

Supplement of

Secondary organic aerosols from OH oxidation of cyclic volatile methyl siloxanes as an important Si source in the atmosphere

Chong Han et al.

Correspondence to: Shao-Meng Li (shaomeng.li@pku.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

Text S1. Si/O and Si/C ratios of C_xH_yO_zSi_n in D5 and D6 SOAs

The calculation processes of the Si/O and Si/C ratios at each PA are shown as follows:

(1) The normalized peak intensity of $C_xH_yO_zSi_n$ ($C_{x1}H_{y1}O_{z1}Si_{n1}$, $C_{x2}H_{y2}O_{z2}Si_{n2}$... $C_{xi}H_{yi}O_{zi}Si_{ni}$) is obtained from the HR-ToF-AMS, which is named as $A_1, A_2...A_i$, respectively.

(2) The fraction of each $C_xH_yO_zSi_n$ ion $(F_1, F_2, F_3...F_i)$ is calculated by Equation S1,

$$F_i = A_i / \text{SUM}(A_1, A_2, A_3...A_i)$$
 (S1)

(3) The Si/O and Si/C ratio of C_xH_yO_zSi_n ions at each equivalent day are calculated by Equation S2-S6,

$$m_{\rm Si} = \rm{SUM}(F_i \times n_i \times M_{\rm Si} / M_{\rm C_{xi}H_{yi}O_{zi}Si_{ni}})$$
(S2)

$$m_{\rm O} = \rm{SUM}(F_i \times z_i \times M_O / M_{C_{xi}H_{yi}O_{zi}Si_{ni}})$$
(S3)

$$m_{\rm C} = {\rm SUM}(F_{\rm i} \times {\rm x}_{\rm i} \times {\rm M}_{\rm C} / {\rm M}_{{\rm C}_{\rm xi};{\rm H}_{\rm vi}{\rm O}_{\rm zi}{\rm Si}_{\rm ni}})$$
(S4)

$$n/z = \frac{\frac{m_{\rm Si}}{M_{\rm Si}}}{\frac{m_{\rm O}}{M_{\rm O}}}$$
(S5)

$$n/x = \frac{\frac{m_{\rm Si}}{M_{\rm Si}}}{\frac{m_{\rm C}}{M_{\rm C}}}$$
(S6)

where M is the molar mass of one specific element (Si, O, C and H) or $C_xH_yO_zSi_n$ ions; *m* is the total mass of Si, O or C in all $C_xH_yO_zSi_n$ ions. For the calculation results, there may be some uncertainties due to the assignments of peaks in the HR-ToF-AMS and the fragmentation processes of the AMS ionization (Aiken et al., 2007).

Figure S1. Details of experimental setup

Figure S2. The AMS time series of D5 SOAs in low-NO_x experiments under unseeded conditions. The numbers represent the equivalent photochemical age, and the inset is an enlarged view at 10.2 and 12.9 PA.

Figure S3. Number and mass size distributions of D5 SOAs measured by SMPS under (a) low-NO_x

(PA=2.0, 6.9 and 14.2 days) and (\mathbf{b}) high-NO_x (PA=1.7, 3.4 and 6.9 days) conditions.

Figure S4. The relationship between SOA yields and mass concentration for cVMSs in low-NO_x

experiments.

Figure S5. Comparison of low-NO_x (black) and high-NO_x (red) SOA yields for cVMSs (a-d) for unseeded

(square symbols) and seeded (circular symbols) experiments.

Figure S6. SOA yield enhancement ratio (Y_{seeded}/Y_{unseeded}) in the presence of seed particles. (a) Low-NO_x

experiments; (b) high-NO_x experiments. The dotted lines represent $Y_{seeded}/Y_{unseeded}=1$.

Figure S7. HR-ToF-AMS mass spectra of D4 (a) and D5 (b) in high m/z range at OH exposure of 9.0 \times

 10^{11} molecules cm⁻³ s (i.e., OH concentration of 7.5×10^9 molecules cm⁻³) under low-NO_x conditions in

unseeded experiments.

