Articles | Volume 21, issue 23
https://doi.org/10.5194/acp-21-17715-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-17715-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Long-range transport of anthropogenic air pollutants into the marine air: insight into fine particle transport and chloride depletion on sea salts
Liang Xu
Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang
University, Hangzhou 310027, China
Xiaohuan Liu
Key Laboratory of Marine Environment and Ecology, Ministry of
Education, Ocean University of China, Qingdao 266100, China
Huiwang Gao
Key Laboratory of Marine Environment and Ecology, Ministry of
Education, Ocean University of China, Qingdao 266100, China
Xiaohong Yao
Key Laboratory of Marine Environment and Ecology, Ministry of
Education, Ocean University of China, Qingdao 266100, China
Daizhou Zhang
Faculty of Environmental and Symbiotic Sciences, Prefectural
University of Kumamoto, Kumamoto 862-8502, Japan
Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang
University, Hangzhou 310027, China
Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang
University, Hangzhou 310027, China
Jian Zhang
Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang
University, Hangzhou 310027, China
Yinxiao Zhang
Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang
University, Hangzhou 310027, China
Yuanyuan Wang
Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang
University, Hangzhou 310027, China
Qi Yuan
Key Laboratory of Marine Environment and Ecology, Ministry of
Education, Ocean University of China, Qingdao 266100, China
Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang
University, Hangzhou 310027, China
Related authors
Yanhong Zhu, Weijun Li, Yue Wang, Jian Zhang, Lei Liu, Liang Xu, Jingsha Xu, Jinhui Shi, Longyi Shao, Pingqing Fu, Daizhou Zhang, and Zongbo Shi
Atmos. Chem. Phys., 22, 2191–2202, https://doi.org/10.5194/acp-22-2191-2022, https://doi.org/10.5194/acp-22-2191-2022, 2022
Short summary
Short summary
The solubilities of iron in fine particles in a megacity in Eastern China were studied under haze, fog, dust, clear, and rain weather conditions. For the first time, a receptor model was used to quantify the sources of dissolved and total iron aerosol. Microscopic analysis further confirmed the aging of iron aerosol during haze and fog conditions that facilitated dissolution of insoluble iron.
Lei Liu, Jian Zhang, Yinxiao Zhang, Yuanyuan Wang, Liang Xu, Qi Yuan, Dantong Liu, Yele Sun, Pingqing Fu, Zongbo Shi, and Weijun Li
Atmos. Chem. Phys., 21, 2251–2265, https://doi.org/10.5194/acp-21-2251-2021, https://doi.org/10.5194/acp-21-2251-2021, 2021
Short summary
Short summary
We found that large numbers of light-absorbing primary organic particles with high viscosity, especially tarballs, from domestic coal and biomass burning occurred in rural and even urban hazes in the winter of North China. For the first time, we characterized the atmospheric aging process of these burning-related primary organic particles by microscopic analysis and further evaluated their light absorption enhancement resulting from the “lensing effect” of secondary inorganic coatings.
Liang Xu, Satoshi Fukushima, Sophie Sobanska, Kotaro Murata, Ayumi Naganuma, Lei Liu, Yuanyuan Wang, Hongya Niu, Zongbo Shi, Tomoko Kojima, Daizhou Zhang, and Weijun Li
Atmos. Chem. Phys., 20, 14321–14332, https://doi.org/10.5194/acp-20-14321-2020, https://doi.org/10.5194/acp-20-14321-2020, 2020
Short summary
Short summary
We quantified the mixing structures of soot particles and found that the dominant mixing structure changed from fresh to partially embedded to fully embedded along the pathway of an Asian dust storm from eastern China to Japan. Soot particles became more compact following transport. Our findings not only provide direct evidence for soot aging during regional transport but also help us understand how their morphology changes in different air environments.
Jian Zhang, Lei Liu, Liang Xu, Qiuhan Lin, Hujia Zhao, Zhibin Wang, Song Guo, Min Hu, Dantong Liu, Zongbo Shi, Dao Huang, and Weijun Li
Atmos. Chem. Phys., 20, 5355–5372, https://doi.org/10.5194/acp-20-5355-2020, https://doi.org/10.5194/acp-20-5355-2020, 2020
Short summary
Short summary
Northeast China faces severe air pollution in regional haze in wintertime. In this study, we revealed a contrasting formation mechanism of two typical haze events: Haze-I was induced by adverse meteorological conditions together with residential coal burning emissions; Haze-II was caused by agricultural biomass waste burning. In particular, we observed large numbers of tar balls as the primary brown carbon in northeast China.
Zhenze Liu, Jianhua Qi, Yuanzhe Ni, Likun Xue, and Xiaohuan Liu
EGUsphere, https://doi.org/10.5194/egusphere-2024-3044, https://doi.org/10.5194/egusphere-2024-3044, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Our study explores the formation of nitrate in the atmosphere of inland and coastal cities in China during the winters of 2013 & 2018. Through air quality modelling & isotope analysis, we found regional differences between these cities; coastal cities show another contribution from the heterogeneous reaction of dinitrogen pentoxide (N2O5). It turns out that the combined reduction of nitrogen oxides (NOx), volatile organic compounds (VOCs) and ammonia (NH3) is critical to reducing nitrate levels.
