, 2015.
Sakurai, T., Imaizumi, Y., Kuroda, K., Hayashi, T., and Suzuki, N.:
Georeferenced multimedia environmental fate of volatile methylsiloxanes
modeled in the populous Tokyo Bay catchment basin, Sci. Total Environ., 689,
843–853, https://doi.org/10.1016/j.scitotenv.2019.06.462, 2019.
Sarrafzadeh, M., Wildt, J., Pullinen, I., Springer, M., Kleist, E., Tillmann, R., Schmitt, S. H., Wu, C., Mentel, T. F., Zhao, D., Hastie, D. R., and Kiendler-Scharr, A.: Impact of NOx and OH on secondary organic aerosol formation from β-pinene photooxidation, Atmos. Chem. Phys., 16, 11237–11248, https://doi.org/10.5194/acp-16-11237-2016, 2016.
Simonen, P., Saukko, E., Karjalainen, P., Timonen, H., Bloss, M., Aakko-Saksa, P., Rönkkö, T., Keskinen, J., and Dal Maso, M.: A new oxidation flow reactor for measuring secondary aerosol formation of rapidly changing emission sources, Atmos. Meas. Tech., 10, 1519–1537, https://doi.org/10.5194/amt-10-1519-2017, 2017.
Sommerlade, R., Parlar, H., Wrobel, D., and Kochs, P.: Product Analysis and
Kinetics of the Gas-Phase Reactions of Selected Organosilicon Compounds with
OH Radicals Using a Smog Chamber-Mass Spectrometer System, Environ. Sci.
Technol., 27, 2435–2440, https://doi.org/10.1021/es00048a019,
1993.
Tang, X., Misztal, P., Nazaroff, W., and Goldstein, A.: Siloxanes Are the
Most Abundant Volatile Organic Compound Emitted from Engineering Students in
a Classroom, Environ. Sci. Technol. Lett., 2, 303–307,
https://doi.org/10.1021/acs.estlett.5b00256, 2015.
Tkacik, D., Lambe, A., Jathar, S., Li, X., Presto, A., Zhao, Y., Blake, D.,
Meinardi, S., Jayne, J., Croteau, P., and Robinson, A.: Secondary Organic
Aerosol Formation from in-Use Motor Vehicle Emissions Using a Potential
Aerosol Mass Reactor, Environ. Sci. Technol., 48, 11235–11242,
https://doi.org/10.1021/es502239v, 2014.
Wang, D.-G., Norwood, W., Alaee, M., Byer, J., and Brimble, S.: Review of
Recent Advances in Research on the Toxicity, Detection, Occurrence and Fate
of Cyclic Volatile Methyl Siloxanes in the Environment, Chemosphere, 93,
711–725, https://doi.org/10.1016/j.chemosphere.2012.10.041,
2013.
Wang, X., Lee, S., Sheng, G., Chan, L., Fu, J., Li, X., Min, Y., and Chan,
C.: Cyclic organosilicon compounds in ambient air in Guangzhou, Macau and
Nanhai, Pearl River Delta, Appl. Geochemistry, 16, 1447–1454,
https://doi.org/10.1016/S0883-2927(01)00044-0, 2001.
Wang, X., Schuster, J., Jones, K. C., and Gong, P.: Occurrence and spatial distribution of neutral perfluoroalkyl substances and cyclic volatile methylsiloxanes in the atmosphere of the Tibetan Plateau, Atmos. Chem. Phys., 18, 8745–8755, https://doi.org/10.5194/acp-18-8745-2018, 2018.
Wildt, J., Mentel, T. F., Kiendler-Scharr, A., Hoffmann, T., Andres, S., Ehn, M., Kleist, E., Müsgen, P., Rohrer, F., Rudich, Y., Springer, M., Tillmann, R., and Wahner, A.: Suppression of new particle formation from monoterpene oxidation by NOx, Atmos. Chem. Phys., 14, 2789–2804, https://doi.org/10.5194/acp-14-2789-2014, 2014.
Wu, Y. and Johnston, M.: Molecular Characterization of Secondary Aerosol
from Oxidation of Cyclic Methylsiloxanes, J. Am. Soc. Mass Spectrom., 27,
402–409, https://doi.org/10.1007/s13361-015-1300-1, 2016.
Wu, Y. and Johnston, M.: Aerosol Formation from OH Oxidation of the Volatile
Cyclic Methyl Siloxane (cVMS) Decamethylcyclopentasiloxane, Environ. Sci.
Technol., 51, 4445–4451,
https://doi.org/10.1021/acs.est.7b00655, 2017.
Xiao, R., Zammit, I., Wei, Z., Hu, W.-P., MacLeod, M., and Spinney, R.:
Kinetics and Mechanism of the Oxidation of Cyclic Methylsiloxanes by
Hydroxyl Radical in the Gas Phase: An Experimental and Theoretical Study,
Environ. Sci. Technol., 49, 13322–13330,
https://doi.org/10.1021/acs.est.5b03744, 2015.
Xu, S., Warner, N., Nizzetto, P., Durham, J., and McNett, D.: Long-Range
Transport Potential and Atmospheric Persistence of Cyclic Volatile
Methylsiloxanes Based on Global Measurements, Chemosphere, 228, 460–468,
https://doi.org/10.1016/j.chemosphere.2019.04.130, 2019.
Zhao, D., Schmitt, S. H., Wang, M., Acir, I.-H., Tillmann, R., Tan, Z., Novelli, A., Fuchs, H., Pullinen, I., Wegener, R., Rohrer, F., Wildt, J., Kiendler-Scharr, A., Wahner, A., and Mentel, T. F.: Effects of NOx and SO2 on the secondary organic aerosol formation from photooxidation of α-pinene and limonene, Atmos. Chem. Phys., 18, 1611–1628, https://doi.org/10.5194/acp-18-1611-2018, 2018.
Zhou, C., Jang, M., and Yu, Z.: Simulation of SOA formation from the photooxidation of monoalkylbenzenes in the presence of aqueous aerosols containing electrolytes under various NOx levels, Atmos. Chem. Phys., 19, 5719–5735, https://doi.org/10.5194/acp-19-5719-2019, 2019.
Short summary
We presented yields and compositions of Si-containing SOAs generated from the reaction of cVMSs (D3–D6) with OH radicals. NOx played a negative role in cVMS SOA formation, while ammonium sulfate seeds enhanced D3–D5 SOA yields at short photochemical ages under high-NOx conditions. The aerosol mass spectra confirmed that the components of cVMS SOAs significantly relied on OH exposure. A global cVMS-derived SOA source strength was estimated in order to understand SOA formation potentials of cVMSs.
We presented yields and compositions of Si-containing SOAs generated from the reaction of cVMSs...
Altmetrics
Final-revised paper
Preprint