Articles | Volume 21, issue 9
https://doi.org/10.5194/acp-21-6593-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-6593-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Fifty-six years of surface solar radiation and sunshine duration over São Paulo, Brazil: 1961–2016
Marcia Akemi Yamasoe
CORRESPONDING AUTHOR
Departamento de Ciências Atmosféricas, Instituto de
Astronomia, Geofísica e Ciências Atmosféricas, Universidade de
São Paulo, 05508-090, São Paulo, Brazil
Seção de Serviços Meteorológicos do Instituto de
Astronomia, Geofísica e Ciências Atmosféricas, Universidade de
São Paulo, São Paulo, Brazil
Nilton Manuel Évora Rosário
Departamento de Ciências Ambientais, Universidade Federal de
São Paulo, Diadema, São Paulo, Brazil
Samantha Novaes Santos Martins Almeida
Seção de Serviços Meteorológicos do Instituto de
Astronomia, Geofísica e Ciências Atmosféricas, Universidade de
São Paulo, São Paulo, Brazil
Martin Wild
Institute for Atmospheric and Climate Science, ETH Zurich, Zurich,
Switzerland
Related authors
Guilherme Martins Pereira, Leonardo Yoshiaki Kamigauti, Rubens Fabio Pereira, Djacinto Monteiro dos Santos, Thayná da Silva Santos, José Vinicius Martins, Célia Alves, Cátia Gonçalves, Ismael Casotti Rienda, Nora Kováts, Thiago Nogueira, Luciana Rizzo, Paulo Artaxo, Regina Maura de Miranda, Marcia Akemi Yamasoe, Edmilson Dias de Freitas, Pérola de Castro Vasconcellos, and Maria de Fatima Andrade
EGUsphere, https://doi.org/10.5194/egusphere-2024-2212, https://doi.org/10.5194/egusphere-2024-2212, 2024
Short summary
Short summary
The chemical composition of fine particulate matter was studied in the megacity of São Paulo (Brazil) during a polluted period. Vehicular-related sources were dominant; however, a high contribution of biomass burning was observed and correlated with sample ecotoxicity. Emerging biomass burning sources, such as forest fires and sugarcane bagasse-based power plants, highlight the need for additional control measures alongside stricter rules concerning vehicular emissions.
Elion Daniel Hack, Theotonio Pauliquevis, Henrique Melo Jorge Barbosa, Marcia Akemi Yamasoe, Dimitri Klebe, and Alexandre Lima Correia
Atmos. Meas. Tech., 16, 1263–1278, https://doi.org/10.5194/amt-16-1263-2023, https://doi.org/10.5194/amt-16-1263-2023, 2023
Short summary
Short summary
Water vapor is a key factor when seeking to understand fast-changing processes when clouds and storms form and develop. We show here how images from a calibrated infrared camera can be used to derive how much water vapor there is in the atmosphere at a given time. Comparing our results to an established technique, for a case of stable atmospheric conditions, we found an agreement within 2.8 %. Water vapor sky maps can be retrieved every few minutes, day or night, under partly cloudy skies.
Nilton Évora do Rosário, Elisa Thomé Sena, and Marcia Akemi Yamasoe
Atmos. Chem. Phys., 22, 15021–15033, https://doi.org/10.5194/acp-22-15021-2022, https://doi.org/10.5194/acp-22-15021-2022, 2022
Short summary
Short summary
The 2020 burning season in Brazil was marked by an atypically high number of fire spots across Pantanal, leading to high amounts of smoke within the biome. This study shows that smoke over Pantanal, usually a fraction of that over Amazonia, was higher and resulted mainly from fires in conservation and indigenous areas. It also contributes to highlighting Pantanal's 2020 burning season as the worst combination of a climate extreme scenario and inadequately enforced environmental regulations.
Carlos Alberti, Frank Hase, Matthias Frey, Darko Dubravica, Thomas Blumenstock, Angelika Dehn, Paolo Castracane, Gregor Surawicz, Roland Harig, Bianca C. Baier, Caroline Bès, Jianrong Bi, Hartmut Boesch, André Butz, Zhaonan Cai, Jia Chen, Sean M. Crowell, Nicholas M. Deutscher, Dragos Ene, Jonathan E. Franklin, Omaira García, David Griffith, Bruno Grouiez, Michel Grutter, Abdelhamid Hamdouni, Sander Houweling, Neil Humpage, Nicole Jacobs, Sujong Jeong, Lilian Joly, Nicholas B. Jones, Denis Jouglet, Rigel Kivi, Ralph Kleinschek, Morgan Lopez, Diogo J. Medeiros, Isamu Morino, Nasrin Mostafavipak, Astrid Müller, Hirofumi Ohyama, Paul I. Palmer, Mahesh Pathakoti, David F. Pollard, Uwe Raffalski, Michel Ramonet, Robbie Ramsay, Mahesh Kumar Sha, Kei Shiomi, William Simpson, Wolfgang Stremme, Youwen Sun, Hiroshi Tanimoto, Yao Té, Gizaw Mengistu Tsidu, Voltaire A. Velazco, Felix Vogel, Masataka Watanabe, Chong Wei, Debra Wunch, Marcia Yamasoe, Lu Zhang, and Johannes Orphal
Atmos. Meas. Tech., 15, 2433–2463, https://doi.org/10.5194/amt-15-2433-2022, https://doi.org/10.5194/amt-15-2433-2022, 2022
Short summary
Short summary
Space-borne greenhouse gas missions require ground-based validation networks capable of providing fiducial reference measurements. Here, considerable refinements of the calibration procedures for the COllaborative Carbon Column Observing Network (COCCON) are presented. Laboratory and solar side-by-side procedures for the characterization of the spectrometers have been refined and extended. Revised calibration factors for XCO2, XCO and XCH4 are provided, incorporating 47 new spectrometers.
Renato Kerches Braghiere, Marcia Akemi Yamasoe, Nilton Manuel Évora do Rosário, Humberto Ribeiro da Rocha, José de Souza Nogueira, and Alessandro Carioca de Araújo
Atmos. Chem. Phys., 20, 3439–3458, https://doi.org/10.5194/acp-20-3439-2020, https://doi.org/10.5194/acp-20-3439-2020, 2020
Short summary
Short summary
We evaluate how the interaction of smoke with sun light impacts the exchange of energy and mass between vegetation and the atmosphere using a machine learning technique. We found an effect of the smoke on CO2, energy, and water fluxes, linking the effects of smoke with temperature, humidity, and winds. CO2 exchange increased by up to 55 % in the presence of smoke. A decrease of 12 % was observed for a site with simpler vegetation. Energy fluxes were negatively impacted for all study sites.
Nilton E. Rosário, Thamara Sauini, Theotonio Pauliquevis, Henrique M. J. Barbosa, Marcia A. Yamasoe, and Boris Barja
Atmos. Meas. Tech., 12, 921–934, https://doi.org/10.5194/amt-12-921-2019, https://doi.org/10.5194/amt-12-921-2019, 2019
Short summary
Short summary
Does pristine Amazonian forest atmosphere provide successful calibration of a Sun photometer based on the Langley plot method? This question emerged from the challenge of maintaining regular calibration of a Sun photometer dedicated to long-term monitoring of aerosol optical properties in Amazonia, far from clean mountaintops. Our results show that on-site calibrated Sun photometers, under pristine Amazonian conditions, are able to provide consistent retrieval of aerosol optical depth.
Ana María Yáñez-Serrano, Anke Christine Nölscher, Efstratios Bourtsoukidis, Eliane Gomes Alves, Laurens Ganzeveld, Boris Bonn, Stefan Wolff, Marta Sa, Marcia Yamasoe, Jonathan Williams, Meinrat O. Andreae, and Jürgen Kesselmeier
Atmos. Chem. Phys., 18, 3403–3418, https://doi.org/10.5194/acp-18-3403-2018, https://doi.org/10.5194/acp-18-3403-2018, 2018
Short summary
Short summary
This study shows the measurements of concentration of different monoterpene species in terms of height, time of day and season. Speciation seems similar during the dry seasons but changes with season. Furthermore, reactivity with the different oxidants demonstrated that a higher abundance of a monoterpene species does not automatically imply higher reactivity and that the most abundant monoterpene may not be the most atmospheric chemically relevant compound.
Demerval S. Moreira, Karla M. Longo, Saulo R. Freitas, Marcia A. Yamasoe, Lina M. Mercado, Nilton E. Rosário, Emauel Gloor, Rosane S. M. Viana, John B. Miller, Luciana V. Gatti, Kenia T. Wiedemann, Lucas K. G. Domingues, and Caio C. S. Correia
Atmos. Chem. Phys., 17, 14785–14810, https://doi.org/10.5194/acp-17-14785-2017, https://doi.org/10.5194/acp-17-14785-2017, 2017
Short summary
Short summary
Fire in the Amazon forest produces a large amount of smoke that is released into the atmosphere and covers a large portion of South America for about 3 months each year. The smoke affects the energy and CO2 budgets. Using a numerical atmospheric model, we demonstrated that the smoke changes the forest from a source to a sink of CO2 to the atmosphere. The smoke ultimately acts to at least partially compensate for the forest carbon lost due to fire emissions.
Guilherme Martins Pereira, Leonardo Yoshiaki Kamigauti, Rubens Fabio Pereira, Djacinto Monteiro dos Santos, Thayná da Silva Santos, José Vinicius Martins, Célia Alves, Cátia Gonçalves, Ismael Casotti Rienda, Nora Kováts, Thiago Nogueira, Luciana Rizzo, Paulo Artaxo, Regina Maura de Miranda, Marcia Akemi Yamasoe, Edmilson Dias de Freitas, Pérola de Castro Vasconcellos, and Maria de Fatima Andrade
EGUsphere, https://doi.org/10.5194/egusphere-2024-2212, https://doi.org/10.5194/egusphere-2024-2212, 2024
Short summary
Short summary
The chemical composition of fine particulate matter was studied in the megacity of São Paulo (Brazil) during a polluted period. Vehicular-related sources were dominant; however, a high contribution of biomass burning was observed and correlated with sample ecotoxicity. Emerging biomass burning sources, such as forest fires and sugarcane bagasse-based power plants, highlight the need for additional control measures alongside stricter rules concerning vehicular emissions.
Lucas Ferreira Correa, Doris Folini, Boriana Chtirkova, and Martin Wild
Atmos. Chem. Phys., 24, 8797–8819, https://doi.org/10.5194/acp-24-8797-2024, https://doi.org/10.5194/acp-24-8797-2024, 2024
Short summary
Short summary
We investigated the causes of the decadal trends of solar radiation measured at 34 stations in Brazil in the first 2 decades of the 21st century. We observed strong negative trends in north and northeast Brazil associated with changes in both atmospheric absorption (anthropogenic) and cloud cover (natural). In other parts of the country no strong trends were observed as a result of competing effects. This provides a better understanding of the energy balance in the region.
Junli Yang, Weijun Quan, Li Zhang, Jianglin Hu, Qiying Chen, and Martin Wild
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-74, https://doi.org/10.5194/gmd-2024-74, 2024
Revised manuscript not accepted
Short summary
Short summary
Due to the difficulties involved in the measurements of the Downward long-wave irradiance (DnLWI), the numerical weather prediction (NWP) models have been developed to obtain the DnLWI indirectly. In this study, a long-term high time-resolution (1 min) observational dataset of the DnLWI in China was used to evaluate the radiation scheme in the CMA-MESO model over various underlying surfaces and climate zones.