Wenbin Kou, Yang Gao, Dan Tong, Xiaojie Guo, Xiadong An, Wenyu Liu, Mengshi Cui, Xiuwen Guo, Shaoqing Zhang, Huiwang Gao, and Lixin Wu
EGUsphere, https://doi.org/10.5194/egusphere-2024-2500, https://doi.org/10.5194/egusphere-2024-2500, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Unlike traditional numerical studies, we apply a high-resolution Earth system model, improving simulations of ozone and large-scale circulations such as atmospheric blocking. In addition to local heatwave effects, we quantify the impact of atmospheric blocking on downstream ozone concentrations, which is closely associated with the blocking position. We identify three major pathways of Rossby wave propagation, stressing the critical role of large-scale circulation play in regional air quality.
Hejun Xie, Lei Bi, and Wei Han
Geosci. Model Dev., 17, 5657–5688, https://doi.org/10.5194/gmd-17-5657-2024, https://doi.org/10.5194/gmd-17-5657-2024, 2024
Short summary
Short summary
A radar operator plays a crucial role in utilizing radar observations to enhance numerical weather forecasts. However, developing an advanced radar operator is challenging due to various complexities associated with the wave scattering by non-spherical hydrometeors, radar beam propagation, and multiple platforms. In this study, we introduce a novel radar operator named the Accurate and Efficient Radar Operator developed by ZheJiang University (ZJU-AERO) which boasts several unique features.
Xiaohong Yao and Leiming Zhang
Atmos. Chem. Phys., 24, 7773–7791, https://doi.org/10.5194/acp-24-7773-2024, https://doi.org/10.5194/acp-24-7773-2024, 2024
Short summary
Short summary
This study investigates long-term trends of criteria air pollutants, including NO2, CO, SO2, O3 and PM2.5, and NO2+O3 measured in 10 Canadian cities during the last 2 to 3 decades. We also investigate associated driving forces in terms of emission reductions, perturbations from varying weather conditions and large-scale wildfires, as well as changes in O3 sources and sinks.
Senyi Kong, Zheng Wang, and Lei Bi
Atmos. Chem. Phys., 24, 6911–6935, https://doi.org/10.5194/acp-24-6911-2024, https://doi.org/10.5194/acp-24-6911-2024, 2024
Short summary
Short summary
The retrieval of refractive indices of dust aerosols from laboratory optical measurements is commonly done assuming spherical particles. This paper aims to investigate the uncertainties in the shortwave refractive indices and corresponding optical properties by considering non-spherical and inhomogeneous models for dust samples. The study emphasizes the significance of using non-spherical models for simulating dust aerosols.
Ming Chu, Xing Wei, Shangfei Hai, Yang Gao, Huiwang Gao, Yujiao Zhu, Biwu Chu, Nan Ma, Juan Hong, Yele Sun, and Xiaohong Yao
Atmos. Chem. Phys., 24, 6769–6786, https://doi.org/10.5194/acp-24-6769-2024, https://doi.org/10.5194/acp-24-6769-2024, 2024
Short summary
Short summary
We used a 20-bin WRF-Chem model to simulate NPF events in the NCP during a three-week observational period in the summer of 2019. The model was able to reproduce the observations during June 29–July 6, which was characterized by a high frequency of NPF occurrence.
Wenshuai Li, Yuxuan Qi, Yingchen Liu, Guanru Wu, Yanjing Zhang, Jinhui Shi, Wenjun Qu, Lifang Sheng, Wencai Wang, Daizhou Zhang, and Yang Zhou
Atmos. Chem. Phys., 24, 6495–6508, https://doi.org/10.5194/acp-24-6495-2024, https://doi.org/10.5194/acp-24-6495-2024, 2024
Short summary
Short summary
Aerosol particles from mainland can transport to oceans and deposit, providing soluble Fe and affecting phytoplankton growth. Thus, we studied the dissolution process of aerosol Fe and found that photochemistry played a key role in promoting Fe dissolution in clean conditions. RH-dependent reactions were more influential in slightly polluted conditions. These results highlight the distinct roles of two weather-related parameters (radiation and RH) in influencing geochemical cycles related to Fe.
Xuan Wang, Lei Bi, Hong Wang, Yaqiang Wang, Wei Han, Xueshun Shen, and Xiaoye Zhang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-51, https://doi.org/10.5194/gmd-2024-51, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
An AI-based Nonspherical Aerosol Optical Scheme (AI-NAOS) was developed to improve the estimation of aerosol direct radiation effect (DRE). The AI-NAOS scheme considers BC as fractal aggregates and SD as super-spheroids, encapsulated with hygroscopic aerosols. The AI-NAOS scheme was coupled online with a chemical weather model. Real-case simulations emphasize the necessity of accurately representing nonpsherical and inhomogeneous aerosols in chemical weather models.
