Articles | Volume 21, issue 3
https://doi.org/10.5194/acp-21-2229-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-2229-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Insights into particulate matter pollution in the North China Plain during wintertime: local contribution or regional transport?
Jiarui Wu
Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China
Naifang Bei
School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
Yuan Wang
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
Xia Li
Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China
Suixin Liu
Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China
Lang Liu
Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China
Ruonan Wang
Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China
Jiaoyang Yu
Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
Tianhao Le
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
Min Zuo
Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China
Zhenxing Shen
School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
Junji Cao
Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China
Xuexi Tie
Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
Guohui Li
CORRESPONDING AUTHOR
Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China
Related authors
Jiamao Zhou, Jiarui Wu, Xiaoli Su, Ruonan Wang, Imad EI Haddad, Xia Li, Qian Jiang, Ting Zhang, Wenting Dai, Junji Cao, Andre S. H. Prevot, Xuexi Tie, and Guohui Li
Atmos. Chem. Phys., 25, 7563–7580, https://doi.org/10.5194/acp-25-7563-2025, https://doi.org/10.5194/acp-25-7563-2025, 2025
Short summary
Short summary
Brown carbon (BrC) is a type of airborne particle produced from various combustion sources which is light absorption. Historically, climate models have categorizing organic particles as either non-absorbing or purely reflective. Our study shows that BrC can reduce the usual cooling effect of organic particles. While BrC is often linked to biomass burning, however, BrC from fossil fuels contributes significantly to atmospheric heating.
Yuhan Wang, Lucas Bastien, Yuan Wang, Ling Jin, and Robert Harley
EGUsphere, https://doi.org/10.5194/egusphere-2025-3629, https://doi.org/10.5194/egusphere-2025-3629, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Climate change is making heatwaves and stagnant weather more frequent, which can worsen air pollution. We studied how these extreme conditions affect the sources of summer ozone in California's Central Valley. Using a state-of-the-art modeling tool, we found that weather changes can greatly shift which, where, and when to reduce emissions for the largest air quality benefits. Our results highlight the need to account for extreme weather in designing effective air quality strategies.
Jiamao Zhou, Jiarui Wu, Xiaoli Su, Ruonan Wang, Imad EI Haddad, Xia Li, Qian Jiang, Ting Zhang, Wenting Dai, Junji Cao, Andre S. H. Prevot, Xuexi Tie, and Guohui Li
Atmos. Chem. Phys., 25, 7563–7580, https://doi.org/10.5194/acp-25-7563-2025, https://doi.org/10.5194/acp-25-7563-2025, 2025
Short summary
Short summary
Brown carbon (BrC) is a type of airborne particle produced from various combustion sources which is light absorption. Historically, climate models have categorizing organic particles as either non-absorbing or purely reflective. Our study shows that BrC can reduce the usual cooling effect of organic particles. While BrC is often linked to biomass burning, however, BrC from fossil fuels contributes significantly to atmospheric heating.
Hsiang-He Lee, Xue Zheng, Shaoyue Qiu, and Yuan Wang
Atmos. Chem. Phys., 25, 6069–6091, https://doi.org/10.5194/acp-25-6069-2025, https://doi.org/10.5194/acp-25-6069-2025, 2025
Short summary
Short summary
The study investigates how aerosol–cloud interactions affect warm boundary layer stratiform clouds over the eastern North Atlantic. High-resolution weather model simulations reveal that non-rain clouds at the edge of cloud systems are prone to evaporation, leading to an aerosol drying effect and a transition of aerosols back to the accumulation mode for future activation. The study shows that this dynamic behavior is often not adequately represented in most previous prescribed-aerosol simulations.
Liyan Liu, Hongmei Xu, Mengyun Yang, Abdullah Akhtar, Jian Sun, and Zhenxing Shen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1821, https://doi.org/10.5194/egusphere-2025-1821, 2025
Short summary
Short summary
Atmospheric microplastics and plasticizers can disperse into ecosystem and directly enter the human body, causing multiple adverse effects. The fingerprint markers of microplastics sources are very lacking. We examine the concentration, size distribution, eco-health risks and production of reactive oxygen species of microplastics from five typical sources, especially neglected rural sources. Our results could provide a scientific foundation for developing efficient management strategies.
Shuyu Zhao, Tian Feng, Xuexi Tie, Biao Tian, Xiao Hu, Bo Hu, Dong Yang, Sinan Gu, and Minghu Ding
EGUsphere, https://doi.org/10.5194/egusphere-2025-682, https://doi.org/10.5194/egusphere-2025-682, 2025
Short summary
Short summary
This study investigated how cloud-radiation interactions influence ozone formation in a warming climate. Using measurements, reanalysis data and models, we found that cloud-radiation interactions can worsen O3 pollution and climate warming will amplify the influence. We highlight that climate change will pose greater challenges for China’s O3 pollution prevention and control, and actions such as reducing O3 precursors emissions and mitigating climate change are urgently needed.
Tian Feng, Guohui Li, Shuyu Zhao, Naifang Bei, Xin Long, Yuepeng Pan, Yu Song, Ruonan Wang, Xuexi Tie, and Luisa Molina
EGUsphere, https://doi.org/10.5194/egusphere-2025-243, https://doi.org/10.5194/egusphere-2025-243, 2025
Short summary
Short summary
Impacts of agricultural fertilization on nitrogen oxide and air quality are becoming more pronounced with continuous reductions in fossil fuel sources in China. We report that atmospheric nitrogen dioxide pulses driven by agricultural fertilizations largely complicate air pollution in North China, highlighting the necessity of agricultural emission control.