Weijun Quan, Zhenfa Wang, Lin Qiao, Xiangdong Zheng, Junli Jin, Yinruo Li, Xiaomei Yin, Zhiqiang Ma, and Martin Wild
Earth Syst. Sci. Data, 16, 961–983, https://doi.org/10.5194/essd-16-961-2024, https://doi.org/10.5194/essd-16-961-2024, 2024
Short summary
Short summary
Radiation components play important roles in various fields such as the Earth’s surface radiation budget, ecosystem productivity, and human health. In this study, a dataset consisting of quality-assured daily data of nine radiation components is presented based on the in situ measurements at the Shangdianzi regional GAW station in China during 2013–2022. The dataset can be applied in the validation of satellite products and numerical models and investigation of atmospheric radiation.
Boyang Jiao, Yucheng Su, Qingxiang Li, Veronica Manara, and Martin Wild
Earth Syst. Sci. Data, 15, 4519–4535, https://doi.org/10.5194/essd-15-4519-2023, https://doi.org/10.5194/essd-15-4519-2023, 2023
Short summary
Short summary
This paper develops an observational integrated and homogenized global-terrestrial (except for Antarctica) SSRIH station. This is interpolated into a 5° × 5° SSRIH grid and reconstructed into a long-term (1955–2018) global land (except for Antarctica) 5° × 2.5° SSR anomaly dataset (SSRIH20CR) by an improved partial convolutional neural network deep-learning method. SSRIH20CR yields trends of −1.276 W m−2 per decade over the dimming period and 0.697 W m−2 per decade over the brightening period.
Elion Daniel Hack, Theotonio Pauliquevis, Henrique Melo Jorge Barbosa, Marcia Akemi Yamasoe, Dimitri Klebe, and Alexandre Lima Correia
Atmos. Meas. Tech., 16, 1263–1278, https://doi.org/10.5194/amt-16-1263-2023, https://doi.org/10.5194/amt-16-1263-2023, 2023
Short summary
Short summary
Water vapor is a key factor when seeking to understand fast-changing processes when clouds and storms form and develop. We show here how images from a calibrated infrared camera can be used to derive how much water vapor there is in the atmosphere at a given time. Comparing our results to an established technique, for a case of stable atmospheric conditions, we found an agreement within 2.8 %. Water vapor sky maps can be retrieved every few minutes, day or night, under partly cloudy skies.
Qiuyan Wang, Hua Zhang, Su Yang, Qi Chen, Xixun Zhou, Bing Xie, Yuying Wang, Guangyu Shi, and Martin Wild
Atmos. Chem. Phys., 22, 15867–15886, https://doi.org/10.5194/acp-22-15867-2022, https://doi.org/10.5194/acp-22-15867-2022, 2022
Short summary
Short summary
The present-day land energy balance over East Asia is estimated for the first time. Results indicate that high aerosol loadings, clouds, and the Tibet Plateau (TP) over East Asia play vital roles in the shortwave budgets, while the TP is responsible for the longwave budgets during this regional energy budget assessment. This study provides a perspective to understand fully how the potential factors influence the diversifying regional energy budget assessments.
Nilton Évora do Rosário, Elisa Thomé Sena, and Marcia Akemi Yamasoe
Atmos. Chem. Phys., 22, 15021–15033, https://doi.org/10.5194/acp-22-15021-2022, https://doi.org/10.5194/acp-22-15021-2022, 2022
Short summary
Short summary
The 2020 burning season in Brazil was marked by an atypically high number of fire spots across Pantanal, leading to high amounts of smoke within the biome. This study shows that smoke over Pantanal, usually a fraction of that over Amazonia, was higher and resulted mainly from fires in conservation and indigenous areas. It also contributes to highlighting Pantanal's 2020 burning season as the worst combination of a climate extreme scenario and inadequately enforced environmental regulations.
Johannes Quaas, Hailing Jia, Chris Smith, Anna Lea Albright, Wenche Aas, Nicolas Bellouin, Olivier Boucher, Marie Doutriaux-Boucher, Piers M. Forster, Daniel Grosvenor, Stuart Jenkins, Zbigniew Klimont, Norman G. Loeb, Xiaoyan Ma, Vaishali Naik, Fabien Paulot, Philip Stier, Martin Wild, Gunnar Myhre, and Michael Schulz
Atmos. Chem. Phys., 22, 12221–12239, https://doi.org/10.5194/acp-22-12221-2022, https://doi.org/10.5194/acp-22-12221-2022, 2022
Short summary
Short summary
Pollution particles cool climate and offset part of the global warming. However, they are washed out by rain and thus their effect responds quickly to changes in emissions. We show multiple datasets to demonstrate that aerosol emissions and their concentrations declined in many regions influenced by human emissions, as did the effects on clouds. Consequently, the cooling impact on the Earth energy budget became smaller. This change in trend implies a relative warming.
Carlos Alberti, Frank Hase, Matthias Frey, Darko Dubravica, Thomas Blumenstock, Angelika Dehn, Paolo Castracane, Gregor Surawicz, Roland Harig, Bianca C. Baier, Caroline Bès, Jianrong Bi, Hartmut Boesch, André Butz, Zhaonan Cai, Jia Chen, Sean M. Crowell, Nicholas M. Deutscher, Dragos Ene, Jonathan E. Franklin, Omaira García, David Griffith, Bruno Grouiez, Michel Grutter, Abdelhamid Hamdouni, Sander Houweling, Neil Humpage, Nicole Jacobs, Sujong Jeong, Lilian Joly, Nicholas B. Jones, Denis Jouglet, Rigel Kivi, Ralph Kleinschek, Morgan Lopez, Diogo J. Medeiros, Isamu Morino, Nasrin Mostafavipak, Astrid Müller, Hirofumi Ohyama, Paul I. Palmer, Mahesh Pathakoti, David F. Pollard, Uwe Raffalski, Michel Ramonet, Robbie Ramsay, Mahesh Kumar Sha, Kei Shiomi, William Simpson, Wolfgang Stremme, Youwen Sun, Hiroshi Tanimoto, Yao Té, Gizaw Mengistu Tsidu, Voltaire A. Velazco, Felix Vogel, Masataka Watanabe, Chong Wei, Debra Wunch, Marcia Yamasoe, Lu Zhang, and Johannes Orphal
Atmos. Meas. Tech., 15, 2433–2463, https://doi.org/10.5194/amt-15-2433-2022, https://doi.org/10.5194/amt-15-2433-2022, 2022
Short summary
Short summary
Space-borne greenhouse gas missions require ground-based validation networks capable of providing fiducial reference measurements. Here, considerable refinements of the calibration procedures for the COllaborative Carbon Column Observing Network (COCCON) are presented. Laboratory and solar side-by-side procedures for the characterization of the spectrometers have been refined and extended. Revised calibration factors for XCO2, XCO and XCH4 are provided, incorporating 47 new spectrometers.
Xinyuan Hou, Martin Wild, Doris Folini, Stelios Kazadzis, and Jan Wohland
Earth Syst. Dynam., 12, 1099–1113, https://doi.org/10.5194/esd-12-1099-2021, https://doi.org/10.5194/esd-12-1099-2021, 2021
Short summary
Short summary
Solar photovoltaics (PV) matters for the carbon neutrality goal. We use climate scenarios to quantify climate risk for PV in Europe and find higher PV potential. The seasonal cycle of PV generation changes in most places. We find an increase in the spatial correlations of daily PV production, implying that PV power balancing through redistribution will be more difficult in the future. Thus, changes in the spatiotemporal structure of PV generation should be included in power system design.
Kine Onsum Moseid, Michael Schulz, Trude Storelvmo, Ingeborg Rian Julsrud, Dirk Olivié, Pierre Nabat, Martin Wild, Jason N. S. Cole, Toshihiko Takemura, Naga Oshima, Susanne E. Bauer, and Guillaume Gastineau
Atmos. Chem. Phys., 20, 16023–16040, https://doi.org/10.5194/acp-20-16023-2020, https://doi.org/10.5194/acp-20-16023-2020, 2020
Short summary
Short summary
In this study we compare solar radiation at the surface from observations and Earth system models from 1961 to 2014. We find that the models do not reproduce the so-called
global dimmingas found in observations. Only model experiments with anthropogenic aerosol emissions display any dimming at all. The discrepancies between observations and models are largest in China, which we suggest is in part due to erroneous aerosol precursor emission inventories in the emission dataset used for CMIP6.
William Wandji Nyamsi, Antti Lipponen, Arturo Sanchez-Lorenzo, Martin Wild, and Antti Arola
Atmos. Meas. Tech., 13, 3061–3079, https://doi.org/10.5194/amt-13-3061-2020, https://doi.org/10.5194/amt-13-3061-2020, 2020
Short summary
Short summary
This paper proposes a novel and accurate method for estimating and reconstructing aerosol optical depth from sunshine duration measurements under cloud-free conditions at any place and time since the late 19th century. The method performs very well when compared to AErosol RObotic NETwork measurements and operates an efficient detection of signals from massive volcanic eruptions. Reconstructed long-term aerosol optical depths are in agreement with the dimming/brightening phenomenon.
Renato Kerches Braghiere, Marcia Akemi Yamasoe, Nilton Manuel Évora do Rosário, Humberto Ribeiro da Rocha, José de Souza Nogueira, and Alessandro Carioca de Araújo
Atmos. Chem. Phys., 20, 3439–3458, https://doi.org/10.5194/acp-20-3439-2020, https://doi.org/10.5194/acp-20-3439-2020, 2020
Short summary
Short summary
We evaluate how the interaction of smoke with sun light impacts the exchange of energy and mass between vegetation and the atmosphere using a machine learning technique. We found an effect of the smoke on CO2, energy, and water fluxes, linking the effects of smoke with temperature, humidity, and winds. CO2 exchange increased by up to 55 % in the presence of smoke. A decrease of 12 % was observed for a site with simpler vegetation. Energy fluxes were negatively impacted for all study sites.
Nilton E. Rosário, Thamara Sauini, Theotonio Pauliquevis, Henrique M. J. Barbosa, Marcia A. Yamasoe, and Boris Barja
Atmos. Meas. Tech., 12, 921–934, https://doi.org/10.5194/amt-12-921-2019, https://doi.org/10.5194/amt-12-921-2019, 2019
Short summary
Short summary
Does pristine Amazonian forest atmosphere provide successful calibration of a Sun photometer based on the Langley plot method? This question emerged from the challenge of maintaining regular calibration of a Sun photometer dedicated to long-term monitoring of aerosol optical properties in Amazonia, far from clean mountaintops. Our results show that on-site calibrated Sun photometers, under pristine Amazonian conditions, are able to provide consistent retrieval of aerosol optical depth.
Emmanouil Oikonomakis, Sebnem Aksoyoglu, Martin Wild, Giancarlo Ciarelli, Urs Baltensperger, and André Stephan Henry Prévôt
Atmos. Chem. Phys., 18, 9741–9765, https://doi.org/10.5194/acp-18-9741-2018, https://doi.org/10.5194/acp-18-9741-2018, 2018
Short summary
Short summary
We report a model sensitivity study on the impact of aerosol–radiation interaction (ARI) changes in Europe between 1990 and 2010 on summer surface ozone via effects on photolysis rates and biogenic emissions. The overall impact of ARI changes on ozone was relatively small when compared to the total ozone concentrations, but it was more important when compared to the order of magnitude of ozone trends, indicating a potential partial damping of the effects of ozone precursor emissions' reduction.