Figure S8. The weighted average values of Si/C (n/x) and Si/O (n/z) ratios for CxHyOzSin groups in SOAs

derived from the oxidation of D5 (a) and D6 (b) by OH radicals at different photochemical ages under

low-NO_x and unseeded conditions.

Figure S9. HR-ToF-AMS mass spectra of cVMS SOAs at OH exposure of 9.0×10^{11} molecules cm⁻³ s (i.e., OH concentration of 7.5×10^9 molecules cm⁻³) under high-NO_x conditions in unseeded experiments. (**a-d**)

represent data of D3-D6, respectively.

Figure S10. Fraction of C_x, C_xH_y, C_xH_yO₁, C_xH_yO_{>1} and C_xH_yO_zSi_n groups for SOAs derived from the oxidation of cVMSs (a-d) by OH radicals at different photochemical ages under high-NO_x conditions.
 Empty and solid triangles represent experimental data under unseeded and seeded conditions, respectively.

Figure S11. The weighted average values of Si/C (n/x) and Si/O (n/z) ratios for CxHyOzSin groups in SOAs

derived from the oxidation of D5 (a) and D6 (b) by OH radicals at different photochemical ages under

high-NO_x and unseeded conditions.

Name and Abbreviation	Formula	Structure
Hexamethylcyclotrisiloxane (D3)	C ₆ H ₁₈ O ₃ Si ₃	$H_{3}C$ CH_{3} CH_{3} $H_{3}C$ $H_{3}C$ CH_{3} C
Octamethylcyclotetrasiloxane (D4)	C ₈ H ₂₄ O ₄ Si ₄	$H_{3}C$ $H_{3}C$ $H_{3}C$ G
Decamethylcyclopentasiloxane (D5)	C ₁₀ H ₃₀ O ₅ Si ₅	$\begin{array}{c} H_{3}C \\ H_{3}$
Dodecamethylcyclohexasiloxane (D6)	C ₁₂ H ₃₆ O ₆ Si ₆	$H_{3C} \xrightarrow{H_{3}C} O \xrightarrow{CH_{3}} O \xrightarrow{H_{3}C} O \xrightarrow{Si} O \xrightarrow{CH_{3}} O \xrightarrow{CH_{3}} O \xrightarrow{H_{3}C} O \xrightarrow{CH_{3}} O \xrightarrow$

Table S1. Formula and structures of cyclic volatile methyl siloxanes

	Low-NO _x exp	eriment (ppb)	High-NO _x experiment (ppb)			
C V IVISS	unseeded	seeded	unseeded	seeded		
[D3] _i	19.91	20.06	41.20	42.90		
[D3] _o	3.28	3.14	13.03	14.76		
[D4] _i	30.89	29.83	27.05	28.56		
[D4] _o	4.87	4.51	5.95	7.08		
[D5] _i	21.51	28.45	38.50	35.99		
[D5] _o	0	0.12	7.31	7.39		
[D6] _i	24.40	27.08	26.92	28.67		
[D6] _o	1.23	1.16	5.73	6.03		

Table S2. The concentration of cVMSs at the reactor inlet and outlet.

Note: 'i' and 'o' means the reactor inlet and outlet, respectively; the OH exposure is 1.85×10^{12} and

 1.10×10^{12} molecules cm⁻³ s in low and high-NO_x experiments, respectively.

Table S3. Background	data of SMPS at differ	ent OH exposures in	low and high-NO _x e	xperiments without

cVMSs.