Lang Liu, Xin Long, Yi Li, Zengliang Zang, Fengwen Wang, Yan Han, Zhier Bao, Yang Chen, Tian Feng, and Jinxin Yang
Atmos. Chem. Phys., 25, 1569–1585, https://doi.org/10.5194/acp-25-1569-2025, https://doi.org/10.5194/acp-25-1569-2025, 2025
Short summary
Short summary
This study uses WRF-Chem to assess how meteorological conditions and emission reductions affected fine particulate matter (PM2.5) in the North China Plain (NCP). It highlights regional disparities: in the northern NCP, adverse weather negated emission reduction effects. In contrast, the southern NCP featured a PM2.5 decrease due to favorable weather and emission reductions. The research highlighted the interaction between emissions, meteorology, and PM2.5.
Naifang Bei, Bo Xiao, Ruonan Wang, Yuning Yang, Lang Liu, Yongming Han, and Guohui Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-3558, https://doi.org/10.5194/egusphere-2024-3558, 2025
Short summary
Short summary
This study uses a cloud-resolving model to examine how aerosols influence a mesoscale convective system (MCS) in central China via aerosol-radiation (ARIs) and aerosol-cloud interactions (ACIs). Without ARIs, added aerosols don’t significantly affect precipitation due to cloud competition for moisture. ARIs can stabilize or enhance convection. High aerosol levels lead to a combined ARI and ACI effect that greatly reduces precipitation.
Zihan Song, Leiming Zhang, Chongguo Tian, Qiang Fu, Zhenxing Shen, Renjian Zhang, Dong Liu, and Song Cui
Atmos. Chem. Phys., 24, 13101–13113, https://doi.org/10.5194/acp-24-13101-2024, https://doi.org/10.5194/acp-24-13101-2024, 2024
Short summary
Short summary
A novel concept integrating crop cycle information into fire spot extraction was proposed. Spatiotemporal variations of open straw burning in Northeast China are revealed. Open straw burning in Northeast China emitted a total of 218 Tg of CO2-eq during 2001–2020. The policy of banning straw burning effectively reduced greenhouse gas emissions.
Xiaojian Zheng, Xiquan Dong, Baike Xi, Timothy Logan, and Yuan Wang
Atmos. Chem. Phys., 24, 10323–10347, https://doi.org/10.5194/acp-24-10323-2024, https://doi.org/10.5194/acp-24-10323-2024, 2024
Short summary
Short summary
The marine boundary layer aerosol–cloud interactions (ACIs) are examined using in situ measurements from two aircraft campaigns over the eastern North Atlantic (ACE-ENA) and Southern Ocean (SOCRATES). The SOCRATES clouds have more and smaller cloud droplets. The ACE-ENA clouds exhibit stronger drizzle formation and growth. Results found distinctive aerosol–cloud interactions for two campaigns. The drizzle processes significantly alter sub-cloud aerosol budgets and impact the ACI assessments.
Xuehong Gong, Zeyu Liu, Jie Tian, Qiyuan Wang, Guohui Li, Zhisheng An, and Yongming Han
EGUsphere, https://doi.org/10.5194/egusphere-2024-1684, https://doi.org/10.5194/egusphere-2024-1684, 2024
Short summary
Short summary
Our study analyzed CO2 emissions from wildfires in China from 2001 to 2022. Cropland and forest fires contributed the most, while grassland fires were the least. Emissions from forest and shrub fires decreased significantly, while cropland fires increased. The highest emissions were in Heilongjiang and Inner Mongolia. China's effective policy management has reduced wildfire-related CO2 emissions, aiding global climate change efforts.
Elyse A. Pennington, Yuan Wang, Benjamin C. Schulze, Karl M. Seltzer, Jiani Yang, Bin Zhao, Zhe Jiang, Hongru Shi, Melissa Venecek, Daniel Chau, Benjamin N. Murphy, Christopher M. Kenseth, Ryan X. Ward, Havala O. T. Pye, and John H. Seinfeld
Atmos. Chem. Phys., 24, 2345–2363, https://doi.org/10.5194/acp-24-2345-2024, https://doi.org/10.5194/acp-24-2345-2024, 2024
Short summary
Short summary
To assess the air quality in Los Angeles (LA), we improved the CMAQ model by using dynamic traffic emissions and new secondary organic aerosol schemes to represent volatile chemical products. Source apportionment demonstrates that the urban areas of the LA Basin and vicinity are NOx-saturated, with the largest sensitivity of O3 to changes in volatile organic compounds in the urban core. The improvement and remaining issues shed light on the future direction of the model development.
Da Gao, Bin Zhao, Shuxiao Wang, Yuan Wang, Brian Gaudet, Yun Zhu, Xiaochun Wang, Jiewen Shen, Shengyue Li, Yicong He, Dejia Yin, and Zhaoxin Dong
Atmos. Chem. Phys., 23, 14359–14373, https://doi.org/10.5194/acp-23-14359-2023, https://doi.org/10.5194/acp-23-14359-2023, 2023
Short summary
Short summary
Surface PM2.5 concentrations can be enhanced by aerosol–radiation interactions (ARIs) and aerosol–cloud interactions (ACIs). In this study, we found PM2.5 enhancement induced by ACIs shows a significantly smaller decrease ratio than that induced by ARIs in China with anthropogenic emission reduction from 2013 to 2021, making ACIs more important for enhancing PM2.5 concentrations. ACI-induced PM2.5 enhancement needs to be emphatically considered to meet the national PM2.5 air quality standard.
Yun Lin, Yuan Wang, Jen-Shan Hsieh, Jonathan H. Jiang, Qiong Su, Lijun Zhao, Michael Lavallee, and Renyi Zhang
Atmos. Chem. Phys., 23, 13835–13852, https://doi.org/10.5194/acp-23-13835-2023, https://doi.org/10.5194/acp-23-13835-2023, 2023
Short summary
Short summary
Tropical cyclones (TCs) can cause catastrophic damage to coastal regions. We used a numerical model that explicitly simulates aerosol–cloud interaction and atmosphere–ocean coupling. We show that aerosols and ocean coupling work together to make TC storms bigger but weaker. Moreover, TCs in polluted air have more rainfall and higher sea levels, leading to more severe storm surges and flooding. Our research highlights the roles of aerosols and ocean-coupling feedbacks in TC hazard assessment.