Ana María Yáñez-Serrano, Anke Christine Nölscher, Efstratios Bourtsoukidis, Eliane Gomes Alves, Laurens Ganzeveld, Boris Bonn, Stefan Wolff, Marta Sa, Marcia Yamasoe, Jonathan Williams, Meinrat O. Andreae, and Jürgen Kesselmeier
Atmos. Chem. Phys., 18, 3403–3418, https://doi.org/10.5194/acp-18-3403-2018, https://doi.org/10.5194/acp-18-3403-2018, 2018
Short summary
Short summary
This study shows the measurements of concentration of different monoterpene species in terms of height, time of day and season. Speciation seems similar during the dry seasons but changes with season. Furthermore, reactivity with the different oxidants demonstrated that a higher abundance of a monoterpene species does not automatically imply higher reactivity and that the most abundant monoterpene may not be the most atmospheric chemically relevant compound.
Demerval S. Moreira, Karla M. Longo, Saulo R. Freitas, Marcia A. Yamasoe, Lina M. Mercado, Nilton E. Rosário, Emauel Gloor, Rosane S. M. Viana, John B. Miller, Luciana V. Gatti, Kenia T. Wiedemann, Lucas K. G. Domingues, and Caio C. S. Correia
Atmos. Chem. Phys., 17, 14785–14810, https://doi.org/10.5194/acp-17-14785-2017, https://doi.org/10.5194/acp-17-14785-2017, 2017
Short summary
Short summary
Fire in the Amazon forest produces a large amount of smoke that is released into the atmosphere and covers a large portion of South America for about 3 months each year. The smoke affects the energy and CO2 budgets. Using a numerical atmospheric model, we demonstrated that the smoke changes the forest from a source to a sink of CO2 to the atmosphere. The smoke ultimately acts to at least partially compensate for the forest carbon lost due to fire emissions.
Stephan Nyeki, Stefan Wacker, Julian Gröbner, Wolfgang Finsterle, and Martin Wild
Atmos. Meas. Tech., 10, 3057–3071, https://doi.org/10.5194/amt-10-3057-2017, https://doi.org/10.5194/amt-10-3057-2017, 2017
Short summary
Short summary
A large number of radiometers used to measure solar and terrestrial broadband radiation are traceable to World Standard Groups at PMOD/WRC in Davos, Switzerland. A small correction of each group may be required in the future, and this study examines the methods and implications of this on data sets collected at four remote baseline stations since the 1990s. The goal is to develop a better estimate of the solar and terrestrial radiation budget at the Earth's surface.
Martin Wild, Atsumu Ohmura, Christoph Schär, Guido Müller, Doris Folini, Matthias Schwarz, Maria Zyta Hakuba, and Arturo Sanchez-Lorenzo
Earth Syst. Sci. Data, 9, 601–613, https://doi.org/10.5194/essd-9-601-2017, https://doi.org/10.5194/essd-9-601-2017, 2017
Short summary
Short summary
The Global Energy Balance Archive (GEBA) is a database for the central storage of worldwide measured energy fluxes at the Earth's surface, maintained at ETH Zurich (Switzerland). This paper documents the status of the GEBA version 2017 database, presents the new web interface and user access, and reviews the scientific impact that GEBA data had in various applications. GEBA has continuously been expanded and updated and to date contains around 500 000 monthly mean entries from 2500 locations.
Yawen Wang, Martin Wild, Arturo Sanchez-Lorenzo, and Veronica Manara
Ann. Geophys., 35, 839–851, https://doi.org/10.5194/angeo-35-839-2017, https://doi.org/10.5194/angeo-35-839-2017, 2017
Short summary
Short summary
Through the selection of 172 urban–rural station pairs, this study noted that urbanization significantly influenced the dimming trend in sunshine duration in China from 1960 until it leveled off after 1990. During 1960–1989, rural dimming was around two-thirds the rate of urban dimming; this ratio generally shows a positive correlation with urbanization level. There may be an overestimation of dimming in China when a dataset with more urban-scale sites than rural-scale sites is applied.
Joana A. Rizzolo, Cybelli G. G. Barbosa, Guilherme C. Borillo, Ana F. L. Godoi, Rodrigo A. F. Souza, Rita V. Andreoli, Antônio O. Manzi, Marta O. Sá, Eliane G. Alves, Christopher Pöhlker, Isabella H. Angelis, Florian Ditas, Jorge Saturno, Daniel Moran-Zuloaga, Luciana V. Rizzo, Nilton E. Rosário, Theotonio Pauliquevis, Rosa M. N. Santos, Carlos I. Yamamoto, Meinrat O. Andreae, Paulo Artaxo, Philip E. Taylor, and Ricardo H. M. Godoi
Atmos. Chem. Phys., 17, 2673–2687, https://doi.org/10.5194/acp-17-2673-2017, https://doi.org/10.5194/acp-17-2673-2017, 2017
Short summary
Short summary
Particles collected from the air above the Amazon Basin during the wet season were identified as Saharan dust. Soluble minerals were analysed to assess the bioavailability of iron. Dust deposited onto the canopy and topsoil can likely benefit organisms such as fungi and lichens. The ongoing deposition of Saharan dust across the Amazon rainforest provides an iron-rich source of essential macronutrients and micronutrients to plant roots, and also directly to plant leaves during the wet season.
Saulo R. Freitas, Jairo Panetta, Karla M. Longo, Luiz F. Rodrigues, Demerval S. Moreira, Nilton E. Rosário, Pedro L. Silva Dias, Maria A. F. Silva Dias, Enio P. Souza, Edmilson D. Freitas, Marcos Longo, Ariane Frassoni, Alvaro L. Fazenda, Cláudio M. Santos e Silva, Cláudio A. B. Pavani, Denis Eiras, Daniela A. França, Daniel Massaru, Fernanda B. Silva, Fernando C. Santos, Gabriel Pereira, Gláuber Camponogara, Gonzalo A. Ferrada, Haroldo F. Campos Velho, Isilda Menezes, Julliana L. Freire, Marcelo F. Alonso, Madeleine S. Gácita, Maurício Zarzur, Rafael M. Fonseca, Rafael S. Lima, Ricardo A. Siqueira, Rodrigo Braz, Simone Tomita, Valter Oliveira, and Leila D. Martins
Geosci. Model Dev., 10, 189–222, https://doi.org/10.5194/gmd-10-189-2017, https://doi.org/10.5194/gmd-10-189-2017, 2017
Short summary
Short summary
We present a new version of the Brazilian developments on the Regional Atmospheric Modeling System (BRAMS) where different previous versions for weather, chemistry, and the carbon cycle were unified in a single harmonized software system. This version also has a new set of state-of-the-art physical parametrizations and higher computational parallel and memory usage efficiency. BRAMS has been applied for research and operational weather and air quality forecasting, largely in South America.
Katsumasa Tanaka, Atsumu Ohmura, Doris Folini, Martin Wild, and Nozomu Ohkawara
Atmos. Chem. Phys., 16, 13969–14001, https://doi.org/10.5194/acp-16-13969-2016, https://doi.org/10.5194/acp-16-13969-2016, 2016
Short summary
Short summary
Surface solar radiation observed in Japan generally shows a strong decline until the end of the 1980s and then a recovery up until around 2000. A substantial number of measurement stations are located close to populated areas and are speculated to have been influenced by air pollution. However, data obtained at 14 meteorological observatories suggest that the large decadal variations in surface solar radiation occur on a large scale and not limited to urban areas.
Veronica Manara, Michele Brunetti, Angela Celozzi, Maurizio Maugeri, Arturo Sanchez-Lorenzo, and Martin Wild
Atmos. Chem. Phys., 16, 11145–11161, https://doi.org/10.5194/acp-16-11145-2016, https://doi.org/10.5194/acp-16-11145-2016, 2016
Short summary
Short summary
This paper presents the temporal evolution of solar radiation over Italy for the 1959–2013 period and discusses possible reasons for differences between all-sky and clear-sky conditions in order to understand which part of the solar radiation variability depends on aerosols or clouds. The results give evidence of a relevant influence of both anthropogenic and natural aerosols on solar radiation long-term variability.
Yawen Wang, Martin Wild, Arturo Sanchez-Lorenzo, Yonghui Yang, Veronica Manara, and Dandan Ren
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-657, https://doi.org/10.5194/acp-2016-657, 2016
Revised manuscript not accepted
Short summary
Short summary
The strong decadal variations in surface solar radiation, known as "global dimming and brightening", are considered to be related to anthropogenic activities. Based on a comprehensive set of sunshine duration measurements in China, the present study investigates to what extent these changes occurred, only in cities or also in remote areas. The quantification of this "urbanization effect" enables a more accurate determination of the large scale variations of surface solar radiation over China.
Gabriel Pereira, Ricardo Siqueira, Nilton E. Rosário, Karla L. Longo, Saulo R. Freitas, Francielle S. Cardozo, Johannes W. Kaiser, and Martin J. Wooster
Atmos. Chem. Phys., 16, 6961–6975, https://doi.org/10.5194/acp-16-6961-2016, https://doi.org/10.5194/acp-16-6961-2016, 2016
Short summary
Short summary
Fires associated with land use and land cover changes release large amounts of aerosols and trace gases into the atmosphere. Although several inventories of biomass burning emissions cover Brazil, there are still considerable uncertainties and differences among them. However, results indicate that emission derived via similar methods tend to agree with one other, but aerosol emissions from fires with particularly high biomass consumption still lead to an underestimation.
Adel Imamovic, Katsumasa Tanaka, Doris Folini, and Martin Wild
Atmos. Chem. Phys., 16, 2719–2725, https://doi.org/10.5194/acp-16-2719-2016, https://doi.org/10.5194/acp-16-2719-2016, 2016
Short summary
Short summary
Systematic measurements of surface solar radiation revealed a worldwide decrease from the 1960s to the mid-1980s. The role of urbanization for this so called global dimming is still under debate. We developed a set of population-data based urbanization indicators and found no correlation between urbanization and global dimming for Europe and Japan, while an urbanization impact can't be precluded for Asia. It is thus called into question whether the global dimming was mainly a local phenomenon.
A. I. Stegehuis, R. Vautard, P. Ciais, A. J. Teuling, D. G. Miralles, and M. Wild
Geosci. Model Dev., 8, 2285–2298, https://doi.org/10.5194/gmd-8-2285-2015, https://doi.org/10.5194/gmd-8-2285-2015, 2015
Short summary
Short summary
Many climate models have difficulties in properly reproducing climate extremes such as heat wave conditions. We use a regional climate model with different atmospheric physics schemes to simulate the heat wave events of 2003 in western Europe and 2010 in Russia. The five best-performing and diverse physics scheme combinations may be used in the future to perform heat wave analysis and to investigate the impact of climate change in summer in Europe.