Jiawei Li, Zhiwei Han, Pingqing Fu, Xiaohong Yao, and Mingjie Liang
Atmos. Chem. Phys., 24, 3129–3161, https://doi.org/10.5194/acp-24-3129-2024, https://doi.org/10.5194/acp-24-3129-2024, 2024
Short summary
Short summary
Organic aerosols of marine origin are important for aerosol climatic effects but are poorly understood. For the first time, an online coupled regional chemistry–climate model is applied to explore the characteristics of emission, distribution, and direct and indirect radiative effects of marine organic aerosols over the western Pacific, which reveals an important role of marine organic aerosols in perturbing cloud and radiation and promotes understanding of global aerosol climatic impact.
Feifan Yan, Hang Su, Yafang Cheng, Rujin Huang, Hong Liao, Ting Yang, Yuanyuan Zhu, Shaoqing Zhang, Lifang Sheng, Wenbin Kou, Xinran Zeng, Shengnan Xiang, Xiaohong Yao, Huiwang Gao, and Yang Gao
Atmos. Chem. Phys., 24, 2365–2376, https://doi.org/10.5194/acp-24-2365-2024, https://doi.org/10.5194/acp-24-2365-2024, 2024
Short summary
Short summary
PM2.5 pollution is a major air quality issue deteriorating human health, and previous studies mostly focus on regions like the North China Plain and Yangtze River Delta. However, the characteristics of PM2.5 concentrations between these two regions are studied less often. Focusing on the transport corridor region, we identify an interesting seesaw transport phenomenon with stagnant weather conditions, conducive to PM2.5 accumulation over this region, resulting in large health effects.
Xiao-San Luo, Weijie Huang, Guofeng Shen, Yuting Pang, Mingwei Tang, Weijun Li, Zhen Zhao, Hanhan Li, Yaqian Wei, Longjiao Xie, and Tariq Mehmood
Atmos. Chem. Phys., 24, 1345–1360, https://doi.org/10.5194/acp-24-1345-2024, https://doi.org/10.5194/acp-24-1345-2024, 2024
Short summary
Short summary
PM2.5 are air pollutants threatening health globally, but they are a mixture of chemical compositions from many sources and result in unequal toxicity. Which composition from which source of PM2.5 as the most hazardous object is a question hindering effective pollution control policy-making. With chemical and toxicity experiments, we found automobile exhaust and coal combustion to be priority emissions with higher toxic compositions for precise air pollution control, ensuring public health.
Xing Wei, Yanjie Shen, Xiao-Ying Yu, Yang Gao, Huiwang Gao, Ming Chu, Yujiao Zhu, and Xiaohong Yao
Atmos. Chem. Phys., 23, 15325–15350, https://doi.org/10.5194/acp-23-15325-2023, https://doi.org/10.5194/acp-23-15325-2023, 2023
Short summary
Short summary
We investigate the contribution of grown new particles to Nccn at a rural mountain site in the North China Plain. The total particle number concentrations (Ncn) observed on 8 new particle formation (NPF) days were higher compared to non-NPF days. The Nccn at 0.2 % supersaturation (SS) and 0.4 % SS on the NPF days was significantly lower than on non-NPF days. Only one of eight NPF events had detectable net contributions to Nccn at 0.4 % SS and 1.0 % SS with increased κ values.
Chupeng Zhang, Shangfei Hai, Yang Gao, Yuhang Wang, Shaoqing Zhang, Lifang Sheng, Bin Zhao, Shuxiao Wang, Jingkun Jiang, Xin Huang, Xiaojing Shen, Junying Sun, Aura Lupascu, Manish Shrivastava, Jerome D. Fast, Wenxuan Cheng, Xiuwen Guo, Ming Chu, Nan Ma, Juan Hong, Qiaoqiao Wang, Xiaohong Yao, and Huiwang Gao
Atmos. Chem. Phys., 23, 10713–10730, https://doi.org/10.5194/acp-23-10713-2023, https://doi.org/10.5194/acp-23-10713-2023, 2023
Short summary
Short summary
New particle formation is an important source of atmospheric particles, exerting critical influences on global climate. Numerical models are vital tools to understanding atmospheric particle evolution, which, however, suffer from large biases in simulating particle numbers. Here we improve the model chemical processes governing particle sizes and compositions. The improved model reveals substantial contributions of newly formed particles to climate through effects on cloud condensation nuclei.
Qi Yuan, Yuanyuan Wang, Yixin Chen, Siyao Yue, Jian Zhang, Yinxiao Zhang, Liang Xu, Wei Hu, Dantong Liu, Pingqing Fu, Huiwang Gao, and Weijun Li
Atmos. Chem. Phys., 23, 9385–9399, https://doi.org/10.5194/acp-23-9385-2023, https://doi.org/10.5194/acp-23-9385-2023, 2023
Short summary
Short summary
This study for the first time found large amounts of liquid–liquid phase separation particles with soot redistributing in organic coatings instead of sulfate cores in the eastern Tibetan Plateau atmosphere. The particle size and the ratio of the organic matter coating thickness to soot size are two of the major possible factors that likely affect the soot redistribution process. The soot redistribution process promoted the morphological compaction of soot particles.