Yuan Wang, Xiaojian Zheng, Xiquan Dong, Baike Xi, and Yuk L. Yung
Atmos. Chem. Phys., 23, 8591–8605, https://doi.org/10.5194/acp-23-8591-2023, https://doi.org/10.5194/acp-23-8591-2023, 2023
Short summary
Short summary
Marine boundary layer clouds remain poorly predicted in global climate models due to multiple entangled uncertainty sources. This study uses the in situ observations from a recent field campaign to constrain and evaluate cloud physics in a simplified version of a climate model. Progress and remaining issues in the cloud physics parameterizations are identified. We systematically evaluate the impacts of large-scale forcing, microphysical scheme, and aerosol concentrations on the cloud property.
Diwei Wang, Zhenxing Shen, Qian Zhang, Yali Lei, Tian Zhang, Shasha Huang, Jian Sun, Hongmei Xu, and Junji Cao
Atmos. Chem. Phys., 22, 14893–14904, https://doi.org/10.5194/acp-22-14893-2022, https://doi.org/10.5194/acp-22-14893-2022, 2022
Short summary
Short summary
The optical properties and molecular structure of atmospheric brown carbon (BrC) in winter of several megacities in China were analyzed, and the source contribution of brown carbon was improved by using positive matrix factorization coupled with a multilayer perceptron neural network. These results can provide a basis for the more effective control of BrC to reduce its impacts on regional climates and human health.
Yi Cheng, Shaofei Kong, Liquan Yao, Huang Zheng, Jian Wu, Qin Yan, Shurui Zheng, Yao Hu, Zhenzhen Niu, Yingying Yan, Zhenxing Shen, Guofeng Shen, Dantong Liu, Shuxiao Wang, and Shihua Qi
Earth Syst. Sci. Data, 14, 4757–4775, https://doi.org/10.5194/essd-14-4757-2022, https://doi.org/10.5194/essd-14-4757-2022, 2022
Short summary
Short summary
This work establishes the first emission inventory of carbonaceous aerosols from cooking, fireworks, sacrificial incense, joss paper burning, and barbecue, using multi-source datasets and tested emission factors. These emissions were concentrated in specific periods and areas. Positive and negative correlations between income and emissions were revealed in urban and rural regions. The dataset will be helpful for improving modeling studies and modifying corresponding emission control policies.
Huikun Liu, Qiyuan Wang, Suixin Liu, Bianhong Zhou, Yao Qu, Jie Tian, Ting Zhang, Yongming Han, and Junji Cao
Atmos. Chem. Phys., 22, 11739–11757, https://doi.org/10.5194/acp-22-11739-2022, https://doi.org/10.5194/acp-22-11739-2022, 2022
Short summary
Short summary
Atmospheric motions play an important role in the mass concentration and the direct radiative effect (DRE) of black carbon (BC). The finding from this study elaborated the impacts of different scales of atmospheric motion on source-specific BC and its DREs, which revealed the nonlinear change between BC mass concentration and its DREs and emphasizes the importance of regionally transported BC for potential climatic effects.
Jie Tian, Qiyuan Wang, Huikun Liu, Yongyong Ma, Suixin Liu, Yong Zhang, Weikang Ran, Yongming Han, and Junji Cao
Atmos. Chem. Phys., 22, 8369–8384, https://doi.org/10.5194/acp-22-8369-2022, https://doi.org/10.5194/acp-22-8369-2022, 2022
Short summary
Short summary
We investigated aerosol optical properties and the direct radiative effect (DRE) at an urban site in China before and during the COVID-19 lockdown. The total light extinction coefficient (bext) decreased under emission control measures; however, bext from biomass burning increased due to the undiminished need for residential cooking and heating. Biomass burning, rather than traffic-related emissions, became the largest positive effect contributor to aerosol DRE in the lockdown.
Minxia Shen, Kin Fai Ho, Wenting Dai, Suixin Liu, Ting Zhang, Qiyuan Wang, Jingjing Meng, Judith C. Chow, John G. Watson, Junji Cao, and Jianjun Li
Atmos. Chem. Phys., 22, 7489–7504, https://doi.org/10.5194/acp-22-7489-2022, https://doi.org/10.5194/acp-22-7489-2022, 2022
Short summary
Short summary
Looking at characteristics and δ13C compositions of dicarboxylic acids and related compounds in BB aerosols, we used a combined combustion and aging system to generate fresh and aged aerosols from burning straw. The results showed the emission factors (EFaged) of total diacids of aging experiments were around an order of magnitude higher than EFfresh. This meant that dicarboxylic acids are involved with secondary photochemical processes in the atmosphere rather than primary emissions from BB.
Yun Lin, Yuan Wang, Bowen Pan, Jiaxi Hu, Song Guo, Misti Levy Zamora, Pengfei Tian, Qiong Su, Yuemeng Ji, Jiayun Zhao, Mario Gomez-Hernandez, Min Hu, and Renyi Zhang
Atmos. Chem. Phys., 22, 4951–4967, https://doi.org/10.5194/acp-22-4951-2022, https://doi.org/10.5194/acp-22-4951-2022, 2022
Short summary
Short summary
Severe regional haze events, which are characterized by exceedingly high levels of fine particulate matter (PM), occur frequently in many developing countries (such as China and India), with profound implications for human health, weather, and climate. Our work establishes a synthetic view for the dominant regional features during severe haze events, unraveling rapid in situ PM production and inefficient transport, both of which are amplified by atmospheric stagnation.