S. Fuzzi, U. Baltensperger, K. Carslaw, S. Decesari, H. Denier van der Gon, M. C. Facchini, D. Fowler, I. Koren, B. Langford, U. Lohmann, E. Nemitz, S. Pandis, I. Riipinen, Y. Rudich, M. Schaap, J. G. Slowik, D. V. Spracklen, E. Vignati, M. Wild, M. Williams, and S. Gilardoni
Atmos. Chem. Phys., 15, 8217–8299, https://doi.org/10.5194/acp-15-8217-2015, https://doi.org/10.5194/acp-15-8217-2015, 2015
Short summary
Short summary
Particulate matter (PM) constitutes one of the most challenging problems both for air quality and climate change policies. This paper reviews the most recent scientific results on the issue and the policy needs that have driven much of the increase in monitoring and mechanistic research over the last 2 decades. The synthesis reveals many new processes and developments in the science underpinning climate-PM interactions and the effects of PM on human health and the environment.
M. Calisto, D. Folini, M. Wild, and L. Bengtsson
Ann. Geophys., 32, 793–807, https://doi.org/10.5194/angeo-32-793-2014, https://doi.org/10.5194/angeo-32-793-2014, 2014
J. Huttunen, A. Arola, G. Myhre, A. V. Lindfors, T. Mielonen, S. Mikkonen, J. S. Schafer, S. N. Tripathi, M. Wild, M. Komppula, and K. E. J. Lehtinen
Atmos. Chem. Phys., 14, 6103–6110, https://doi.org/10.5194/acp-14-6103-2014, https://doi.org/10.5194/acp-14-6103-2014, 2014
T. Stavrakou, J.-F. Müller, M. Bauwens, I. De Smedt, M. Van Roozendael, A. Guenther, M. Wild, and X. Xia
Atmos. Chem. Phys., 14, 4587–4605, https://doi.org/10.5194/acp-14-4587-2014, https://doi.org/10.5194/acp-14-4587-2014, 2014
D. S. Moreira, S. R. Freitas, J. P. Bonatti, L. M. Mercado, N. M. É. Rosário, K. M. Longo, J. B. Miller, M. Gloor, and L. V. Gatti
Geosci. Model Dev., 6, 1243–1259, https://doi.org/10.5194/gmd-6-1243-2013, https://doi.org/10.5194/gmd-6-1243-2013, 2013
N. Schaller, J. Cermak, M. Wild, and R. Knutti
Earth Syst. Dynam., 4, 253–266, https://doi.org/10.5194/esd-4-253-2013, https://doi.org/10.5194/esd-4-253-2013, 2013
Related subject area
Subject: Radiation | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Broadband and filter radiometers at Ross Island, Antarctica: detection of cloud ice phase versus liquid water influences on shortwave and longwave radiation
Tethered balloon-borne observations of thermal-infrared irradiance and cooling rate profiles in the Arctic atmospheric boundary layer
Assessing the cloud radiative bias at Macquarie Island in the ACCESS-AM2 model
Surface energy balance fluxes in a suburban area of Beijing: energy partitioning variability
Effects of variable ice–ocean surface properties and air mass transformation on the Arctic radiative energy budget
Airborne observations of the surface cloud radiative effect during different seasons over sea ice and open ocean in the Fram Strait
Assessment of spectral UV radiation at Marambio Base, Antarctic Peninsula
Parameterization of downward long-wave radiation based on long-term baseline surface radiation measurements in China
An assessment of land energy balance over East Asia from multiple lines of evidence and the roles of the Tibet Plateau, aerosols, and clouds
Ozone, DNA-active UV radiation, and cloud changes for the near-global mean and at high latitudes due to enhanced greenhouse gas concentrations
In situ observation of warm atmospheric layer and the heat contribution of suspended dust over the Tarim Basin
Eight-year variations in atmospheric radiocesium in Fukushima city
Variability and trends in surface solar spectral ultraviolet irradiance in Italy: on the influence of geopotential height and lower-stratospheric ozone
Changes in the surface broadband shortwave radiation budget during the 2017 eclipse
Reassessment of shortwave surface cloud radiative forcing in the Arctic: consideration of surface-albedo–cloud interactions
Deposition of brown carbon onto snow: changes in snow optical and radiative properties
Solar UV radiation measurements in Marambio, Antarctica, during years 2017–2019
A revisiting of the parametrization of downward longwave radiation in summer over the Tibetan Plateau based on high-temporal-resolution measurements
Trends in surface radiation and cloud radiative effect at four Swiss sites for the 1996–2015 period
Can downwelling far-infrared radiances over Antarctica be estimated from mid-infrared information?
Measurements of spectral irradiance during the solar eclipse of 21 August 2017: reassessment of the effect of solar limb darkening and of changes in total ozone
UV measurements at Marambio and Ushuaia during 2000–2010
On the suitability of current atmospheric reanalyses for regional warming studies over China
A long-term time series of global and diffuse photosynthetically active radiation in the Mediterranean: interannual variability and cloud effects
Long-term series and trends in surface solar radiation in Athens, Greece
Reconstruction and analysis of erythemal UV radiation time series from Hradec Králové (Czech Republic) over the past 50 years
Trends in erythemal doses at the Polish Polar Station, Hornsund, Svalbard based on the homogenized measurements (1996–2016) and reconstructed data (1983–1995)
Effects of vernal equinox solar eclipse on temperature and wind direction in Switzerland
Sky radiance at a coastline and effects of land and ocean reflectivities
Impact of aerosols and clouds on decadal trends in all-sky solar radiation over the Netherlands (1966–2015)
Contributions of surface solar radiation and precipitation to the spatiotemporal patterns of surface and air warming in China from 1960 to 2003
Multiresolution analysis of the spatiotemporal variability in global radiation observed by a dense network of 99 pyranometers
Validation of satellite-based noontime UVI with NDACC ground-based instruments: influence of topography, environment and satellite overpass time
Is global dimming and brightening in Japan limited to urban areas?
The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data
Detection of dimming/brightening in Italy from homogenized all-sky and clear-sky surface solar radiation records and underlying causes (1959–2013)
Comparison of land–atmosphere interaction at different surface types in the mid- to lower reaches of the Yangtze River valley
Spectral optical layer properties of cirrus from collocated airborne measurements and simulations
Local short-term variability in solar irradiance
The contrasting roles of water and dust in controlling daily variations in radiative heating of the summertime Saharan heat low
Global dimming and urbanization: did stronger negative SSR trends collocate with regions of population growth?
Short- and long-term variability of spectral solar UV irradiance at Thessaloniki, Greece: effects of changes in aerosols, total ozone and clouds
On the progress of the 2015–2016 El Niño event
Role of radiatively forced temperature changes in enhanced semi-arid warming in the cold season over east Asia
Assessment of long-term WRF–CMAQ simulations for understanding direct aerosol effects on radiation "brightening" in the United States
Comparison of OMI UV observations with ground-based measurements at high northern latitudes
Characterisation of J(O1D) at Cape Grim 2000–2005
On the scaling of the solar incident flux
Analysis of actinic flux profiles measured from an ozonesonde balloon
Relations between erythemal UV dose, global solar radiation, total ozone column and aerosol optical depth at Uccle, Belgium
Kristopher Scarci, Ryan C. Scott, Madison L. Ghiz, Andrew M. Vogelmann, and Dan Lubin
Atmos. Chem. Phys., 24, 6681–6697, https://doi.org/10.5194/acp-24-6681-2024, https://doi.org/10.5194/acp-24-6681-2024, 2024
Short summary
Short summary
We demonstrate what can be learned about an Antarctic region's climate from basic atmospheric irradiance measurements made by broadband and filter radiometers, instruments suitable for deployment at very remote sites, assisted by meteorological reanalysis and satellite remote sensing. Analysis of shortwave and longwave irradiance reveals subtle contrasts between meteorological regimes favoring cloud ice versus liquid water, relevant to onset versus inhibition of surface melt over ice shelves.
Michael Lonardi, Elisa F. Akansu, André Ehrlich, Mauro Mazzola, Christian Pilz, Matthew D. Shupe, Holger Siebert, and Manfred Wendisch
Atmos. Chem. Phys., 24, 1961–1978, https://doi.org/10.5194/acp-24-1961-2024, https://doi.org/10.5194/acp-24-1961-2024, 2024
Short summary
Short summary
Profiles of thermal-infrared irradiance were measured at two Arctic sites. The presence or lack of clouds influences the vertical structure of these observations. In particular, the cloud top region is a source of radiative energy that can promote cooling and mixing in the cloud layer. Simulations are used to further characterize how the amount of water in the cloud modifies this forcing. A case study additionally showcases the evolution of the radiation profiles in a dynamic atmosphere.
Zhangcheng Pei, Sonya L. Fiddes, W. John R. French, Simon P. Alexander, Marc D. Mallet, Peter Kuma, and Adrian McDonald
Atmos. Chem. Phys., 23, 14691–14714, https://doi.org/10.5194/acp-23-14691-2023, https://doi.org/10.5194/acp-23-14691-2023, 2023
Short summary
Short summary
In this paper, we use ground-based observations to evaluate a climate model and a satellite product in simulating surface radiation and investigate how radiation biases are influenced by cloud properties over the Southern Ocean. We find that significant radiation biases exist in both the model and satellite. The cloud fraction and cloud occurrence play an important role in affecting radiation biases. We suggest further development for the model and satellite using ground-based observations.
Junxia Dou, Sue Grimmond, Shiguang Miao, Bei Huang, Huimin Lei, and Mingshui Liao
Atmos. Chem. Phys., 23, 13143–13166, https://doi.org/10.5194/acp-23-13143-2023, https://doi.org/10.5194/acp-23-13143-2023, 2023
Short summary
Short summary
Multi-timescale variations in surface energy fluxes in a suburb of Beijing are analyzed using 16-month observations. Compared to previous suburban areas, this study site has larger seasonal variability in energy partitioning, and summer and winter Bowen ratios are at the lower and higher end of those at other suburban sites, respectively. Our analysis indicates that precipitation, irrigation, crop/vegetation growth activity, and land use/cover all play critical roles in energy partitioning.
Manfred Wendisch, Johannes Stapf, Sebastian Becker, André Ehrlich, Evelyn Jäkel, Marcus Klingebiel, Christof Lüpkes, Michael Schäfer, and Matthew D. Shupe
Atmos. Chem. Phys., 23, 9647–9667, https://doi.org/10.5194/acp-23-9647-2023, https://doi.org/10.5194/acp-23-9647-2023, 2023
Short summary
Short summary
Atmospheric radiation measurements have been conducted during two field campaigns using research aircraft. The data are analyzed to see if the near-surface air in the Arctic is warmed or cooled if warm–humid air masses from the south enter the Arctic or cold–dry air moves from the north from the Arctic to mid-latitude areas. It is important to study these processes and to check if climate models represent them well. Otherwise it is not possible to reliably forecast the future Arctic climate.
Sebastian Becker, André Ehrlich, Michael Schäfer, and Manfred Wendisch
Atmos. Chem. Phys., 23, 7015–7031, https://doi.org/10.5194/acp-23-7015-2023, https://doi.org/10.5194/acp-23-7015-2023, 2023
Short summary
Short summary
This study analyses the variability of the warming or cooling effect of clouds on the Arctic surface. Therefore, aircraft radiation measurements were performed over sea ice and open ocean during three seasonally different campaigns. It is found that clouds cool the open-ocean surface most strongly in summer. Over sea ice, clouds warm the surface in spring but have a neutral effect in summer. Due to the variable sea ice extent, clouds warm the surface during spring but cool it during late summer.