-

L	ow-NO _x experime	ents	High-NO _x experiments						
ОН			ОН						
exposure	Equivalent	Deckaround	exposure	Equivalent	Background	Background			
(×10 ¹²	photochemical	(ug/m ³)	(×10 ¹²	photochemical	(µg/m ³)-	(µg/m ³)-			
molecules	age (days)	(µg/m)	molecules	age (days)	unseeded	seeded			
cm ⁻³ s)			cm ⁻³ s)						
0.05	0.42	0.51	0.08	0.63	0.15	2.74			
0.14	1.10	1.55	0.22	1.71	0.33	5.37			
0.26	2.00	2.01	0.34	2.64	0.32	6.84			
0.35	2.67	2.38	0.45	3.45	0.39	7.44			
0.43	3.28	2.25	0.61	4.69	0.37	10.91			
0.50	3.86	2.70	0.82	6.36	0.58	12.34			
0.60	4.66	3.50	0.90	6.94	0.41	12.21			
0.69	5.30	3.73	1.10	8.46	0.98	13.61			
0.90	6.95	3.86							
1.16	8.96	5.19							
1.32	10.15	6.17							
1.67	12.88	7.24							
1.85	14.24	7.81							

Table S4. The mass concentrations of D5 SOAs on the basis of effective aerosol density and average SMPS data in the last 10 minutes at different OH exposures under unseeded conditions in low-NO_x

OH exposure	Equivalent photochemical age	Low-NO _x -unseeded-D5 SOAs
$(\times 10^{12} \text{ molecules cm}^{-3} \text{ s})$	(days)	$(\mu g/m^3)$
0.05	0.42	0.53
0.14	1.10	2.00
0.26	2.00	9.75
0.35	2.67	18.53
0.43	3.28	28.16
0.50	3.86	53.41
0.60	4.66	75.06
0.69	5.30	106.82
0.90	6.95	185.58
1.16	8.96	250.11
1.32	10.15	277.23
1.67	12.88	309.12
1.85	14.24	299.15

experiments.	

	D5 SOA yield	Reactor	D5 concentration (ppbv)	SOA concentration (µg m ⁻³)	Determination of OH concentration	Determination of reacted precursor	OH concentration (molecules cm ⁻³)	OH exposure (molecules cm ⁻³ s)	Global average OH concentration (molecules cm ⁻³)	Equivalent days	RH (%)	T (°C)
Wu (2017)	0.08-0.16	photo- oxidation chamber (PC) (50 L)	5.4-13.3	1.2-12	SO ₂ -OH	Calculation from the OH mixing ratio	10 ⁸	9×10 ¹⁰	_	_	8- 10	27
	0.22		33.14	107.1		Calidada a		1.6×10 ¹²		12.4		
Ion o sh alt	0.24	PAM OFR	24.67	84		Solid-phase		2.3×10 ¹²		17.4	25	
(2010)	0.24	chamber (13.3	19.13	68.4	SO ₂ -OH	(SDE)		2.7×10^{12}	1.5×10^{6}	20.8		24
(2019)	0.3	L)	48.80	219.7		(SFL)		4.8×10 ¹²		37.1	15	
	0.5		24.72	180.7		cartridges		5.1×10 ¹²		39.5	43	
Charan	0.015 ± 0.015		497±5		Calculated by		4.5×10^{6}	9×10 ¹⁰				26.6
(2022)	$0.057{\pm}0.08$		298±3		fitting the		3.8×10 ⁶	8×10 ¹⁰				26.5
Experiments	0±0.003	Chamber (19	30±1		gas-phase D5	Gas	2.2×10^{6}	6×10 ¹⁰			<5	27.6
1-4: low- NO _x and seeded)	0.026±0.04	m ³)	580±5		concentration to a first-order exponential	chromatograph	1.6×10 ⁶	3×10 ¹⁰				17.7
Charan	0.018 ± 0.002		262±10				2.3×10 ⁸	1.5×10 ¹¹			3	23.0
(2022)	0.06 ± 0.006	Dhotoovidation	262±10				5.0×10 ⁸	3.3×10 ¹¹			4	23.0
Experiments	0.046 ± 0.004	Flow Tubo	262±10		SO: 01	Gas	2.3×10 ⁸	1.5×10 ¹¹			3	23.0
10-15: low-	0.14 ± 0.01	(CPOT) (4.88	262±10		50 ₂ -0H	chromatograph	1.2×10 ⁹	7.8×10 ¹¹			10	23.0
NO_x and	0.24±0.02		262±10				1.5×10 ⁹	1.0×10^{12}			16	23.0
unseeded)	0.35±0.02		262±10				1.6×10 ⁹	1.1×10^{12}			33	23.0
This study	0.02 ± 0.02	ECCC-OFR	18-26	0.5	MeOH-OH	PTR-MS	4.6×10^{8}	5.5×10^{10}	1.5×10^{6}	0.4	35	21±1