Xiaojian Zheng, Baike Xi, Xiquan Dong, Peng Wu, Timothy Logan, and Yuan Wang
Atmos. Chem. Phys., 22, 335–354, https://doi.org/10.5194/acp-22-335-2022, https://doi.org/10.5194/acp-22-335-2022, 2022
Short summary
Short summary
This study uses ground-based observations to investigate the physical processes in the aerosol–cloud interactions in non-precipitating marine boundary layer clouds, over the eastern North Atlantic Ocean. Results show that the cloud responses to the aerosols are diminished with limited water vapor supply, while they are enhanced with increasing water vapor availability. The clouds are found to be most sensitive to the aerosols under sufficient water vapor and strong boundary layer turbulence.
Yandong Tong, Veronika Pospisilova, Lu Qi, Jing Duan, Yifang Gu, Varun Kumar, Pragati Rai, Giulia Stefenelli, Liwei Wang, Ying Wang, Haobin Zhong, Urs Baltensperger, Junji Cao, Ru-Jin Huang, André S. H. Prévôt, and Jay G. Slowik
Atmos. Chem. Phys., 21, 9859–9886, https://doi.org/10.5194/acp-21-9859-2021, https://doi.org/10.5194/acp-21-9859-2021, 2021
Short summary
Short summary
We investigate SOA sources and formation processes by a field deployment of the EESI-TOF-MS and L-TOF AMS in Beijing in late autumn and early winter. Our study shows that the sources and processes giving rise to haze events in Beijing are variable and seasonally dependent: (1) in the heating season, SOA formation is driven by oxidation of aromatics from solid fuel combustion; and (2) under high-NOx and RH conditions, aqueous-phase chemistry can be a major contributor to SOA formation.
Shuyu Zhao, Tian Feng, Xuexi Tie, and Zebin Wang
Atmos. Chem. Phys., 20, 14873–14887, https://doi.org/10.5194/acp-20-14873-2020, https://doi.org/10.5194/acp-20-14873-2020, 2020
Short summary
Short summary
The Tibetan Plateau has been experiencing a rapid warming during the last 40 years, particularly in winter. The warming leads to an increase in the planetary boundary layer height and a decrease in the relative humidity in the Sichuan Basin, causing a reduction of PM2.5 concentration by 17.5 % (~25.1 μg m−3), of which the reduction in secondary aerosols is 19.7 μg m−3. These findings indicate that the warming plateau plays an important role in mitigating air quality in downstream.
Yuan Wang, Xiaojian Zheng, Xiquan Dong, Baike Xi, Peng Wu, Timothy Logan, and Yuk L. Yung
Atmos. Chem. Phys., 20, 14741–14755, https://doi.org/10.5194/acp-20-14741-2020, https://doi.org/10.5194/acp-20-14741-2020, 2020
Short summary
Short summary
A recent aircraft field campaign near the Azores in the summer of 2017 provides ample observations of aerosols and clouds with detailed vertical information. This study utilizes those observational data in combination with the aerosol-aware large-eddy simulations and aerosol reanalysis data to examine the significance of the long-range-transported aerosol effect on marine-boundary-layer clouds. It is the first time that the ACE-ENA aircraft campaign data are used for this topic.
Brigitte Rooney, Yuan Wang, Jonathan H. Jiang, Bin Zhao, Zhao-Cheng Zeng, and John H. Seinfeld
Atmos. Chem. Phys., 20, 14597–14616, https://doi.org/10.5194/acp-20-14597-2020, https://doi.org/10.5194/acp-20-14597-2020, 2020
Short summary
Short summary
Wildfires have become increasingly prevalent. Intense smoke consisting of particulate matter (PM) leads to an increased risk of morbidity and mortality. The record-breaking Camp Fire ravaged Northern California for two weeks in 2018. Here, we employ a comprehensive chemical transport model along with ground-based and satellite observations to characterize the PM concentrations across Northern California and to investigate the pollution sensitivity predictions to key parameters of the model.
Dale M. Ward, Xiquan Dong, Baike Xi, Peng Wu, Xiaojian Zheng, and Yuan Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-817, https://doi.org/10.5194/acp-2020-817, 2020
Preprint withdrawn
Short summary
Short summary
Marine boundary layer clouds in subtropical regions strongly impact global energy balance, but complete understanding of the processes that control their development remain elusive. We analyze aircraft in-situ measurements of clouds collected in a field campaign for cases that contain organized structures tens of kilometres in extent embedded within a larger overcast cloud field. Failure to account for these structures can lead to misrepresentation in models and satellite retrievals.
Cited articles
An, Z. S., Huang, R. J., Zhang, R. Y., Tie, X. X., Li, G. H., Cao, J. J., Zhou, W. J.,
Shi, Z. G., Han, Y. M., Gu, Z. L., and Ji, Y. M.: Severe haze in northern China: A synergy of
anthropogenic emissions and atmospheric processes, P. Natl. Acad. Sci. USA, 116, 8657–8666,
https://doi.org/10.1073/pnas.1900125116, 2019.
Bei, N., Wu, J., Elser, M., Feng, T., Cao, J., El-Haddad, I., Li, X., Huang, R., Li, Z.,
Long, X., Xing, L., Zhao, S., Tie, X., Prévôt, A. S. H., and Li, G.: Impacts of
meteorological uncertainties on the haze formation in Beijing–Tianjin–Hebei (BTH) during
wintertime: a case study, Atmos. Chem. Phys., 17, 14579–14591, https://doi.org/10.5194/acp-17-14579-2017,
2017.
Binkowski, F. S. and Roselle, S. J.: Models-3 community multiscale air quality (CMAQ)
model aerosol component – 1. Model description, J. Geophys. Res.-Atmos., 108, 18,
https://doi.org/10.1029/2001jd001409, 2003.