Yu Lin, Leiming Zhang, Qinchu Fan, He Meng, Yang Gao, Huiwang Gao, and Xiaohong Yao
Atmos. Chem. Phys., 22, 16073–16090, https://doi.org/10.5194/acp-22-16073-2022, https://doi.org/10.5194/acp-22-16073-2022, 2022
Short summary
Short summary
In this study, we analyzed 7-year (from May 2014 to April 2021) concentration data of six criteria air pollutants (PM2.5, PM10, O3, NO2, CO and SO2) as well as the sum of NO2 and O3 in six cities in South China. Three different analysis methods were used to identify emission-driven interannual variations and perturbations from varying weather conditions. In addition, a self-developed method was further introduced to constrain analysis uncertainties.
Clarissa Baldo, Akinori Ito, Michael D. Krom, Weijun Li, Tim Jones, Nick Drake, Konstantin Ignatyev, Nicholas Davidson, and Zongbo Shi
Atmos. Chem. Phys., 22, 6045–6066, https://doi.org/10.5194/acp-22-6045-2022, https://doi.org/10.5194/acp-22-6045-2022, 2022
Short summary
Short summary
High ionic strength relevant to the aerosol-water enhanced proton-promoted dissolution of iron in coal fly ash (up to 7 times) but suppressed oxalate-promoted dissolution at low pH (< 3). Fe in coal fly ash dissolved up to 7 times faster than in Saharan dust at low pH. A global model with the updated dissolution rates of iron in coal fly ash suggested a larger contribution of pyrogenic dissolved Fe over regions with a strong impact from fossil fuel combustions.
Yanhong Zhu, Weijun Li, Yue Wang, Jian Zhang, Lei Liu, Liang Xu, Jingsha Xu, Jinhui Shi, Longyi Shao, Pingqing Fu, Daizhou Zhang, and Zongbo Shi
Atmos. Chem. Phys., 22, 2191–2202, https://doi.org/10.5194/acp-22-2191-2022, https://doi.org/10.5194/acp-22-2191-2022, 2022
Short summary
Short summary
The solubilities of iron in fine particles in a megacity in Eastern China were studied under haze, fog, dust, clear, and rain weather conditions. For the first time, a receptor model was used to quantify the sources of dissolved and total iron aerosol. Microscopic analysis further confirmed the aging of iron aerosol during haze and fog conditions that facilitated dissolution of insoluble iron.
Yating Gao, Dihui Chen, Yanjie Shen, Yang Gao, Huiwang Gao, and Xiaohong Yao
Atmos. Chem. Phys., 22, 1515–1528, https://doi.org/10.5194/acp-22-1515-2022, https://doi.org/10.5194/acp-22-1515-2022, 2022
Short summary
Short summary
This study focuses on spatiotemporal heterogeneity of observed gaseous amines, NH3, their particulate counterparts in PM2.5 over different sea zones, and the disproportional release of alkaline gases and corresponding particulate counterparts from seawater in the sea zones in terms of different extents of enrichment of TMAH+ and DMAH+ in the sea surface microlayer (SML). A novel hypothesis is delivered.
Ying Zhou, Simo Hakala, Chao Yan, Yang Gao, Xiaohong Yao, Biwu Chu, Tommy Chan, Juha Kangasluoma, Shahzad Gani, Jenni Kontkanen, Pauli Paasonen, Yongchun Liu, Tuukka Petäjä, Markku Kulmala, and Lubna Dada
Atmos. Chem. Phys., 21, 17885–17906, https://doi.org/10.5194/acp-21-17885-2021, https://doi.org/10.5194/acp-21-17885-2021, 2021
Short summary
Short summary
We characterized the connection between new particle formation (NPF) events in terms of frequency, intensity and growth at a near-highway location in central Beijing and at a background mountain site 80 km away. Due to the substantial contribution of NPF to the global aerosol budget, identifying the conditions that promote the occurrence of regional NPF events could help understand their contribution on a large scale and would improve their implementation in global models.
Dihui Chen, Yanjie Shen, Juntao Wang, Yang Gao, Huiwang Gao, and Xiaohong Yao
Atmos. Chem. Phys., 21, 16413–16425, https://doi.org/10.5194/acp-21-16413-2021, https://doi.org/10.5194/acp-21-16413-2021, 2021
Short summary
Short summary
The study provides solid evidence to demonstrate that atmospheric trimethylamine (TMAgas) and particulate trimethylaminium in PM2.5 (TMAH+) observed in marine atmospheres were uniquely derived from seawater emissions. As sea-derived TMAgas correlated significantly with DMAgas and NH3gas, sea-derived DMAgas and NH3gas can be estimated and can quantify the contribution to the observed species in the marine atmosphere. Similarly, the contributions of primary DMAH+ have also been estimated.