Table S5. Comparison of experimental results and conditions for D5 SOAs in this study with those in other literatures

(Low-NO _x	0.02±0.01	(16 L)		1.8			1.2×10 ⁹	1.4×10 ¹¹		1.1	±2	
and	0.11 ± 0.01			16.9			2.9×10 ⁹	3.5×10 ¹¹		2.7		
unseeded)	0.27±0.03			48.9			4.2×10 ⁹	5.0×10 ¹¹		3.9		
	0.35±0.02			68.7			5.0×10 ⁹	6.0×10 ¹¹		4.7		
	0.46±0.03			97.7			5.7×10 ⁹	6.9×10 ¹¹		5.3		
	0.61±0.03			169.7			7.5×10 ⁹	9.0×10 ¹¹		7.0		
	$0.70{\pm}0.03$			228.8			9.7×10 ⁹	1.2×10^{12}		9.0		
	$0.75 {\pm} 0.03$			253.6			1.1×10^{10}	1.3×10 ¹²		10.2		
	$0.79{\pm}0.03$			282.7			1.4×10^{10}	1.7×10^{12}		12.9		
	$0.80{\pm}0.03$			273.6			1.5×10^{10}	1.9×10^{12}		14.2		
This study	$0.02{\pm}0.01$	ECCC OEP		0.8			4.6×10^{8}	5.5×10 ¹⁰		0.4	25	
(Low-NO _x	0.01 ± 0.004	(16 I.)	27-30	20	MeOH-OH	PTR-MS	1.2×10^{9}	1.4×10^{11}	1.5×10^{6}	1 1	+2	21±1
and seeded)	0.01 ± 0.004	(10 L)		2.0			1.2~10*	1.4^10**		1.1	12	

Table S6. Details about sites and concentrations of cVMS SOAs. The concentrations of cVMS SOAs were calculated on the basis of the cVMS concentrations reported from multiple

Site #	Site Name	Country	Site Type	D3 (ng/m ³)	D3 SOAs (ng/m ³)	D4 (ng/m ³)	D4 SOAs (ng/m ³)	D5 (ng/m ³)	D5 SOAs (ng/m ³)	D6 (ng/m³)	D6 SOAs (ng/m ³)	Total SOAs (ng/m ³)	References
1	Ny Alesund	Norway	РО	17	0.58	67	0.73	25	0.56	3.8	0.01	1.88	(Carryaldi at
2	Alert, NU	Canada	РО	13	0.44	72	0.79	26	0.59	39	0.15	1.97	
3	Barrow, AK	USA	РО	1.4	0.05	14	0.15	7.5	0.17	1.1	0.00	0.37	al., 2011;
4	Little Fox Lake, YK	Canada	BA	21	0.72	131	1.43	81	1.83	10	0.04	4.02	Rauert et al., 2018)
5	West Branch, IA	USA	BA			14	0.15	29	0.65	2.3	0.01	0.81	(Yucuis et al., 2013)
6	Point Reyes, CA	USA	BA	16	0.54	66	0.72	35	0.79	3.7	0.01	2.06	
7	Hilo, HI	USA	BA	32	1.09	145	1.59	143	3.23	17	0.06	5.97	(Genualdi et
8	Bratt's Lake, SK	Canada	BA	17	0.58	100	1.09	44	0.99	5.3	0.02	2.68	al., 2011; Rauert et al.,
9	Whistler, BC	Canada	BA	117	3.98	45	0.49	10	0.23	1.5	0.01	4.71	2018)
10	Fraserdale, ON	Canada	BA	15	0.51	53	0.58	16	0.36	2.8	0.01	1.46	

literatures and SOA yields measured in this work. Here, the chosen concentrations of cVMSs were maximum that have been reported in each site.