Burr, M. J. and Zhang, Y.: Source apportionment of fine particulate matter over the
Eastern U.S. Part II: source apportionment simulations using CAMx/PSAT and comparisons with CMAQ
source sensitivity simulations, Atmos. Pollut. Res., 2, 318–336, https://doi.org/10.5094/apr.2011.037,
2011.
Carter, W. P. L.: Development of the SAPRC-07 chemical mechanism, Atmos. Environ., 44,
5324–5335, https://doi.org/10.1016/j.atmosenv.2010.01.026, 2010.
Chang, X., Wang, S. X., Zhao, B., Xing, J., Liu, X. X., Wei, L., Song, Y., Wu, W. J.,
Cai, S. Y., Zheng, H. T., Ding, D., and Zheng, M.: Contributions of inter-city and regional
transport to PM2.5 concentrations in the Beijing-Tianjin-Hebei region and its
implications on regional joint air pollution control, Sci. Total Environ., 660, 1191–1200,
https://doi.org/10.1016/j.scitotenv.2018.12.474, 2019.
Chen, F. and Dudhia, J.: Coupling an advanced land surface-hydrology model with the Penn
State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity, Mon. Weather Rev.,
129, 569–585, https://doi.org/10.1175/1520-0493(2001)129<0569:caalsh>2.0.co;2, 2001.
China MEP (Ministry of Environmental Protection, China): Air Quality Observation
Real-time Release Platform of MEP Data Center, available at: http://106.37.208.233:20035/
(last access: 24 November 2019), 2013a.
China MEP (Ministry of Environmental Protection, China): On-line Monitoring and Analysis
Platform of China Air Quality, available at: http://www.aqistudy.cn/ (last access: 24
November 2019), 2013b.
Chou, M.-D. and Suarez M. J.: A solar radiation parameterization for atmospheric studies, Technical Report Series on Global Modeling and Data Assimilation, NASA/TM-1999-10460, 15, 52 pp., 1999.
Chou, M.-D., Suarez, M. J., Liang, X.-Z., and Yan, M. H.: A thermal infrared radiation parameterization for atmospheric studies, Technical Report Series on Global Modeling and Data Assimilation, NASA/TM-2001-104606, 19, 65 pp., 2001.
Cooper, J. A. and Watson, J. G.: Receptor oriented methods of air particulate source
apportionment, J. Air. Pollut. Control. Assoc., 30, 1116–1125,
https://doi.org/10.1080/00022470.1980.10465157, 1980.
Donahue, N. M., Robinson, A. L., Stanier, C. O., and Pandis, S. N.: Coupled
partitioning, dilution, and chemical aging of semivolatile organics, Environ. Sci. Technol., 40,
2635–2643, https://doi.org/10.1021/es052297c, 2006.
Dong, Z., Wang, S., Xing, J., Chang, X., Ding, D., and Zheng, H.: Regional transport in
Beijing-Tianjin-Hebei region and its changes during 2014–2017: The impacts of meteorology and
emission reduction, Sci. Total Environ., 737, 139792, https://doi.org/10.1016/j.scitotenv.2020.139792, 2020.
Feng, T., Bei, N., Huang, R.-J., Cao, J., Zhang, Q., Zhou, W., Tie, X., Liu, S., Zhang,
T., Su, X., Lei, W., Molina, L. T., and Li, G.: Summertime ozone formation in Xi'an and
surrounding areas, China, Atmos. Chem. Phys., 16, 4323–4342, https://doi.org/10.5194/acp-16-4323-2016,
2016.
Foley, K. M., Roselle, S. J., Appel, K. W., Bhave, P. V., Pleim, J. E., Otte, T. L.,
Mathur, R., Sarwar, G., Young, J. O., Gilliam, R. C., Nolte, C. G., Kelly, J. T., Gilliland,
A. B., and Bash, J. O.: Incremental testing of the Community Multiscale Air Quality (CMAQ)
modeling system version 4.7, Geosci. Model Dev., 3, 205–226, https://doi.org/10.5194/gmd-3-205-2010, 2010.
Grell, G. A. and Devenyi, D.: A generalized approach to parameterizing convection
combining ensemble and data assimilation techniques, Geophys. Res. Lett., 29, 4,
https://doi.org/10.1029/2002gl015311, 2002.
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C.,
and Eder, B.: Fully coupled “online” chemistry within the WRF model, Atmos. Environ., 39,
6957–6975, https://doi.org/10.1016/j.atmosenv.2005.04.027, 2005.
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.:
Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and
Aerosols from Nature), Atmos. Chem. Phys., 6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006.
Guo, S., Hu, M., Wang, Z. B., Slanina, J., and Zhao, Y. L.: Size-resolved aerosol
water-soluble ionic compositions in the summer of Beijing: implication of regional secondary
formation, Atmos. Chem. Phys., 10, 947–959, https://doi.org/10.5194/acp-10-947-2010, 2010.
Guo, S., Hu, M., Zamora, M. L., Peng, J. F., Shang, D. J., Zheng, J., Du, Z. F., Wu,
Z., Shao, M., Zeng, L. M., Molina, M. J., and Zhang, R. Y.: Elucidating severe urban haze
formation in China, P. Natl. Acad. Sci. USA, 111, 17373–17378, https://doi.org/10.1073/pnas.1419604111,
2014.
Huang, X., Ding, A., Wang, Z., Ding, K., and Fu, C.: Amplified transboundary transport
of haze by aerosol–boundary layer interaction in China, Nat. Geosci., 13, 1–7,
https://doi.org/10.1038/s41561-020-0583-4, 2020.
Hess, P. G., Flocke, S., Lamarque, J. F., Barth, M. C., and Madronich, S.: Episodic
modeling of the chemical structure of the troposphere as revealed during the spring MLOPEX 2
intensive, J. Geophys. Res.-Atmos., 105, 26809–26839, https://doi.org/10.1029/2000jd900253, 2000.