Klára Čížková, Kamil Láska, Ladislav Metelka, and Martin Staněk
Atmos. Chem. Phys., 23, 4617–4636, https://doi.org/10.5194/acp-23-4617-2023, https://doi.org/10.5194/acp-23-4617-2023, 2023
Short summary
Short summary
The study deals with ultraviolet (UV) radiation in southern polar conditions, where ozone depletion occurs each spring. A 10-year-long time series of UV spectra from Marambio Base, Antarctic Peninsula, has been studied, with a focus on the changes of UV radiation at different wavelengths and the effects of atmospheric and terrestrial variables like ozone, solar elevation, or cloudiness. At the very short wavelengths, the effect of ozone and its deficiency was clearly observed.
Junli Yang, Jianglin Hu, Qiying Chen, and Weijun Quan
Atmos. Chem. Phys., 23, 4419–4430, https://doi.org/10.5194/acp-23-4419-2023, https://doi.org/10.5194/acp-23-4419-2023, 2023
Short summary
Short summary
Downward long-wave radiation (DLR) affects energy exchange between the land surface and the atmosphere, while it is seldom observed at conventional radiation stations. Therefore, parameterization of DLR based on the near-surface meteorological variables provides a chance to estimate the DLR over most meteorological stations. This work established three parameterizations suited to estimating the DLR over China by using the measurements from the CBSRN with an accuracy of ~6.1 %.
Qiuyan Wang, Hua Zhang, Su Yang, Qi Chen, Xixun Zhou, Bing Xie, Yuying Wang, Guangyu Shi, and Martin Wild
Atmos. Chem. Phys., 22, 15867–15886, https://doi.org/10.5194/acp-22-15867-2022, https://doi.org/10.5194/acp-22-15867-2022, 2022
Short summary
Short summary
The present-day land energy balance over East Asia is estimated for the first time. Results indicate that high aerosol loadings, clouds, and the Tibet Plateau (TP) over East Asia play vital roles in the shortwave budgets, while the TP is responsible for the longwave budgets during this regional energy budget assessment. This study provides a perspective to understand fully how the potential factors influence the diversifying regional energy budget assessments.
Kostas Eleftheratos, John Kapsomenakis, Ilias Fountoulakis, Christos S. Zerefos, Patrick Jöckel, Martin Dameris, Alkiviadis F. Bais, Germar Bernhard, Dimitra Kouklaki, Kleareti Tourpali, Scott Stierle, J. Ben Liley, Colette Brogniez, Frédérique Auriol, Henri Diémoz, Stana Simic, Irina Petropavlovskikh, Kaisa Lakkala, and Kostas Douvis
Atmos. Chem. Phys., 22, 12827–12855, https://doi.org/10.5194/acp-22-12827-2022, https://doi.org/10.5194/acp-22-12827-2022, 2022
Short summary
Short summary
We present the future evolution of DNA-active ultraviolet (UV) radiation in view of increasing greenhouse gases (GHGs) and decreasing ozone depleting substances (ODSs). It is shown that DNA-active UV radiation might increase after 2050 between 50° N–50° S due to GHG-induced reductions in clouds and ozone, something that is likely not to happen at high latitudes, where DNA-active UV radiation will continue its downward trend mainly due to stratospheric ozone recovery from the reduction in ODSs.
Chenglong Zhou, Yuzhi Liu, Qingzhe Zhu, Qing He, Tianliang Zhao, Fan Yang, Wen Huo, Xinghua Yang, and Ali Mamtimin
Atmos. Chem. Phys., 22, 5195–5207, https://doi.org/10.5194/acp-22-5195-2022, https://doi.org/10.5194/acp-22-5195-2022, 2022
Short summary
Short summary
Based on the radiosonde observations, an anomalously warm layer is measured at altitudes between 500 and 300 hPa over the Tarim Basin (TB) with an average intensity of 2.53 and 1.39 K in the spring and summer, respectively. The heat contributions of dust to this anomalously warm atmospheric layer in spring and summer were 13.77 and 10.25 %, respectively. Topographically, the TB is adjacent to the Tibetan Plateau; we propose the concept of the Tibetan heat source’s northward extension.
Akira Watanabe, Mizuo Kajino, Kazuhiko Ninomiya, Yoshitaka Nagahashi, and Atsushi Shinohara
Atmos. Chem. Phys., 22, 675–692, https://doi.org/10.5194/acp-22-675-2022, https://doi.org/10.5194/acp-22-675-2022, 2022
Short summary
Short summary
This study summarizes continuous measurements of surface air concentrations and deposition of radiocesium in Fukushima city over 8 years after the Fukushima nuclear accident. The concentration in the city was high in winter and low in summer (inverse of the forest area). The decreasing trends were much faster in the earlier stage, probably because dissolved cesium discharged faster from the local environment. Biotite might play a key role in circulation of particulate cesium in Fukushima city.
Ilias Fountoulakis, Henri Diémoz, Anna Maria Siani, Alcide di Sarra, Daniela Meloni, and Damiano M. Sferlazzo
Atmos. Chem. Phys., 21, 18689–18705, https://doi.org/10.5194/acp-21-18689-2021, https://doi.org/10.5194/acp-21-18689-2021, 2021
Short summary
Short summary
The variability and trends of solar spectral UV irradiance have been studied for the periods 1996–2020 (for Rome) and 2006–2020 (for Lampedusa, Rome, and Aosta) with respect to the variability and trends of total ozone and geopotential height. Analyses revealed increasing UV in particular months at all sites, possibly due to decreasing lower-stratospheric ozone (at Rome in 1996–2020) and decreasing attenuation by aerosols and/or clouds (at all stations in 2006–2020).
Guoyong Wen, Alexander Marshak, Si-Chee Tsay, Jay Herman, Ukkyo Jeong, Nader Abuhassan, Robert Swap, and Dong Wu
Atmos. Chem. Phys., 20, 10477–10491, https://doi.org/10.5194/acp-20-10477-2020, https://doi.org/10.5194/acp-20-10477-2020, 2020
Short summary
Short summary
We combine the ground-based observations and radiative transfer model to quantify the impact of the 2017 solar eclipse on surface shortwave irradiation reduction. We find that the eclipse caused local reductions of time-averaged surface flux of about 379 W m-2 (50 %) and 329 W m-2 (46 %) during the ~ 3 h course of the eclipse at the Casper and Columbia sites, respectively. We estimate that the Moon’s shadow caused a reduction of approximately 7 %–8 % in global average surface broadband SW radiation.
Johannes Stapf, André Ehrlich, Evelyn Jäkel, Christof Lüpkes, and Manfred Wendisch
Atmos. Chem. Phys., 20, 9895–9914, https://doi.org/10.5194/acp-20-9895-2020, https://doi.org/10.5194/acp-20-9895-2020, 2020
Nicholas D. Beres, Deep Sengupta, Vera Samburova, Andrey Y. Khlystov, and Hans Moosmüller
Atmos. Chem. Phys., 20, 6095–6114, https://doi.org/10.5194/acp-20-6095-2020, https://doi.org/10.5194/acp-20-6095-2020, 2020
Short summary
Short summary
Brown carbon (BrC) aerosol can be produced by the smoldering combustion of peat, a wildland fuel common at high latitude, often adjacent to the cryosphere. However, little is known about how BrC deposition onto snow changes snow optical and radiative properties. Here, we artificially deposited BrC onto natural snow surfaces, monitored changes of the spectral surface albedo, characterized optical properties of deposited aerosol, and compared to modeled values of albedo and radiative forcing.
Margit Aun, Kaisa Lakkala, Ricardo Sanchez, Eija Asmi, Fernando Nollas, Outi Meinander, Larisa Sogacheva, Veerle De Bock, Antti Arola, Gerrit de Leeuw, Veijo Aaltonen, David Bolsée, Klara Cizkova, Alexander Mangold, Ladislav Metelka, Erko Jakobson, Tove Svendby, Didier Gillotay, and Bert Van Opstal
Atmos. Chem. Phys., 20, 6037–6054, https://doi.org/10.5194/acp-20-6037-2020, https://doi.org/10.5194/acp-20-6037-2020, 2020
Short summary
Short summary
In 2017, new measurements of UV radiation started in Marambio, Antarctica, by the Finnish Meteorological Institute in collaboration with the Argentinian Servicio Meteorológico Nacional. The paper presents the results of UV irradiance measurements from March 2017 to March 2019, and it
compares them with those from 2000–2008 and also with UV measurements at other Antarctic stations. In 2017/2018, below average UV radiation levels were recorded due to favourable ozone and cloud conditions.
Mengqi Liu, Xiangdong Zheng, Jinqiang Zhang, and Xiangao Xia
Atmos. Chem. Phys., 20, 4415–4426, https://doi.org/10.5194/acp-20-4415-2020, https://doi.org/10.5194/acp-20-4415-2020, 2020
Short summary
Short summary
This study uses 1 min radiation and lidar measurements at three stations over the Tibetan Plateau (TP) to parametrize downward longwave radiation (DLR) during summer months. Clear-sky DLR can be estimated from the best parametrization with a RMSE of 3.8 W m-2 and R2 > 0.98. Additionally cloud base height under overcast conditions is shown to play an important role in cloudy DLR parametrization, which is considered in the locally calibrated parametrization over the TP for the first time.
Stephan Nyeki, Stefan Wacker, Christine Aebi, Julian Gröbner, Giovanni Martucci, and Laurent Vuilleumier
Atmos. Chem. Phys., 19, 13227–13241, https://doi.org/10.5194/acp-19-13227-2019, https://doi.org/10.5194/acp-19-13227-2019, 2019
Short summary
Short summary
The trends of meteorological parameters and surface downward shortwave radiation (DSR) and downward longwave radiation (DLR) were analysed at four stations (between 370 and 3580 m a. s. l.) in Switzerland for the 1996–2015 period. Trends in DSR and DLR were positive during cloudy as well as clear conditions. The trend due to the influence of clouds decreased in magnitude, which implies a reduction in cloud cover and/or a change towards a different cloud type over the four Swiss sites.
Christophe Bellisario, Helen E. Brindley, Simon F. B. Tett, Rolando Rizzi, Gianluca Di Natale, Luca Palchetti, and Giovanni Bianchini
Atmos. Chem. Phys., 19, 7927–7937, https://doi.org/10.5194/acp-19-7927-2019, https://doi.org/10.5194/acp-19-7927-2019, 2019
Short summary
Short summary
We explore the possibility of inferring far-infrared downwelling radiances from mid-infrared observations to better constrain radiation schemes in climate models. Our results imply that while it is feasible to use this type of approach, the quality of the extension will be strongly dependent on the noise characteristics of the observations and on the accurate characterisation of the atmospheric state.
Germar Bernhard and Boyan Petkov
Atmos. Chem. Phys., 19, 4703–4719, https://doi.org/10.5194/acp-19-4703-2019, https://doi.org/10.5194/acp-19-4703-2019, 2019
Short summary
Short summary
Solar radiation at ultraviolet, visible, and infrared wavelengths was measured during the total solar eclipse of 21 August 2017. Data were used to study the wavelength-dependent changes of solar radiation at Earth’s surface and to validate parameterizations of solar limb darkening (LD), which describes the change in the Sun’s brightness between its center and its edge. The study highlights the importance of the LD effect when calculating total ozone and aerosol optical depth during an eclipse.
