Articles | Volume 21, issue 5
Atmos. Chem. Phys., 21, 4025–4037, 2021
https://doi.org/10.5194/acp-21-4025-2021
Atmos. Chem. Phys., 21, 4025–4037, 2021
https://doi.org/10.5194/acp-21-4025-2021

Research article 17 Mar 2021

Research article | 17 Mar 2021

Impact of reduced anthropogenic emissions during COVID-19 on air quality in India

Mengyuan Zhang et al.

Related authors

Unexpected enhancement of ozone exposure and health risks during National Day in China
Peng Wang, Juanyong Shen, Men Xia, Shida Sun, Yanli Zhang, Hongliang Zhang, and Xinming Wang
Atmos. Chem. Phys., 21, 10347–10356, https://doi.org/10.5194/acp-21-10347-2021,https://doi.org/10.5194/acp-21-10347-2021, 2021
Short summary
Large-scale synoptic drivers of co-occurring summertime ozone and PM2.5 pollution in eastern China
Lian Zong, Yuanjian Yang, Meng Gao, Hong Wang, Peng Wang, Hongliang Zhang, Linlin Wang, Guicai Ning, Chao Liu, Yubin Li, and Zhiqiu Gao
Atmos. Chem. Phys., 21, 9105–9124, https://doi.org/10.5194/acp-21-9105-2021,https://doi.org/10.5194/acp-21-9105-2021, 2021
Short summary
Modeled changes in source contributions of particulate matter during the COVID-19 pandemic in the Yangtze River Delta, China
Jinlong Ma, Juanyong Shen, Peng Wang, Shengqiang Zhu, Yu Wang, Pengfei Wang, Gehui Wang, Jianmin Chen, and Hongliang Zhang
Atmos. Chem. Phys., 21, 7343–7355, https://doi.org/10.5194/acp-21-7343-2021,https://doi.org/10.5194/acp-21-7343-2021, 2021
Short summary
Source apportionment of black carbon aerosols from light absorption observation and source-oriented modeling: an implication in a coastal city in China
Junjun Deng, Hao Guo, Hongliang Zhang, Jialei Zhu, Xin Wang, and Pingqing Fu
Atmos. Chem. Phys., 20, 14419–14435, https://doi.org/10.5194/acp-20-14419-2020,https://doi.org/10.5194/acp-20-14419-2020, 2020
Short summary
Sensitivity analysis of the surface ozone and fine particulate matter to meteorological parameters in China
Zhihao Shi, Lin Huang, Jingyi Li, Qi Ying, Hongliang Zhang, and Jianlin Hu
Atmos. Chem. Phys., 20, 13455–13466, https://doi.org/10.5194/acp-20-13455-2020,https://doi.org/10.5194/acp-20-13455-2020, 2020
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Unexpected enhancement of ozone exposure and health risks during National Day in China
Peng Wang, Juanyong Shen, Men Xia, Shida Sun, Yanli Zhang, Hongliang Zhang, and Xinming Wang
Atmos. Chem. Phys., 21, 10347–10356, https://doi.org/10.5194/acp-21-10347-2021,https://doi.org/10.5194/acp-21-10347-2021, 2021
Short summary
Role of oceanic ozone deposition in explaining temporal variability in surface ozone at High Arctic sites
Johannes G. M. Barten, Laurens N. Ganzeveld, Gert-Jan Steeneveld, and Maarten C. Krol
Atmos. Chem. Phys., 21, 10229–10248, https://doi.org/10.5194/acp-21-10229-2021,https://doi.org/10.5194/acp-21-10229-2021, 2021
Short summary
Oxidation of low-molecular-weight organic compounds in cloud droplets: global impact on tropospheric oxidants
Simon Rosanka, Rolf Sander, Bruno Franco, Catherine Wespes, Andreas Wahner, and Domenico Taraborrelli
Atmos. Chem. Phys., 21, 9909–9930, https://doi.org/10.5194/acp-21-9909-2021,https://doi.org/10.5194/acp-21-9909-2021, 2021
Short summary
Bias-correcting carbon fluxes derived from land-surface satellite data for retrospective and near-real-time assimilation systems
Brad Weir, Lesley E. Ott, George J. Collatz, Stephan R. Kawa, Benjamin Poulter, Abhishek Chatterjee, Tomohiro Oda, and Steven Pawson
Atmos. Chem. Phys., 21, 9609–9628, https://doi.org/10.5194/acp-21-9609-2021,https://doi.org/10.5194/acp-21-9609-2021, 2021
Short summary
Characterizing model errors in chemical transport modeling of methane: using GOSAT XCH4 data with weak-constraint four-dimensional variational data assimilation
Ilya Stanevich, Dylan B. A. Jones, Kimberly Strong, Martin Keller, Daven K. Henze, Robert J. Parker, Hartmut Boesch, Debra Wunch, Justus Notholt, Christof Petri, Thorsten Warneke, Ralf Sussmann, Matthias Schneider, Frank Hase, Rigel Kivi, Nicholas M. Deutscher, Voltaire A. Velazco, Kaley A. Walker, and Feng Deng
Atmos. Chem. Phys., 21, 9545–9572, https://doi.org/10.5194/acp-21-9545-2021,https://doi.org/10.5194/acp-21-9545-2021, 2021
Short summary

Cited articles

Abdi, B.: The Economic Times, Coronavirus impact: Within ten days, 26 per cent fall in India's energy consumption, available at: https://energy.economictimes.indiatimes.com/news/power/, last access: 27 August 2020. 
Ali, K., Inamdar, S. R., Beig, G., Ghude, S., and Peshin, S.: Surface ozone scenario at Pune and Delhi during the decade of 1990s, J. Earth Syst. Sci., 121, 373–383, https://doi.org/10.1007/s12040-012-0170-1, 2012. 
Anderson, R. M., Heesterbeek, H., Klinkenberg, D., and Hollingsworth, T. D.: How will country-based mitigation measures influence the course of the COVID-19 epidemic?, Lancet, 395, 931–934, https://doi.org/10.1016/s0140-6736(20)30567-5, 2020. 
Apituley, A., Pedergnana, M., Sneep, M., Pepijn Veefkind, J., Loyola, D., Landgraf, J., and Borsdorff, T.: Sentinel-5 Precursor/TROPOMI Level 2 Product User Manual Carbon Monoxide, SRON-S5P-LEV2-MA-002, avaliable at: http://www.tropomi.eu/sites/default/files/files/Sentinel-5P-Level-2-Product-User-Manual-CarbonMonoxide_v1.00.02_20180613.pdf (last access: 7 February 2021), 2018. 
Download
Short summary
We studied changes in air quality in India induced by the COVID-19 lockdown through both surface observations and the CMAQ model. Our results show that emission reductions improved the air quality across India during the lockdown. On average, the levels of PM2.5 and O3 decreased by 28 % and 15 %, indicating positive effects of lockdown measures. We suggest that more stringent and localized emission control strategies should be implemented in India to mitigate air pollutions.
Altmetrics
Final-revised paper
Preprint