Lin Tian, Lin Chen, Peng Zhang, and Lei Bi
Atmos. Chem. Phys., 21, 11669–11687, https://doi.org/10.5194/acp-21-11669-2021, https://doi.org/10.5194/acp-21-11669-2021, 2021
Short summary
Short summary
The result shows dust aerosols from the Taklimakan Desert have higher aerosol scattering during dust storm cases of this paper, and this caused higher negative direct radiative forcing efficiency (DRFEdust) than aerosols from the Sahara.
The microphysical properties and particle shapes of dust aerosol significantly influence DRFEdust. The satellite-based equi-albedo method has a unique advantage in DRFEdust estimation: it could validate the results derived from the numerical model directly.
Lei Liu, Jian Zhang, Yinxiao Zhang, Yuanyuan Wang, Liang Xu, Qi Yuan, Dantong Liu, Yele Sun, Pingqing Fu, Zongbo Shi, and Weijun Li
Atmos. Chem. Phys., 21, 2251–2265, https://doi.org/10.5194/acp-21-2251-2021, https://doi.org/10.5194/acp-21-2251-2021, 2021
Short summary
Short summary
We found that large numbers of light-absorbing primary organic particles with high viscosity, especially tarballs, from domestic coal and biomass burning occurred in rural and even urban hazes in the winter of North China. For the first time, we characterized the atmospheric aging process of these burning-related primary organic particles by microscopic analysis and further evaluated their light absorption enhancement resulting from the “lensing effect” of secondary inorganic coatings.
Yujiao Zhu, Likun Xue, Jian Gao, Jianmin Chen, Hongyong Li, Yong Zhao, Zhaoxin Guo, Tianshu Chen, Liang Wen, Penggang Zheng, Ye Shan, Xinfeng Wang, Tao Wang, Xiaohong Yao, and Wenxing Wang
Atmos. Chem. Phys., 21, 1305–1323, https://doi.org/10.5194/acp-21-1305-2021, https://doi.org/10.5194/acp-21-1305-2021, 2021
Short summary
Short summary
This work investigates the long-term changes in new particle formation (NPF) events under reduced SO2 emissions at the summit of Mt. Tai during seven campaigns from 2007 to 2018. We found the NPF intensity increased 2- to 3-fold in 2018 compared to 2007. In contrast, the probability of new particles growing to CCN size largely decreased. Changes to biogenic VOCs and anthropogenic emissions are proposed to explain the distinct NPF characteristics.
Liya Ma, Yujiao Zhu, Mei Zheng, Yele Sun, Lei Huang, Xiaohuan Liu, Yang Gao, Yanjie Shen, Huiwang Gao, and Xiaohong Yao
Atmos. Chem. Phys., 21, 183–200, https://doi.org/10.5194/acp-21-183-2021, https://doi.org/10.5194/acp-21-183-2021, 2021
Short summary
Short summary
In this study, we investigate three patterns of new particles growing to CCN (cloud condensation nuclei) size, i.e., one-stage growth and two-stage growth-A and growth-B patterns. Combining the observations of gaseous pollutants and measured or modeled particulate chemical species, the three growth patterns were discussed regarding the spatial heterogeneity, formation of secondary aerosols, and evaporation of semivolatile particulates as was the survival probability of new particles to CCN size.
Jingsha Xu, Shaojie Song, Roy M. Harrison, Congbo Song, Lianfang Wei, Qiang Zhang, Yele Sun, Lu Lei, Chao Zhang, Xiaohong Yao, Dihui Chen, Weijun Li, Miaomiao Wu, Hezhong Tian, Lining Luo, Shengrui Tong, Weiran Li, Junling Wang, Guoliang Shi, Yanqi Huangfu, Yingze Tian, Baozhu Ge, Shaoli Su, Chao Peng, Yang Chen, Fumo Yang, Aleksandra Mihajlidi-Zelić, Dragana Đorđević, Stefan J. Swift, Imogen Andrews, Jacqueline F. Hamilton, Ye Sun, Agung Kramawijaya, Jinxiu Han, Supattarachai Saksakulkrai, Clarissa Baldo, Siqi Hou, Feixue Zheng, Kaspar R. Daellenbach, Chao Yan, Yongchun Liu, Markku Kulmala, Pingqing Fu, and Zongbo Shi
Atmos. Meas. Tech., 13, 6325–6341, https://doi.org/10.5194/amt-13-6325-2020, https://doi.org/10.5194/amt-13-6325-2020, 2020
Short summary
Short summary
An interlaboratory comparison was conducted for the first time to examine differences in water-soluble inorganic ions (WSIIs) measured by 10 labs using ion chromatography (IC) and by two online aerosol chemical speciation monitor (ACSM) methods. Major ions including SO42−, NO3− and NH4+ agreed well in 10 IC labs and correlated well with ACSM data. WSII interlab variability strongly affected aerosol acidity results based on ion balance, but aerosol pH computed by ISORROPIA II was very similar.