Kaisa Lakkala, Alberto Redondas, Outi Meinander, Laura Thölix, Britta Hamari, Antonio Fernando Almansa, Virgilio Carreno, Rosa Delia García, Carlos Torres, Guillermo Deferrari, Hector Ochoa, Germar Bernhard, Ricardo Sanchez, and Gerrit de Leeuw
Atmos. Chem. Phys., 18, 16019–16031, https://doi.org/10.5194/acp-18-16019-2018, https://doi.org/10.5194/acp-18-16019-2018, 2018
Short summary
Short summary
Solar UV irradiances were measured at Ushuaia (54° S) and Marambio (64° S) during 2000–2013. The measurements were part of the Antarctic NILU-UV network, which was maintained as a cooperation between Spain, Argentina and Finland. The time series of the network were analysed for the first time in this study. At both stations maximum UV indices and daily doses were measured when spring-time ozone loss episodes occurred. The maximum UV index was 13 and 12 in Ushuaia and Marambio, respectively.
Chunlüe Zhou, Yanyi He, and Kaicun Wang
Atmos. Chem. Phys., 18, 8113–8136, https://doi.org/10.5194/acp-18-8113-2018, https://doi.org/10.5194/acp-18-8113-2018, 2018
Pamela Trisolino, Alcide di Sarra, Fabrizio Anello, Carlo Bommarito, Tatiana Di Iorio, Daniela Meloni, Francesco Monteleone, Giandomenico Pace, Salvatore Piacentino, and Damiano Sferlazzo
Atmos. Chem. Phys., 18, 7985–8000, https://doi.org/10.5194/acp-18-7985-2018, https://doi.org/10.5194/acp-18-7985-2018, 2018
Short summary
Short summary
The long-term (2002–2016) variability of global and diffuse PAR over the central Mediterranean is investigated based on measurements from Lampedusa. PAR modulates biological processes and this study provides useful insight into its variability. Seasonal and interannual variability of global and diffuse PAR is characterized and the effects of clouds are quantified. The analysis suggests that 77 % of the global PAR interannual variability may be ascribed to clouds.
Stelios Kazadzis, Dimitra Founda, Basil E. Psiloglou, Harry Kambezidis, Nickolaos Mihalopoulos, Arturo Sanchez-Lorenzo, Charikleia Meleti, Panagiotis I. Raptis, Fragiskos Pierros, and Pierre Nabat
Atmos. Chem. Phys., 18, 2395–2411, https://doi.org/10.5194/acp-18-2395-2018, https://doi.org/10.5194/acp-18-2395-2018, 2018
Short summary
Short summary
The National Observatory of Athens has been collecting solar radiation, sunshine duration, and cloud and visibility data/observations since the beginning of the 20th century. In this work we present surface solar radiation data since 1953 and reconstructed data since 1900. We have attempted to show and discuss the long-term changes in solar surface radiation over Athens, Greece, using these unique datasets.
Klára Čížková, Kamil Láska, Ladislav Metelka, and Martin Staněk
Atmos. Chem. Phys., 18, 1805–1818, https://doi.org/10.5194/acp-18-1805-2018, https://doi.org/10.5194/acp-18-1805-2018, 2018
Short summary
Short summary
In order to broaden the knowledge of long-term UV radiation variability, we have reconstructed and analyzed a 50-year-long UV radiation time series from Hradec Králové, Czech Republic. The UV radiation intensities increased greatly following the decline of ozone amounts in the 1980s and 1990s. High UV radiation doses were observed in days with low ozone amounts, clear or partly cloudy skies, or snow cover.
Janusz W. Krzyścin and Piotr S. Sobolewski
Atmos. Chem. Phys., 18, 1–11, https://doi.org/10.5194/acp-18-1-2018, https://doi.org/10.5194/acp-18-1-2018, 2018
Short summary
Short summary
Maintaining homogeneity of long-term UV time series taken from various instruments and thus trend estimation are challenging tasks, especially for remote Arctic sites.
Highlights: method of the UV data homogenization is proposed to be used at any remote site. Past UV data built from satellite total O3 and ground-based sunshine duration. Yearly UV doses trendless in the southern Svalbard for 34-year period since 1983. Long-term cloud effects on UV more important than the ozone effects there.
Werner Eugster, Carmen Emmel, Sebastian Wolf, Nina Buchmann, Joseph P. McFadden, and Charles David Whiteman
Atmos. Chem. Phys., 17, 14887–14904, https://doi.org/10.5194/acp-17-14887-2017, https://doi.org/10.5194/acp-17-14887-2017, 2017
Short summary
Short summary
The effects of penumbral shading of the solar eclipse of 20 March 2015 on near-surface meteorology across Switzerland (occultation 65.8–70.1 %) was investigated. Temperature effects at 184 weather stations are compared with temperature drops reported in the literature since 1834. A special focus is, however, put on wind direction effects observed at six flux sites (with 20 Hz data) and 165 meteorological stations (with 10 min resolution data). Results show the importance of local topography.
Axel Kreuter, Mario Blumthaler, Martin Tiefengraber, Richard Kift, and Ann R. Webb
Atmos. Chem. Phys., 17, 14353–14364, https://doi.org/10.5194/acp-17-14353-2017, https://doi.org/10.5194/acp-17-14353-2017, 2017
Short summary
Short summary
We have done measurements of the sky's brightness at the Italian coast and show the influence of the underlying surface: looking towards the land, the sky can be up to 50 % brighter than opposite viewing directions towards the ocean as a result of higher land reflectivity. At low solar elevations, the specular reflection from the ocean, or sun glint, increases the zenith brightness. Understanding these effects requires a 3-D model and is important when retrieving, e.g., aerosol properties.
Reinout Boers, Theo Brandsma, and A. Pier Siebesma
Atmos. Chem. Phys., 17, 8081–8100, https://doi.org/10.5194/acp-17-8081-2017, https://doi.org/10.5194/acp-17-8081-2017, 2017
Short summary
Short summary
In the Netherlands 9 W m−2 more solar radiation falls on the surface today than 50 years ago. Often this increase, which has also been detected in surrounding western Europe, has been attributed to decreasing air pollution due to improved regulatory practices. However, over the Netherlands clouds play an important but ambiguous role. Cloud cover has increased but have become optically thinner as well. Here, the impact of clouds on radiation is in fact more important than that of air pollution.
Jizeng Du, Kaicun Wang, Jiankai Wang, and Qian Ma
Atmos. Chem. Phys., 17, 4931–4944, https://doi.org/10.5194/acp-17-4931-2017, https://doi.org/10.5194/acp-17-4931-2017, 2017
Bomidi Lakshmi Madhavan, Hartwig Deneke, Jonas Witthuhn, and Andreas Macke
Atmos. Chem. Phys., 17, 3317–3338, https://doi.org/10.5194/acp-17-3317-2017, https://doi.org/10.5194/acp-17-3317-2017, 2017
Short summary
Short summary
A method has been introduced to assess the representativeness of the time series of a point measurement compared to results for a larger area centered around the measurement location. This method allows one to determine the optimal accuracy that can be achieved for the validation of satellite products for a given pixel footprint, or the evaluation of an atmospheric model with a given grid-cell resolution.
Colette Brogniez, Frédérique Auriol, Christine Deroo, Antti Arola, Jukka Kujanpää, Béatrice Sauvage, Niilo Kalakoski, Mikko Riku Aleksi Pitkänen, Maxime Catalfamo, Jean-Marc Metzger, Guy Tournois, and Pierre Da Conceicao
Atmos. Chem. Phys., 16, 15049–15074, https://doi.org/10.5194/acp-16-15049-2016, https://doi.org/10.5194/acp-16-15049-2016, 2016
Short summary
Short summary
The atmospheric ozone layer is changing, thus the UV radiation at the surface is changing. Due to both beneficial and adverse effects of UV on the biosphere, monitoring of UV is essential. Satellite sensors provide estimates of UV at the surface with a global coverage. Validation of satellite-sensor UV is therefore needed and this can be done by comparison with ground-based measurements. The present validation in three sites (midlatitude, tropical) shows that OMI and GOME-2 provide reliable UV.
Katsumasa Tanaka, Atsumu Ohmura, Doris Folini, Martin Wild, and Nozomu Ohkawara
Atmos. Chem. Phys., 16, 13969–14001, https://doi.org/10.5194/acp-16-13969-2016, https://doi.org/10.5194/acp-16-13969-2016, 2016
Short summary
Short summary
Surface solar radiation observed in Japan generally shows a strong decline until the end of the 1980s and then a recovery up until around 2000. A substantial number of measurement stations are located close to populated areas and are speculated to have been influenced by air pollution. However, data obtained at 14 meteorological observatories suggest that the large decadal variations in surface solar radiation occur on a large scale and not limited to urban areas.
Jianping Guo, Yucong Miao, Yong Zhang, Huan Liu, Zhanqing Li, Wanchun Zhang, Jing He, Mengyun Lou, Yan Yan, Lingen Bian, and Panmao Zhai
Atmos. Chem. Phys., 16, 13309–13319, https://doi.org/10.5194/acp-16-13309-2016, https://doi.org/10.5194/acp-16-13309-2016, 2016
Short summary
Short summary
The large-scale PBL climatology from sounding observations is still lacking in China. This work investigated the BLH characterization at diurnal, monthly and seasonal timescales throughout China, showing large geographic and meteorological dependences. BLH is, on average, negatively (positively) associated with the surface pressure and lower tropospheric stability (wind speed and temperature). Cloud tends to suppress the development of the PBL, which has implications for air quality forecasts.
Veronica Manara, Michele Brunetti, Angela Celozzi, Maurizio Maugeri, Arturo Sanchez-Lorenzo, and Martin Wild
Atmos. Chem. Phys., 16, 11145–11161, https://doi.org/10.5194/acp-16-11145-2016, https://doi.org/10.5194/acp-16-11145-2016, 2016
Short summary
Short summary
This paper presents the temporal evolution of solar radiation over Italy for the 1959–2013 period and discusses possible reasons for differences between all-sky and clear-sky conditions in order to understand which part of the solar radiation variability depends on aerosols or clouds. The results give evidence of a relevant influence of both anthropogenic and natural aerosols on solar radiation long-term variability.
Weidong Guo, Xueqian Wang, Jianning Sun, Aijun Ding, and Jun Zou
Atmos. Chem. Phys., 16, 9875–9890, https://doi.org/10.5194/acp-16-9875-2016, https://doi.org/10.5194/acp-16-9875-2016, 2016
Short summary
Short summary
Basic characteristics of land–atmosphere interactions at four neighboring sites with different underlying surfaces in southern China, a typical monsoon region, are analyzed systematically. Despite the same climate background, the differences in land surface characteristics like albedo and aerodynamic roughness length due to land use/cover change exert distinct influences on the surface radiative budget and energy allocation and result in differences of near-surface micrometeorological elements.
Fanny Finger, Frank Werner, Marcus Klingebiel, André Ehrlich, Evelyn Jäkel, Matthias Voigt, Stephan Borrmann, Peter Spichtinger, and Manfred Wendisch
Atmos. Chem. Phys., 16, 7681–7693, https://doi.org/10.5194/acp-16-7681-2016, https://doi.org/10.5194/acp-16-7681-2016, 2016
Short summary
Short summary
Solar spectra of optical layer properties of cirrus have been derived from the first truly collocated airborne radiation measurements using an aircraft and a towed sensor platform. The measured layer properties differ slightly due to horizontal cirrus inhomogeneities and the influence of low-level water clouds. Applying a 1-D radiative transfer model sensitivity studies were performed. It was found that if a low-level cloud is not considered, the solar cooling of the cirrus is strongly overestimated.