Hong, S.-Y. and Lim, J.-O. J.: The WRF Single-Moment 6-Class Microphysics Scheme
(WSM6), Asia-Pac. J. Atmos. Sci., 42, 129–151, 2006.
Horowitz, L. W., Walters, S., Mauzerall, D. L., Emmons, L. K., Rasch, P. J., Granier,
C., Tie, X. X., Lamarque, J. F., Schultz, M. G., Tyndall, G. S., Orlando, J. J., and Brasseur,
G. P.: A global simulation of tropospheric ozone and related tracers: Description and evaluation
of MOZART, version 2, J. Geophys. Res.-Atmos., 108, 29, https://doi.org/10.1029/2002jd002853, 2003.
Hu, J. L., Wu, L., Zheng, B., Zhang, Q., He, K. B., Chang, Q., Li, X. H., Yang, F. M.,
Ying, Q., and Zhang, H. L.: Source contributions and regional transport of primary particulate
matter in China, Environ. Pollut., 207, 31–42, https://doi.org/10.1016/j.envpol.2015.08.037, 2015.
Janjiæ, Z. I.: Nonsingular Implementation of the Mellor–Yamada Level 2.5 Scheme in
the NCEP Meso Model, Ncep Office Note, 436, 2002.
Jiang, C., Wang, H., Zhao, T., Li, T., and Che, H.: Modeling study of PM2.5
pollutant transport across cities in China's Jing–Jin–Ji region during a severe haze episode in
December 2013, Atmos. Chem. Phys., 15, 5803–5814, https://doi.org/10.5194/acp-15-5803-2015, 2015.
Lang, J. L., Cheng, S. Y., Li, J. B., Chen, D. S., Zhou, Y., Wei, X., Han, L. H., and
Wang, H. Y.: A Monitoring and Modeling Study to Investigate Regional Transport and Characteristics
of PM2.5 Pollution, Aerosol. Air Qual. Res., 13, 943–956,
https://doi.org/10.4209/aaqr.2012.09.0242, 2013.
Li, G., Lei, W., Zavala, M., Volkamer, R., Dusanter, S., Stevens, P., and Molina,
L. T.: Impacts of HONO sources on the photochemistry in Mexico City during the MCMA-2006/MILAGO
Campaign, Atmos. Chem. Phys., 10, 6551–6567, https://doi.org/10.5194/acp-10-6551-2010, 2010.
Li, G., Bei, N., Tie, X., and Molina, L. T.: Aerosol effects on the photochemistry in
Mexico City during MCMA-2006/MILAGRO campaign, Atmos. Chem. Phys., 11, 5169–5182,
https://doi.org/10.5194/acp-11-5169-2011, 2011a.
Li, G., Zavala, M., Lei, W., Tsimpidi, A. P., Karydis, V. A., Pandis, S. N.,
Canagaratna, M. R., and Molina, L. T.: Simulations of organic aerosol concentrations in Mexico
City using the WRF-CHEM model during the MCMA-2006/MILAGRO campaign, Atmos. Chem. Phys., 11,
3789–3809, https://doi.org/10.5194/acp-11-3789-2011, 2011b.
Li, G. H., Zhang, R. Y., Fan, J. W., and Tie, X. X.: Impacts of black carbon aerosol on
photolysis and ozone, J. Geophys. Res.-Atmos., 110, 10, https://doi.org/10.1029/2005jd005898, 2005.
Li, G., Bei, N., Cao, J., Huang, R., Wu, J., Feng, T., Wang, Y., Liu, S., Zhang, Q.,
Tie, X., and Molina, L. T.: A possible pathway for rapid growth of sulfate during haze days in
China, Atmos. Chem. Phys., 17, 3301–3316, https://doi.org/10.5194/acp-17-3301-2017, 2017.
Li, P. F., Yan, R. C., Yu, S. C., Wang, S., Liu, W. P., and Bao, H. M.: Reinstate
regional transport of PM2.5 as a major cause of severe haze in Beijing, P. Natl. Acad. Sci. USA,
112, E2739–E2740, https://doi.org/10.1073/pnas.1502596112, 2015.
Li, X., Wu, J., Elser, M., Feng, T., Cao, J., El-Haddad, I., Huang, R., Tie, X.,
Prévôt, A. S. H., and Li, G.: Contributions of residential coal combustion to the air
quality in Beijing–Tianjin–Hebei (BTH), China: a case study, Atmos. Chem. Phys., 18,
10675–10691, https://doi.org/10.5194/acp-18-10675-2018, 2018.
Lipsky, E. M. and Robinson, A. L.: Effects of dilution on fine particle mass and
partitioning of semivolatile organics in diesel exhaust and wood smoke, Environ. Sci. Technol.,
40, 155–162, https://doi.org/10.1021/es050319p, 2006.
Liu, L., Wang, L., Bai, Y., Yang, H., Lin, C., Kong, H., Ma, S., and Wang, J.:
Simulation for the impacts of regional transport on winter particulate matter levels over Henan
based on WRF/Chem model, Acta Sci. Circum., 37, 1843–1854, 2017.
Long, X., Tie, X., Cao, J., Huang, R., Feng, T., Li, N., Zhao, S., Tian, J., Li, G.,
and Zhang, Q.: Impact of crop field burning and mountains on heavy haze in the North China Plain:
a case study, Atmos. Chem. Phys., 16, 9675–9691, https://doi.org/10.5194/acp-16-9675-2016, 2016.
Marmur, A., Unal, A., Mulholland, J. A., and Russell, A. G.: Optimization-based source
apportionment of PM2.5 incorporating gas-to-particle ratios, Environ. Sci. Technol., 39,
3245–3254, https://doi.org/10.1021/es0490121, 2005.