11	Ucluelet, BC	Canada	BA	81	2.76	121	1.32	31	0.70	3.5	0.01	4.79	
12	Sable Island, NS	Canada	BA	14	0.48	54	0.59	33	0.74	5.6	0.02	1.83	(Rauert et al., 2018)
13	Mount Revelstoke, BC	Canada	BA	2.4	0.08	30	0.33	33	0.74	9.1	0.03	1.18	
14	Tudor Hill	Bermuda	BA	8	0.27	76	0.83	56	1.26	66	0.25	2.61	(Genualdi et
15	Storhofdi	Iceland	BA	3.5	0.12	14	0.15	13	0.29	1.5	0.01	0.57	al., 2011;
16	Malin Head	Ireland	BA	11	0.37	21	0.23	32	0.72	7.4	0.03	1.35	Rauert et al.,
17	Kosetice	Czech Republic	BA	25	0.85	61	0.67	297	6.70	169	0.64	8.86	2018)
18	Cape Grim	Australia	BA	8.8	0.30	59	0.65	13	0.29	2.4	0.01	1.25	
19	Tibetan Plateau	China	BA	71.1	2.42	96.6	1.06	145.6	3.29	2.9	0.01	6.78	(Wang et al., 2018)
20	Toronto, ON	Canada	UR	18	0.05	77	0.02	247	0.72	22	0.00	0.79	(Krogseth et al., 2013; Ahrens et al., 2014)
21	Chicago, IL	USA	UR			190	0.04	1100	3.19	50	0.00	3.23	(Yucuis et al., 2013)

22	Cedar Rapids, IA	USA	UR			37	0.01	65	0.19	9.3	0.00	0.2	(Yucuis et al., 2013)
23	Sydney, FL	USA	UR	10	0.03	76	0.02	93	0.27	6.6	0.00	0.32	(Genualdi et
													al., 2011;
24	Groton, CT	USA	UR	16	0.05	68	0.01	96	0.28	12	0.00	0.34	Rauert et al.,
													2018)
25	Boulder CO	USA	ΠR					65	0.19			0.19	(Coggon et
23	Bouldel, CO	USA	ÖK					05	0.17			0.19	al., 2018)
26	Zurich	Switzerland	UR					650	1 89	79	0.00	1 89	(Buser et al.,
20	Zurien	Switzenand	OK					050	1.07		0.00	1.09	2013)
27	Catalan	Spain	UR	1166	3 38	676	0.15	1942	5 63	68	0.00	916	(Gallego et
27	Catalan	Spann	ÖK	1100	5.50	070	0.15	1712	5.05	00	0.00	5.10	al., 2017)
													(Genualdi et
28	Paris	France	UR	30	0.09	50	0.01	280	0.81	53	0.00	0.91	al., 2011;
20	1 0115	Tunee	ÖK	50	0.09	50	0.01	200	0.01	55	0.00	0.91	Rauert et al.,
													2018)
29	Vantai	China	UR			22	0.00	38	0.11			0.11	(Xu et al.,
	Tuntur	China	ÖK			22	0.00	50	0.11			0.11	2012)
30	Guanozhou	China	UR	11300	32.80	3300	0 72					33 52	(Wang et al.,
50	Sumgznou	China	ÖK	11500	52.00	5500	0.72					55.52	2001)