Gerald M. Lohmann, Adam H. Monahan, and Detlev Heinemann
Atmos. Chem. Phys., 16, 6365–6379, https://doi.org/10.5194/acp-16-6365-2016, https://doi.org/10.5194/acp-16-6365-2016, 2016
Short summary
Short summary
Increasing numbers of photovoltaic (PV) power systems call for the characterization of irradiance variability with very high spatiotemporal resolution. We use 1 Hz irradiance data recorded by as many as 99 pyranometers and show mixed sky conditions to differ substantially from clear and overcast skies. For example, the probabilities of strong fluctuations and their respective spatial autocorrelation structures are appreciably distinct under mixed conditions.
John H. Marsham, Douglas J. Parker, Martin C. Todd, Jamie R. Banks, Helen E. Brindley, Luis Garcia-Carreras, Alexander J. Roberts, and Claire L. Ryder
Atmos. Chem. Phys., 16, 3563–3575, https://doi.org/10.5194/acp-16-3563-2016, https://doi.org/10.5194/acp-16-3563-2016, 2016
Short summary
Short summary
The roles of water, clouds and airborne dust in controlling the heating of the Sahara are uncertain, which has major implications for the West African monsoon. Observations from the Fennec project, with satellite data, show that total atmospheric water content provides a far stronger control on total radiative heating than dust does, but dust provides the stronger control on surface heating. Therefore major heating errors in global models are likely due to known errors in water transport.
Adel Imamovic, Katsumasa Tanaka, Doris Folini, and Martin Wild
Atmos. Chem. Phys., 16, 2719–2725, https://doi.org/10.5194/acp-16-2719-2016, https://doi.org/10.5194/acp-16-2719-2016, 2016
Short summary
Short summary
Systematic measurements of surface solar radiation revealed a worldwide decrease from the 1960s to the mid-1980s. The role of urbanization for this so called global dimming is still under debate. We developed a set of population-data based urbanization indicators and found no correlation between urbanization and global dimming for Europe and Japan, while an urbanization impact can't be precluded for Asia. It is thus called into question whether the global dimming was mainly a local phenomenon.
Ilias Fountoulakis, Alkiviadis F. Bais, Konstantinos Fragkos, Charickleia Meleti, Kleareti Tourpali, and Melina Maria Zempila
Atmos. Chem. Phys., 16, 2493–2505, https://doi.org/10.5194/acp-16-2493-2016, https://doi.org/10.5194/acp-16-2493-2016, 2016
Short summary
Short summary
Short- and long-term variability of spectral UV irradiance at Thessaloniki, Greece, is discussed in association with changes in total ozone column, aerosols and cloudiness. The UV data set from two Brewer spectrophotometers is used for the analysis. For the entire period 1994–2014, positive, statistically significant increases of UV irradiance were found, mainly attributable to changes in aerosols. UV irradiance is mainly increased from 1994 to 2006 and remains relatively stable thereafter.
Costas A. Varotsos, Chris G. Tzanis, and Nicholas V. Sarlis
Atmos. Chem. Phys., 16, 2007–2011, https://doi.org/10.5194/acp-16-2007-2016, https://doi.org/10.5194/acp-16-2007-2016, 2016
Short summary
Short summary
It has been recently reported that the current 2015–2016 El Niño could become "one of the strongest on record". To further explore this claim, we performed a new analysis that allows the detection of precursory signals of the strong El Niño events by using a recently developed non-linear dynamics tool. The analysis of the SOI time series shows that the 2015–2016 El Niño would be rather a "moderate to strong" or even a "strong” event and not "one of the strongest on record", as that of 1997–1998.
X. Guan, J. Huang, R. Guo, H. Yu, P. Lin, and Y. Zhang
Atmos. Chem. Phys., 15, 13777–13786, https://doi.org/10.5194/acp-15-13777-2015, https://doi.org/10.5194/acp-15-13777-2015, 2015
Short summary
Short summary
Dynamical adjustment methodology has been applied to the raw surface air temperature and has successfully identified and separated the contribution of dynamically induced temperature (DIT) and radiatively forced temperature (RFT). It found that regional anthropogenic radiative forcing caused the enhanced warming in the semi-arid region, which may be closely associated with local human activities.
C.-M. Gan, J. Pleim, R. Mathur, C. Hogrefe, C. N. Long, J. Xing, D. Wong, R. Gilliam, and C. Wei
Atmos. Chem. Phys., 15, 12193–12209, https://doi.org/10.5194/acp-15-12193-2015, https://doi.org/10.5194/acp-15-12193-2015, 2015
Short summary
Short summary
This study attempts to determine the consequences of the changes in tropospheric aerosol burden arising from substantial reductions in emissions of SO2 and NOx associated with control measures under the Clean Air Act especially on trends in solar radiation. Comparisons of model results with observations of aerosol optical depth, aerosol concentration, and radiation demonstrate that the coupled WRF-CMAQ model is capable of replicating the trends well even though it tends to underestimate the AOD.
G. Bernhard, A. Arola, A. Dahlback, V. Fioletov, A. Heikkilä, B. Johnsen, T. Koskela, K. Lakkala, T. Svendby, and J. Tamminen
Atmos. Chem. Phys., 15, 7391–7412, https://doi.org/10.5194/acp-15-7391-2015, https://doi.org/10.5194/acp-15-7391-2015, 2015
Short summary
Short summary
Surface erythemal UV data from the Ozone Monitoring Instrument (OMI) are validated for high northern latitudes (Arctic and Scandinavia) using ground-based measurements. The bias in OMI data caused by incorrect assumptions of the surface albedo are quantified and the mechanism that causes this bias is discussed. Methods to improve the accuracy of OMI data products are presented.
S. R. Wilson
Atmos. Chem. Phys., 15, 7337–7349, https://doi.org/10.5194/acp-15-7337-2015, https://doi.org/10.5194/acp-15-7337-2015, 2015
Short summary
Short summary
Measurements of the photolysis rates which drive production of OH from ozone are reported for Cape Grim, a "clean-air" site in the southern midlatitudes. This remote maritime site sits in the Southern Ocean, a region of the globe which is little studied. From the 6 years of data the dependence of this photolysis on solar zenith angle and stratospheric ozone is determined. Included with the reported values is an estimate of the uncertainties in these measurements.
C. A. Varotsos, S. Lovejoy, N. V. Sarlis, C. G. Tzanis, and M. N. Efstathiou
Atmos. Chem. Phys., 15, 7301–7306, https://doi.org/10.5194/acp-15-7301-2015, https://doi.org/10.5194/acp-15-7301-2015, 2015
Short summary
Short summary
Varotsos et al. (Theor. Appl. Climatol., 114, 725–727, 2013) found that the solar ultraviolet (UV) wavelengths exhibit 1/f-type power-law correlations. In this study, we show that the residues of the spectral solar incident flux with respect to the Planck law over a wider range of wavelengths (i.e. UV-visible) have a scaling regime too.
P. Wang, M. Allaart, W. H. Knap, and P. Stammes
Atmos. Chem. Phys., 15, 4131–4144, https://doi.org/10.5194/acp-15-4131-2015, https://doi.org/10.5194/acp-15-4131-2015, 2015
Short summary
Short summary
A green light sensor has been developed at KNMI to measure actinic flux profiles together with an ozonesonde. The impact of clouds on the actinic flux is clearly detected. Good agreement is found between the DAK-simulated actinic flux profiles and the observations for single-layer clouds in fully overcast scenes. The instrument is suitable for operational balloon measurements because of its simplicity and low cost.
V. De Bock, H. De Backer, R. Van Malderen, A. Mangold, and A. Delcloo
Atmos. Chem. Phys., 14, 12251–12270, https://doi.org/10.5194/acp-14-12251-2014, https://doi.org/10.5194/acp-14-12251-2014, 2014
Cited articles
Andrade, M. F., Kumar, P., Freitas, E. D., Ynoue, R. Y., Martins, J.,
Martins, L. D., Nogueira, T., Perez-Martinez, P., Miranda, R. M.,
Albuquerque, T., Gonçalves, F. L. T., Oyama, B., and Zhang, Y.: Air
quality in the megacity of São Paulo: Evolution over the last 30 years
and future perspectives, Atmos. Environ., 159, 66–82, 2017.
Bristow, K. L. and Campbell, G. S.: On the relationship between incoming
solar radiation and daily maximum and minimum
temperature, Agr. Forest Meteorol., 31, 159–166, 1984.
Coelho, C. A. S., Firpo, M. A. F., Maia, A. H. N., and MacLachlan, C.:
Exploring the feasibility of empirical, dynamical and combined probabilistic
rainy season onset forecasts for São Paulo, Brazil, Int. J. Climatol., 37, 398–411, https://doi.org/10.1002/joc.5010, 2017.
Dai, A., Trenberth, K. E., and Karl, T. R.: Effects of clouds, soil moisture,
precipitation, and water vapor on diurnal temperature range, J. Climate, 12,
2451–2473, 1999.
de Abreu, R. C., Tett, S. F. B., Schurer, A., and Rocha, H. R.: Attribution of detected temperature trends in Southeast Brazil, Geophys. Res. Lett., 46,
8407–8414, https://doi.org/10.1029/2019GL083003, 2019.
de Almeida Castanho, A. D. and Artaxo, P.: Wintertime and summertime São Paulo aerosol source apportionment study, Atmos. Environ., 35, 4889–4902, 2001.
de Almeida Castanho, A. D., Martins, J. V., and Artaxo, P.: MODIS aerosol optical
depth retrievals with high spatial resolution over an urban area using the
critical reflectance, J. Geophys. Res.-Atmos., 113, D02201,
https://doi.org/10.1029/2007JD008751, 2008.
Dutton, E. G., Stone, R. S., Nelson, D. W., and Mendonca, B. G.: Recent
interannual variations in solar radiation, cloudiness, and surface
temperature at the South Pole, J. Climate, 4, 848–858, 1991.
ESRL/NOAA: Earth System Research Laboratory from the National Oceanic and Atmospheric Administration, available at: https://www.esrl.noaa.gov/psd/enso/climaterisks/years/top24enso.html, last access: 19 March 2021.
Ferreira, M. J., Oliveira, A. P., Soares, J., Codato, G., Bárbaro, E. W.,
and Escobedo, J. F.: Radiation balance at the surface in the city of São
Paulo, Brazil: diurnal and seasonal variations, Theor. Appl. Climatol., 107, 229–246, https://doi.org/10.1007/s00704-011-0480-2, 2012.
Freitas, S. R., Longo, K. M., Dias, M. A. F. S., Dias, P. L. S., Chatfield, R., Prins, E., Artaxo, P., Grell, G. A., and Recuero, F. S.: Monitoring the
transport of biomass burning emissions in South America,
Environ. Fluid Mech., 5, 135–167, 2005.
Hamed, K. H. and Rao, A. R.: A modified Mann-Kendall trend test for
autocorrelated data, J. Hydrol., 204, 182–196, 1998.
Horseman, A., MacKenzie, A. R., and Timmis, R.: Using bright sunshine at
low-elevation angles to compile an historical record of the effect of
aerosol on incoming solar radiation, Atmos. Environ., 42, 7600–7610, 2008.