Marmur, A., Park, S. K., Mulholland, J. A., Tolbert, P. E., and Russell, A. G.: Source
apportionment of PM2.5 in the southeastern United States using receptor and
emissions-based models: Conceptual differences and implications for time-series health studies,
Atmos. Environ., 40, 2533–2551, https://doi.org/10.1016/j.atmosenv.2005.12.019, 2006.
Meng, L., Cai, Z., Li, Y., Hao, J., and Wang, X.: Spatial and Temporal Distributions
and Source Simulation during Heavy Pollution of PM2.5 in Tianjin City,
Res. Environ. Sci., 33, 9–17, 2020.
Nenes, A., Pandis, S. N., and Pilinis, C.: ISORROPIA: A new thermodynamic equilibrium
model for multiphase multicomponent inorganic aerosols, Aquat. Geochem., 4, 123–152,
https://doi.org/10.1023/a:1009604003981, 1998.
Odum, J. R., Hoffmann, T., Bowman, F., Collins, D., Flagan, R. C., and Seinfeld, J. H.:
Gas/particle partitioning and secondary organic aerosol yields, Environ. Sci. Technol., 30,
2580–2585, https://doi.org/10.1021/es950943+, 1996.
Paatero, P. and Tapper, U.: Analysis of different modes of factor-analysis as
least-squares fit problems, Chemometrics Intell. Lab. Syst., 18, 183–194,
https://doi.org/10.1016/0169-7439(93)80055-m, 1993.
Pankow, J. F.: An absorption-model of the gas aerosol partitioning involved in the
formation of secondary organic aerosol, Atmos. Environ., 28, 189–193,
https://doi.org/10.1016/1352-2310(94)90094-9, 1994.
Robinson, A. L., Donahue, N. M., Shrivastava, M. K., Weitkamp, E. A., Sage, A. M.,
Grieshop, A. P., Lane, T. E., Pierce, J. R., and Pandis, S. N.: Rethinking organic aerosols:
Semivolatile emissions and photochemical aging, Science, 315, 1259–1262,
https://doi.org/10.1126/science.1133061, 2007.
Shrivastava, M. K., Lipsky, E. M., Stanier, C. O., and Robinson, A. L.: Modeling
semivolatile organic aerosol mass emissions from combustion systems, Environ. Sci. Technol., 40,
2671–2677, https://doi.org/10.1021/es0522231, 2006.
Shrivastava, M. K., Lane, T. E., Donahue, N. M., Pandis, S. N., and Robinson, A. L.:
Effects of gas particle partitioning and aging of primary emissions on urban and regional organic
aerosol concentrations, J. Geophys. Res.-Atmos., 113, 16, https://doi.org/10.1029/2007jd009735, 2008.
Sun, Y. L., Chen, C., Zhang, Y. J., Xu, W. Q., Zhou, L. B., Cheng, X. L., Zheng, H. T.,
Ji, D. S., Li, J., Tang, X., Fu, P. Q., and Wang, Z. F.: Rapid formation and evolution of an
extreme haze episode in Northern China during winter 2015, Sci. Rep., 6, 9,
https://doi.org/10.1038/srep27151, 2016.
Tsimpidi, A. P., Karydis, V. A., Zavala, M., Lei, W., Molina, L., Ulbrich, I. M.,
Jimenez, J. L., and Pandis, S. N.: Evaluation of the volatility basis-set approach for the
simulation of organic aerosol formation in the Mexico City metropolitan area, Atmos. Chem. Phys.,
10, 525–546, https://doi.org/10.5194/acp-10-525-2010, 2010.
Volkamer, R., Martini, F. S., Molina, L. T., Salcedo, D., Jimenez, J. L., and Molina,
M. J.: A missing sink for gas-phase glyoxal in Mexico City: Formation of secondary organic
aerosol, Geophys. Res. Lett., 34, 5, https://doi.org/10.1029/2007gl030752, 2007.
Wagstrom, K. M., Pandis, S. N., Yarwood, G., Wilson, G. M., and Morris, R. E.:
Development and application of a computationally efficient particulate matter apportionment
algorithm in a three-dimensional chemical transport model, Atmos. Environ., 42, 5650–5659,
https://doi.org/10.1016/j.atmosenv.2008.03.012, 2008.
Wang, L. T., Wei, Z., Wei, W., Fu, J. S., Meng, C. C., and Ma, S. M.: Source
apportionment of PM2.5 in top polluted cities in Hebei, China using the CMAQ model,
Atmos. Environ., 122, 723–736, https://doi.org/10.1016/j.atmosenv.2015.10.041, 2015.
Wang, Q., Luo, K., Fan, J. R., Gao, X., and Cen, K. F.: Spatial Distribution and
Multiscale Transport Characteristics of PM2.5 in China, Aerosol Air Qual. Res., 19,
1993–2007, https://doi.org/10.4209/aaqr.2019.04.0202, 2019.
Wang, Z. S., Chien, C. J., and Tonnesen, G. S.: Development of a tagged species source
apportionment algorithm to characterize three-dimensional transport and transformation of
precursors and secondary pollutants, J. Geophys. Res.-Atmos., 114, 17,
https://doi.org/10.1029/2008jd010846, 2009.
Wesely, M. L.: Parameterization of surface resistances to gaseous dry deposition in
regional-scale numerical models, Atmos. Environ., 23, 1293–1304, 1989.
Wu, J. R., Li, G. H., Cao, J. J., Bei, N. F., Wang, Y. C., Feng, T., Huang, R. J., Liu,
S. X., Zhang, Q., and Tie, X. X.: Contributions of trans-boundary transport to summertime air
quality in Beijing, China, Atmos. Chem. Phys., 17, 2035–2051, https://doi.org/10.5194/acp-17-2035-2017,
2017.