Liang Xu, Satoshi Fukushima, Sophie Sobanska, Kotaro Murata, Ayumi Naganuma, Lei Liu, Yuanyuan Wang, Hongya Niu, Zongbo Shi, Tomoko Kojima, Daizhou Zhang, and Weijun Li
Atmos. Chem. Phys., 20, 14321–14332, https://doi.org/10.5194/acp-20-14321-2020, https://doi.org/10.5194/acp-20-14321-2020, 2020
Short summary
Short summary
We quantified the mixing structures of soot particles and found that the dominant mixing structure changed from fresh to partially embedded to fully embedded along the pathway of an Asian dust storm from eastern China to Japan. Soot particles became more compact following transport. Our findings not only provide direct evidence for soot aging during regional transport but also help us understand how their morphology changes in different air environments.
Jiawei Li, Zhiwei Han, Pingqing Fu, and Xiaohong Yao
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1016, https://doi.org/10.5194/acp-2020-1016, 2020
Revised manuscript not accepted
Short summary
Short summary
Organic aerosols of marine origin are so far poorly understood. An on-line coupled regional chemistry-climate model is developed to firstly explore and characterize the seasonality and annual feature of emission, distribution and radiative effects of marine organic aerosols specifically for the western Pacific over East Asia. This study reveals an important role of marine organic aerosols in radiation and cloud and would be valuable for climate research at both regional and global scales.
Wei Hu, Kotaro Murata, Chunlan Fan, Shu Huang, Hiromi Matsusaki, Pingqing Fu, and Daizhou Zhang
Biogeosciences, 17, 4477–4487, https://doi.org/10.5194/bg-17-4477-2020, https://doi.org/10.5194/bg-17-4477-2020, 2020
Short summary
Short summary
This paper reports the first estimate of the status of bacteria in long-distance-transported Asian dust, demonstrating that airborne dust, which can carry viable and nonviable bacteria on particle surfaces, is an efficient medium for constantly spreading bacteria at regional and even global scales. Such data are essential to better model and understand the roles and activities of bioaerosols in environmental evolution and climate change and the potential risks of bioaerosols to human health.
Yang Gao, Deqiang Zhang, Juntao Wang, Huiwang Gao, and Xiaohong Yao
Atmos. Chem. Phys., 20, 9665–9677, https://doi.org/10.5194/acp-20-9665-2020, https://doi.org/10.5194/acp-20-9665-2020, 2020
Short summary
Short summary
Through the cruise campaign conducted over marginal seas in China, we found that the concentrations of condensation nuclei (Ncn) and cloud condensation nuclei (Nccn) were 1 order of magnitude larger than those in remote clear marine atmospheres, indicating overwhelming contributions from marine traffic emissions and long-range continental transport. Moreover, we derived regression equations used to estimate Ncn and Nccn from SO2 when the direct observations of Ncn and Nccn are not available.
Jian Zhang, Lei Liu, Liang Xu, Qiuhan Lin, Hujia Zhao, Zhibin Wang, Song Guo, Min Hu, Dantong Liu, Zongbo Shi, Dao Huang, and Weijun Li
Atmos. Chem. Phys., 20, 5355–5372, https://doi.org/10.5194/acp-20-5355-2020, https://doi.org/10.5194/acp-20-5355-2020, 2020
Short summary
Short summary
Northeast China faces severe air pollution in regional haze in wintertime. In this study, we revealed a contrasting formation mechanism of two typical haze events: Haze-I was induced by adverse meteorological conditions together with residential coal burning emissions; Haze-II was caused by agricultural biomass waste burning. In particular, we observed large numbers of tar balls as the primary brown carbon in northeast China.
Tianfeng Guo, Zhigang Guo, Juntao Wang, Jialiang Feng, Huiwang Gao, and Xiaohong Yao
Atmos. Chem. Phys., 20, 5055–5070, https://doi.org/10.5194/acp-20-5055-2020, https://doi.org/10.5194/acp-20-5055-2020, 2020
Short summary
Short summary
This study investigated tracer-based organic matter observations over two marginal seas of China and the northwest Pacific Ocean in spring, when the East Asian monsoon carries biogenic and anthropogenic aerosols over these oceanic zones. The geographical difference may be related to emissions of primary particulate organics and gaseous precursors as well as formation processing of secondary organics in various atmospheres. Furthermore, we present the tracer-based estimation of organic carbon.
Yifan Huang, Chao Liu, Bin Yao, Yan Yin, and Lei Bi
Atmos. Chem. Phys., 20, 2865–2876, https://doi.org/10.5194/acp-20-2865-2020, https://doi.org/10.5194/acp-20-2865-2020, 2020
Short summary
Short summary
Dust optical properties are necessary to quantify aerosol radiative effects and to retrieve their properties. This study reveals the importance of the dust refractive index (RI) for the model development of its optical properties. Our results indicate that the scattering matrix elements of different dust particles can be reasonably reproduced by choosing appropriate RIs but a fixed particle geometry, and the RI influences the scattering matrix elements differently from geometric factors.