31	Macau	China	UR	5800	16.84	4300	0.93					17.77	(Wang et al., 2001)
32	Foshan	China	UR	2300	6.68	3500	0.76					7.44	(Wang et al., 2001)
33	Dalian	China	UR			1950	0.42	1440	4.18	990	0.00	4.6	(Li et al., 2020)
34	Kunming	China	UR			26	0.01	59	0.17	22	0.00	0.18	(Guo et al., 2019)
35	Lhasa	China	UR	44.8	0.13	54.6	0.01	464.6	1.35	1.3	0.00	1.49	(Wang et al., 2018)
36	Golmud	China	UR	26.8	0.08	48.6	0.01	208.1	0.60	2.8	0.00	0.69	(Wang et al., 2018)

Note: '----' means that the data was not obtained for this site; 'PO' means polar sites; 'BA' means background sites; 'UR' means urban sites.

	Low NO _x -unse	eded (14.2 d)	High NO _x -seeded (0.63 d)			
cVMSs	Initial concentration (C _{in-cVMSs} , μg m ⁻³)	Lost concentration $(\Delta C_{\rm cVMSs}, \mu g m^{-3})$	Initial concentration (C _{in-cVMSs} , μg m ⁻³)	Lost concentration $(\Delta C_{\rm cVMSs}, \mu g m^{-3})$		
D3	186.83	156.99	382.32	29.13		
D4	386.42	327.30	305.99	54.97		
D5	371.66	371.66	569.99	146.54		
D6	476.12	453.72	488.59	91.00		

Table S7. The values of $C_{\text{in-cVMSs}}$ and ΔC_{cVMSs} in Equation 4.

References

- Ahrens, L., Harner, T., and Shoeib, M.: Temporal Variations of Cyclic and Linear Volatile Methylsiloxanes in the Atmosphere Using Passive Samplers and High-Volume Air Samplers, Environ. Sci. Technol., 48, 9374-9381, <u>https://doi.org/10.1021/es502081j</u>, 2014.
- Aiken, A., Decarlo, P., and Jimenez, J.: Elemental Analysis of Organic Species with Electron Ionization High-Resolution Mass Spectrometry, Anal. Chem., 79, 8350-8358, <u>https://doi.org/10.1021/ac071150w</u>, 2007.
- Buser, A., Kierkegaard, A., Bogdal, C., MacLeod, M., Scheringer, M., and Hungerbühler, K.: Concentrations in Ambient Air and Emissions of Cyclic Volatile Methylsiloxanes in Zurich, Switzerland, Environ. Sci. Technol., 47, 7045-7051, <u>https://doi.org/10.1021/es3046586</u>, 2013.
- Charan, S., Huang, Y., Buenconsejo, R., Li, Q., Cocker Iii, D., and Seinfeld, J.: Secondary Organic Aerosol Formation from the Oxidation of Decamethylcyclopentasiloxane at Atmospherically Relevant OH Concentrations, Atmos. Chem. Phys., 22, 917-928, <u>https://doi.org/10.5194/acp-22-917-2022</u>, 2022.
- Coggon, M., McDonald, B., Vlasenko, A., Veres, P., Bernard, F., Koss, A., Yuan, B., Gilman, J., Peischl, J., Aikin, K., DuRant, J., Warneke, C., Li, S.-M., and Gouw, J.: Diurnal Variability and Emission Pattern of Decamethylcyclopentasiloxane (D5) from the Application of Personal Care Products in Two North American Cities, Environ. Sci. Technol., 52, 5610-5618, https://doi.org/10.1021/acs.est.8b00506, 2018.