Wu, J. R., Bei, N. F., Hu, B., Liu, S. X., Wang, Y., Shen, Z. X., Li, X., Liu, L.,
Wang, R. N., Liu, Z. R., Cao, J. J., Tie, X. X., Molina, L. T., and Li, G. H.: Aerosol-photolysis
interaction reduces particulate matter during wintertime haze events, P. Natl. Acad. Sci. USA,
117, 9755–9761, https://doi.org/10.1073/pnas.1916775117, 2020.
Ying, Q. and Kleeman, M. J.: Source contributions to the regional distribution of
secondary particulate matter in California, Atmos. Environ., 40, 736–752,
https://doi.org/10.1016/j.atmosenv.2005.10.007, 2006.
Ying, Q., Lu, J., Allen, P., Livingstone, P., Kaduwela, A., and Kleeman, M.: Modeling
air quality during the California Regional PM10 PM2.5 Air Quality Study
(CRPAQS) using the UCD/CIT source-oriented air quality model – Part I. Base case model results,
Atmos. Environ., 42, 8954–8966, https://doi.org/10.1016/j.atmosenv.2008.05.064, 2008a.
Ying, Q., Lu, J., Kaduwela, A., and Kleeman, M.: Modeling air quality during the
California Regional PM10 PM2.5 Air Quality Study (CPRAQS) using the UCD/CIT
Source Oriented Air Quality Model – Part II. Regional source apportionment of primary airborne
particulate matter, Atmos. Environ., 42, 8967–8978, https://doi.org/10.1016/j.atmosenv.2008.05.065, 2008b.
Ying, Q., Wu, L., and Zhang, H. L.: Local and inter-regional contributions to
PM2.5 nitrate and sulfate in China, Atmos. Environ., 94, 582–592,
https://doi.org/10.1016/j.atmosenv.2014.05.078, 2014.
Zamora, M. L., Peng, J., Hu, M., Guo, S., Marrero-Ortiz, W., Shang, D., Zheng, J., Du,
Z., Wu, Z., and Zhang, R.: Wintertime aerosol properties in Beijing, Atmos. Chem. Phys., 19,
14329–14338, https://doi.org/10.5194/acp-19-14329-2019, 2019.
Zhang, H., DeNero, S. P., Joe, D. K., Lee, H.-H., Chen, S.-H., Michalakes, J., and
Kleeman, M. J.: Development of a source oriented version of the WRF/Chem model and its application
to the California regional PM10/PM2.5 air quality study, Atmos. Chem. Phys., 14, 485–503,
https://doi.org/10.5194/acp-14-485-2014, 2014.
Zhang, H. L. and Ying, Q.: Source apportionment of airborne particulate matter in
Southeast Texas using a source-oriented 3D air quality model, Atmos. Environ., 44, 3547–3557,
https://doi.org/10.1016/j.atmosenv.2010.06.004, 2010.
Zhang, H. L. and Ying, Q.: Secondary organic aerosol formation and source apportionment
in Southeast Texas, Atmos. Environ., 45, 3217–3227, https://doi.org/10.1016/j.atmosenv.2011.03.046, 2011.
Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H., Kannari, A., Klimont,
Z., Park, I. S., Reddy, S., Fu, J. S., Chen, D., Duan, L., Lei, Y., Wang, L. T., and Yao, Z. L.:
Asian emissions in 2006 for the NASA INTEX-B mission, Atmos. Chem. Phys., 9, 5131–5153,
https://doi.org/10.5194/acp-9-5131-2009, 2009.
Zhang, Q., Zheng, Y. X., Tong, D., Shao, M., Wang, S. X., Zhang, Y. H., Xu, X. D.,
Wang, J. N., He, H., Liu, W. Q., Ding, Y. H., Lei, Y., Li, J. H., Wang, Z. F., Zhang, X. Y., Wang,
Y. S., Cheng, J., Liu, Y., Shi, Q. R., Yan, L., Geng, G. N., Hong, C. P., Li, M., Liu, F., Zheng,
B., Cao, J. J., Ding, A. J., Gao, J., Fu, Q. Y., Huo, J. T., Liu, B. X., Liu, Z. R., Yang, F. M.,
He, K. B., and Hao, J. M.: Drivers of improved PM2.5 air quality in China from 2013 to
2017, P. Natl. Acad. Sci. USA, 116, 24463–24469, https://doi.org/10.1073/pnas.1907956116, 2019.
Zhang, R. Y., Guo, S., Zamora, M. L., and Hu, M.: Reply to Li et al.: Insufficient
evidence for the contribution of regional transport to severe haze formation in Beijing,
P. Natl. Acad. Sci. USA, 112, E2741–E2741, https://doi.org/10.1073/pnas.1503855112, 2015.
Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi,
J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's
anthropogenic emissions since 2010 as the consequence of clean air actions, Atmos. Chem. Phys.,
18, 14095–14111, https://doi.org/10.5194/acp-18-14095-2018, 2018.
Zhao, J., Levitt, N. P., Zhang, R. Y., and Chen, J. M.: Heterogeneous reactions of
methylglyoxal in acidic media: Implications for secondary organic aerosol formation,
Environ. Sci. Technol., 40, 7682–7687, https://doi.org/10.1021/es060610k, 2006.
Short summary
A source-oriented version of the WRF-Chem model is developed to conduct source identification of wintertime PM2.5 in the North China Plain. Trans-boundary transport of air pollutants generally dominates the haze pollution in Beijing and Tianjin. The air quality in Hebei, Shandong, and Shanxi is generally controlled by local emissions. Primary aerosol species, such as EC and POA, are generally controlled by local emissions, while secondary aerosol shows evident regional characteristics.
A source-oriented version of the WRF-Chem model is developed to conduct source identification of...
Altmetrics
Final-revised paper
Preprint