Jiaoping Xing, Longyi Shao, Wenbin Zhang, Jianfei Peng, Wenhua Wang, Shijin Shuai, Min Hu, and Daizhou Zhang
Atmos. Chem. Phys., 20, 2781–2794, https://doi.org/10.5194/acp-20-2781-2020, https://doi.org/10.5194/acp-20-2781-2020, 2020
Short summary
Short summary
Our results highlight the contribution of gasoline-direct-injection (GDI) vehicles to aerosols, both primary and secondary. The major particles from GDI vehicles are organic and soot particles; they actively participate in chemical conversions in the atmosphere, leading to morphology and composition changes in hours. Rapid ageing could be attributable to the acid-catalysed mechanism and high concentrations of gaseous pollutants. These results would be beneficial for control of PM2.5 pollution.
Xiaohong Yao and Leiming Zhang
Atmos. Chem. Phys., 20, 721–733, https://doi.org/10.5194/acp-20-721-2020, https://doi.org/10.5194/acp-20-721-2020, 2020
Short summary
Short summary
An innovative approach is developed to preprocess monitored wet deposition data of inorganic ions for generating their decadal trends. Differing from traditional approaches which directly apply annual or seasonal average data to trend analysis tools, the proposed new approach makes use of slopes of regression equations between a series of study years and a climatology (base) year in terms of monthly averaged data. The new approach yields more robust results than the traditional tools.
Mingchen Ma, Yang Gao, Yuhang Wang, Shaoqing Zhang, L. Ruby Leung, Cheng Liu, Shuxiao Wang, Bin Zhao, Xing Chang, Hang Su, Tianqi Zhang, Lifang Sheng, Xiaohong Yao, and Huiwang Gao
Atmos. Chem. Phys., 19, 12195–12207, https://doi.org/10.5194/acp-19-12195-2019, https://doi.org/10.5194/acp-19-12195-2019, 2019
Short summary
Short summary
Ozone pollution has become severe in China, and extremely high ozone episodes occurred in summer 2017 over the North China Plain. While meteorology impacts are clear, we find that enhanced biogenic emissions, previously ignored by the community, driven by high vapor pressure deficit, land cover change and urban landscape contribute substantially to ozone formation. This study has significant implications for ozone pollution control with more frequent heat waves and urbanization growth in future.
Hua Yu, Weijun Li, Yangmei Zhang, Peter Tunved, Manuel Dall'Osto, Xiaojing Shen, Junying Sun, Xiaoye Zhang, Jianchao Zhang, and Zongbo Shi
Atmos. Chem. Phys., 19, 10433–10446, https://doi.org/10.5194/acp-19-10433-2019, https://doi.org/10.5194/acp-19-10433-2019, 2019
Short summary
Short summary
Interaction of anthropogenic particles with radiation and clouds plays an important role in Arctic climate change. The mixing state of different aerosols is a key parameter influencing such interactions. However, little is known of this parameter, preventing an accurate representation of this information in global models. Multi-microscopic techniques were used to find one general core–shell structure in which secondary sulfate particles were covered by organic coating in the Arctic atmosphere.
Juntao Wang, Yanjie Shen, Kai Li, Yang Gao, Huiwang Gao, and Xiaohong Yao
Atmos. Chem. Phys., 19, 8845–8861, https://doi.org/10.5194/acp-19-8845-2019, https://doi.org/10.5194/acp-19-8845-2019, 2019
Short summary
Short summary
In this paper, we studied the spatiotemporal variability of Ncn and particle number size distributions, as well as Nccn and CCN activities over the NWPO in the spring of 2014. We found that a pool of nucleation-mode atmospheric particles is aloft over the NWPO. Through comprehensive comparison with observations in the literature, we illustrate the characteristics of Ncn and Nccn over the NWPO in 2014 and reveal their changes against the results measured two decades ago.
Weijun Li, Lei Liu, Qi Yuan, Liang Xu, Yanhong Zhu, Bingbing Wang, Hua Yu, Xiaokun Ding, Jian Zhang, Dao Huang, Dantong Liu, Wei Hu, Daizhou Zhang, Pingqing Fu, Maosheng Yao, Min Hu, Xiaoye Zhang, and Zongbo Shi
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-539, https://doi.org/10.5194/acp-2019-539, 2019
Preprint withdrawn
Short summary
Short summary
The real state of individual primary biological aerosol particles (PBAPs) derived from natural sources is under mystery, although many studies well evaluate the morphology, mixing state, and elemental composition of anthropogenic particles. It induces that some studies mislead some anthropogenic particles into biological particles through electron microscopy. Here we firstly estimate the full database of individual PBAPs through two microscopic instruments. The database is good for research.