Kazadzis, S., Founda, D., Psiloglou, B. E., Kambezidis, H., Mihalopoulos, N., Sanchez-Lorenzo, A., Meleti, C., Raptis, P. I., Pierros, F., and Nabat, P.: Long-term series and trends in surface solar radiation in Athens, Greece, Atmos. Chem. Phys., 18, 2395–2411, https://doi.org/10.5194/acp-18-2395-2018, 2018.
Kim, Y. H. and Baik, J. J.: Maximum urban heat island intensity in
Seoul, J. Appl. Meteorol., 41, 651–659, 2002.
Kren, A. C., Pilewskie, P., and Coddington, O.: Where does Earth's atmosphere
get its energy?, J. Space Weather Spac., 7, 1–16, https://doi.org/10.1051/swsc/2017007, 2017.
Kumari, B. P. and Goswami, B. N.: Seminal role of clouds on solar dimming
over India monsoon region, Geophys. Res. Lett., 37, L06703,
https://doi.org/10.1029/2009GL042133, 2010.
Landulfo, E., Papayannis, A., Artaxo, P., Castanho, A. D. A., de Freitas, A. Z., Souza, R. F., Vieira Junior, N. D., Jorge, M. P. M. P., Sánchez-Ccoyllo, O. R., and Moreira, D. S.: Synergetic measurements of aerosols over São Paulo, Brazil using LIDAR, sunphotometer and satellite data during the dry season, Atmos. Chem. Phys., 3, 1523–1539, https://doi.org/10.5194/acp-3-1523-2003, 2003.
Li, Z., Yang, J., Shi, C., and Pu, M.: Urbanization effects on fog in China:
Field Research and Modeling, Pure Appl. Geophys., 169, 927–939, https://doi.org/10.1007/s00024-011-0356-5, 2012.
Makowski, K., Wild, M., and Ohmura, A.: Diurnal temperature range over Europe between 1950 and 2005, Atmos. Chem. Phys., 8, 6483–6498, https://doi.org/10.5194/acp-8-6483-2008, 2008.
Manara, V., Brunetti, M., Celozzi, A., Maugeri, M., Sanchez-Lorenzo, A., and Wild, M.: Detection of dimming/brightening in Italy from homogenized all-sky and clear-sky surface solar radiation records and underlying causes (1959–2013), Atmos. Chem. Phys., 16, 11145–11161, https://doi.org/10.5194/acp-16-11145-2016, 2016.
Manara, V., Brunetti, M., Maugeri, M., Sanchez-Lorenzo, A., and Wild, M.:
Sunshine duration and global radiation trends in Italy (1959–2013): To what
extent do they agree?, J. Geophys. Res.-Atmos., 122, 4312–4331,
https://doi.org/10.1002/2016JD026374, 2017.
Manara, V., Bassi, M., Brunetti, M., Cagnazzi, B., and Maugeri, M.: 1990–2016 surface solar
radiation variability and trend over the Piedmont region (northwest Italy), Theor. Appl. Climatol., 136, 849–862, https://doi.org/10.1007/s00704-018-2521-6, 2019.
Muggeo, V. M. R.: Estimating regression models with unknown
break-points, Stat. Med., 22, 3055–3071, https://doi.org/10.1002/sim.1545, 2003.
Obregón, G. O., Marengo, J. A., and Nobre, C. A.: Rainfall and climate
variability: long-term trends in the Metropolitan Area of São Paulo in
the 20th century, Clim. Res., 61, 93–107, https://doi.org/10.3354/cr01241, 2014.
Ohvril, H., Teral, R., Neiman, L., Kannel, M., Uustare, M., Tee, M., Russak,
V., Okulov, O., Jõeveer, A., Kallis, A., Ohvril, T., Terez, E. I.,
Terez, G. A., Gushchin, G. K., Abakumova, G. M., Gorbarenko, E. V.,
Tsvetkov, A. V., and Laulainen, N.: Global dimming and brightening versus
atmospheric column transparency, Europe, 1906–2007, J. Geophys. Res.-Atmos., 114, D00D12, https://doi.org/10.1029/2008JD010644, 2009.
Oyama, B. S.: Contribution of the vehicular emission to the organic aerosol
composition in the city of São Paulo, Doctoral Thesis, Universidade de
São Paulo, São Paulo, Brazil, 91 pp., available at: https://www.iag.usp.br/pos/sites/default/files/t_beatriz_s_oyama_corrigida.pdf (last access: 25 October 2019), 2015.
Paixão, L. A. and Priori, A. A.: Social and environmental transformations
of the rural landscape after an environmental disaster (Paraná, Brazil,
1963), Estudos Históricos, 28, 323–342, https://doi.org/10.1590/S0103-21862015000200006, 2015.
Paltridge, G. W. and Platt, C. M. R.: Radiative processes in meteorology and
climatology, Elsevier Science, Amsterdam, The Netherlands, Oxford, UK, New York, USA, 1976.
Plana-Fattori, A. and Ceballos, J. C.: Algumas análises do comportamento
de um actinógrafo bimetálico Fuess modelo
58d, Rev. Bras. Meteorol., 3, 247–256, 1988.
Raichijk, C.: Observed trends in sunshine duration over South America, Int. J. Climatol., 32, 669–680, https://doi.org/10.1002/joc.2296, 2012.
Reid, P. C., Hari, R. E., Beaugrand, G., Livingstone, D. M., Marty, C., Straile, D., Barichivich, J., Goberville, E., Adrian, R., Aono, Y., Brown, R., Foster, J., Groisman, P., Hélaouët, P., Hsu, H.-H., Kirby, R., Knight, J., Kraberg, A., Li, J., Lo, T.-T., Myneni, R. B., North, R. P., Pounds, J. A., Sparks, T., Stübi, R., Tian, Y., Wiltshire, K. H., Xiao, D., and Zhu, Z.: Global impacts of the 1980's regime
shift, Global Change Biol., 22, 682–703, https://doi.org/10.1111/gcb.13106, 2016.
Rosas, J., Yamasoe, M. A., Sena, E. T., and Rosário, N. E.: Cloud
climatology from visual observations at São Paulo,
Brazil, Int. J. Climatol., 40, 207–219, https://doi.org/10.1002/joc.6203, 2020.
Sen, P. K.: Estimates of the regression coefficient based on Kendall's
Tau, J. Am. Stat. Assoc., 63, 1379–1389, 1968.
Shi, G., Hayasaka, T., Ohmura, A., Chen, Z.-H., Wang, B., Zhao, J.-Q., Che,
H.-Z., and Xu, L.: Data quality assessment and the long-term trend of ground
solar radiation in China, J. Appl. Meteorol. Clim., 47, 1006–1016, 2008.
Silva, F. B., Longo, K. M., and Andrade, F. M.: Spatial and temporal
variability patterns of the urban heat island in São
Paulo, Environments, 4, 27, https://doi.org/10.3390/environments4020027, 2017.
Silva, P. F. J.: Notas sobre a industrialização no estado de São
Paulo, Brasil, Finisterra, 46, 87–98, 2011.
Soares, R. V.: Ocorrência de incêndios em povoamentos florestais,
Floresta, 22, 39–53, https://doi.org/10.5380/rf.v22i12.6424, 1994.
Stanhill, G. and Cohen, S.: Global dimming: a review of the evidence for a
widespread and significant reduction in global radiation with discussion of
its probable causes and possible agricultural consequences, Agr. Forest Meteorol., 107, 255–278, 2001.
Stanhill, G., Achiman, O., Rosa, R., and Cohen, S.: The cause of solar dimming and brightening at the Earth's surface during the last half century:
Evidence from measurements of sunshine duration, J. Geophys. Res.-Atmos., 119, 10902–10911, https://doi.org/10.1002/2013JD021308, 2014.
Wild, M.: Global dimming and brightening: A review, J. Geophys. Res.-Atmos., 114, D00D16, https://doi.org/10.1029/2008JD011470, 2009.
Wild, M.: Enlightening global dimming and brightening, B. Am. Meteorol. Soc., 93, 27–37, https://doi.org/10.1175/BAMS-D-11-00074.1, 2012.
Wild, M., Gilgen, H., Roesch, A., Ohmura, A., Long, C. N., Dutton, E. G.,
Forgan, B., Kallis, A., Russak, V., and Tsvetkov, A.: From dimming to
brightening: decadal changes in solar radiation at Earth's surface, Science, 308, 847–850, 2005.
Wild, M., Ohmura, A., and Makowski, K.: Impact of global dimming and
brightening on global warming, Geophys. Res. Lett., 34, L04702, https://doi.org/10.1029/2006GL028031, 2007.
Wild, M., Folini, D., Schär, C., Loeb, N., Dutton, E. G., and
König-Langlo, G.: The global energy balance from a surface perspective,
Clim. Dynam., 40, 3107–3134, https://doi.org/10.1007/s00382-012-1569-8, 2013.
Xavier, T. M. B. S., Silva Dias, M. A. F., and Xavier, A. F. S.: Impact of
ENSO episodes on the autumn rainfall patterns near São Paulo, Brazil, Int. J. Climatol., 15, 571–584, 1995.
Yamasoe, M. A.: Annual and seasonal mean values of surface solar irradiation, sunshine duration, diurnal temperature range, cloud cover fraction, maximum and minimum air temperature, based on observations performed at IAG meteorological station from 1961 to 2016, available at: https://www.iag.usp.br/lraa/index.php/data/cientec/weather-station-climatology/, last access: 26 March 2021.
Yamasoe, M. A., Rosário, N. M. E., and Barros, K. M.: Downward solar
global irradiance at the surface in São Paulo city – The climatological
effects of aerosol and clouds, J. Geophys. Res.-Atmos., 122, 391–404,
https://doi.org/10.1002/2016JD025585, 2017.
Yang, S., Wang, X. L., and Wild, M.: Causes of Dimming and Brightening in
China Inferred from Homogenized Daily Clear-Sky and All-Sky in situ Surface
Solar Radiation Records (1958–2016), J. Climate, 32, 5901–5913, https://doi.org/10.1175/JCLI-D-18-0666.1, 2019.
Zerefos, C. S., Eleftheratos, K., Meleti, C., Kazadzis, S., Romanou, A.,
Ichoku, C., Tselioudis, G., and Bais, A.: Solar dimming and brightening over
Thessaloniki, Greece, and Beijing, China, Tellus B, 61, 657–665, https://doi.org/10.1111/j.1600-0889.2009.00425.x, 2009.
Zhang, S., Wu, J., Fan, W., Yang, Q., and Zhao, D.: Review of aerosol optical
depth retrieval using visibility data, Earth-Sci. Rev., 200, 102986,
https://doi.org/10.1016/j.earscirev.2019.102986, 2020.
Short summary
Spatio-temporal disparity to assess global dimming and brightening phenomena has been a critical topic. For instance, few studies addressed surface solar irradiation (SSR) long-term trend in South America. In this study, SSR, sunshine duration (SD) and the diurnal temperature range (DTR) are analysed for São Paulo, Brazil. We found a dimming phase, identified by SSR, SD and DTR, extending till 1983. Then, while SSR is still declining, consistent with cloud increasing, SD and DTR are increasing.
Spatio-temporal disparity to assess global dimming and brightening phenomena has been a critical...
Altmetrics
Final-revised paper
Preprint