- Gallego, E., Perales, J., Roca, F., Guardino, X., and Gadea, E.: Volatile Methyl Siloxanes (VMS) Concentrations in Outdoor Air of Several Catalan Urban Areas, Atmos. Environ., 155, 108-118, <u>http://dx.doi.org/10.1016/j.atmosenv.2017.02.013</u>, 2017.
- Genualdi, S., Harner, T., Cheng, Y., Macleod, M., Hansen, K., Egmond, R., Shoeib, M., and Lee, S.: Global Distribution of Linear and Cyclic Volatile Methyl Siloxanes in Air, Environ. Sci. Technol., 45, 3349-3354, <u>https://doi.org/10.1021/es200301j</u>, 2011.
- Guo, J., Zhou, Y., Cui, J., Zhang, B., and Zhang, J.: Assessment of Volatile Methylsiloxanes in Environmental Matrices and Human Plasma, Sci. Total. Environ., 668, 1175-1182, https://doi.org/10.1016/j.scitotenv.2019.03.092, 2019.
- Janechek, N., Marek, R., Bryngelson, N., Singh, A., Bullard, R., Brune, W., and Stanier, C.: Physical Properties of Secondary Photochemical Aerosol from OH Oxidation of a Cyclic Siloxane, Atmos. Chem. Phys., 19, 1649-1664, <u>https://doi.org/10.5194/acp-19-1649-2019</u>, 2019.
- Krogseth, I., Zhang, X., Lei, Y., Wania, F., and Breivik, K.: Calibration and Application of a Passive Air Sampler (XAD-PAS) for Volatile Methyl Siloxanes, Environ. Sci. Technol., 47, 4463-4470, https://doi.org/10.1021/es400427h, 2013.
- Li, Q., Lan, Y., Liu, Z., Wang, X., Wang, X., Hu, J., and Geng, H.: Cyclic Volatile Methylsiloxanes (cVMSs) in the Air of the Wastewater Treatment Plants in Dalian, China-Levels, Emissions, and Trends, Chemosphere, 256, 1-8, <u>https://doi.org/10.1016/j.chemosphere.2020.127064</u>, 2020.
- Rauert, C., Shoieb, M., Schuster, J., Eng, A., and Harner, T.: Atmospheric Concentrations and Trends of Poly- and Perfluoroalkyl Substances (PFAS) and Volatile Methyl Siloxanes (VMS) over 7 Years of Sampling in the Global Atmospheric Passive Sampling (GAPS) Network, Environ. Pollut., 238, 94-102, https://doi.org/10.1016/j.envpol.2018.03.017, 2018.
- Wang, X., Schuster, J., Jones, K., and Gong, P.: Occurrence and Spatial Distribution of Neutral Perfluoroalkyl Substances and Cyclic Volatile Methylsiloxanes in the Atmosphere of the Tibetan Plateau, Atmos. Chem. Phys., 18, 8745-8755, <u>https://doi.org/10.5194/acp-18-8745-2018</u>, 2018.
- Wang, X., Lee, S., Sheng, G., Chan, L., Fu, J., Li, X., Min, Y., and Chan, C.: Cyclic organosilicon compounds in ambient air in Guangzhou, Macau and Nanhai, Pearl River Delta, Appl. Geochemistry, 16, 1447-1454, <u>https://doi.org/10.1016/S0883-2927(01)00044-0</u>, 2001.
- Wu, Y. and Johnston, M.: Aerosol Formation from OH Oxidation of the Volatile Cyclic Methyl Siloxane
 (cVMS) Decamethylcyclopentasiloxane, Environ. Sci. Technol., 51, 4445-4451, 21

https://doi.org/10.1021/acs.est.7b00655, 2017.

- Xu, L., Shi, Y., Wang, T., Dong, Z., Su, W., and Cai, Y.: Methyl Siloxanes in Environmental Matrices around a Siloxane Production Facility, and Their Distribution and Elimination in Plasma of Exposed Population, Environ. Sci. Technol., 46, 11718-11726, <u>https://doi.org/10.1021/es3023368</u>, 2012.
- Yucuis, R., Stanier, C., and Hornbuckle, K.: Cyclic Siloxanes in Air, Including Identification of High Levels in Chicago and Distinct Diurnal Variation, Chemosphere, 92, 905-910, <u>https://doi.org/10.1016/j.chemosphere.2013.02.051</u>, 2013.