Zongbo Shi, Tuan Vu, Simone Kotthaus, Roy M. Harrison, Sue Grimmond, Siyao Yue, Tong Zhu, James Lee, Yiqun Han, Matthias Demuzere, Rachel E. Dunmore, Lujie Ren, Di Liu, Yuanlin Wang, Oliver Wild, James Allan, W. Joe Acton, Janet Barlow, Benjamin Barratt, David Beddows, William J. Bloss, Giulia Calzolai, David Carruthers, David C. Carslaw, Queenie Chan, Lia Chatzidiakou, Yang Chen, Leigh Crilley, Hugh Coe, Tie Dai, Ruth Doherty, Fengkui Duan, Pingqing Fu, Baozhu Ge, Maofa Ge, Daobo Guan, Jacqueline F. Hamilton, Kebin He, Mathew Heal, Dwayne Heard, C. Nicholas Hewitt, Michael Hollaway, Min Hu, Dongsheng Ji, Xujiang Jiang, Rod Jones, Markus Kalberer, Frank J. Kelly, Louisa Kramer, Ben Langford, Chun Lin, Alastair C. Lewis, Jie Li, Weijun Li, Huan Liu, Junfeng Liu, Miranda Loh, Keding Lu, Franco Lucarelli, Graham Mann, Gordon McFiggans, Mark R. Miller, Graham Mills, Paul Monk, Eiko Nemitz, Fionna O'Connor, Bin Ouyang, Paul I. Palmer, Carl Percival, Olalekan Popoola, Claire Reeves, Andrew R. Rickard, Longyi Shao, Guangyu Shi, Dominick Spracklen, David Stevenson, Yele Sun, Zhiwei Sun, Shu Tao, Shengrui Tong, Qingqing Wang, Wenhua Wang, Xinming Wang, Xuejun Wang, Zifang Wang, Lianfang Wei, Lisa Whalley, Xuefang Wu, Zhijun Wu, Pinhua Xie, Fumo Yang, Qiang Zhang, Yanli Zhang, Yuanhang Zhang, and Mei Zheng
Atmos. Chem. Phys., 19, 7519–7546, https://doi.org/10.5194/acp-19-7519-2019, https://doi.org/10.5194/acp-19-7519-2019, 2019
Short summary
Short summary
APHH-Beijing is a collaborative international research programme to study the sources, processes and health effects of air pollution in Beijing. This introduction to the special issue provides an overview of (i) the APHH-Beijing programme, (ii) the measurement and modelling activities performed as part of it and (iii) the air quality and meteorological conditions during joint intensive field campaigns as a core activity within APHH-Beijing.
Junxi Zhang, Yang Gao, L. Ruby Leung, Kun Luo, Huan Liu, Jean-Francois Lamarque, Jianren Fan, Xiaohong Yao, Huiwang Gao, and Tatsuya Nagashima
Atmos. Chem. Phys., 19, 887–900, https://doi.org/10.5194/acp-19-887-2019, https://doi.org/10.5194/acp-19-887-2019, 2019
Short summary
Short summary
ACCMIP simulations were used to study NOy deposition over East Asia in the future. Both dry and wet NOy deposition show significant decreases in the 2100s under RCP4.5 and RCP8.5 due to large anthropogenic emission reduction. The changes in climate only significantly affect the wet deposition primarily linked to changes in precipitation. Over the coastal seas of China, weaker transport of NOy from land due to emission reduction infers a larger impact from shipping and lightning emissions.
Jinhui Shi, Nan Wang, Huiwang Gao, Alex R. Baker, Xiaohong Yao, and Daizhou Zhang
Atmos. Chem. Phys., 19, 847–860, https://doi.org/10.5194/acp-19-847-2019, https://doi.org/10.5194/acp-19-847-2019, 2019
Short summary
Short summary
Water-soluble phosphorus (P) in natural and anthropogenic mineral particles in Asian continent outflow is regarded as one of the key nutrients for the biological cycle in the surface seawater of the North Pacific. Our observations at a Chinese coastal site revealed that P solubility was closely relevant to the particle origins, atmospheric acidic processes and ambient relative humidity. The recent severe air pollution over East Asia has likely enhanced bioavailable P input to the North Pacific.
Ge Zhang, Yang Gao, Wenju Cai, L. Ruby Leung, Shuxiao Wang, Bin Zhao, Minghuai Wang, Huayao Shan, Xiaohong Yao, and Huiwang Gao
Atmos. Chem. Phys., 19, 565–576, https://doi.org/10.5194/acp-19-565-2019, https://doi.org/10.5194/acp-19-565-2019, 2019
Short summary
Short summary
Based on observed data, this study reveals a distinct seesaw feature of abnormally high and low PM2.5 concentrations in December 2015 and January 2016 over North China. The mechanism of the seesaw pattern was found to be linked to a super El Niño and the Arctic Oscillation (AO). During the mature phase of El Niño in December 2015, the weakened East Asian winter monsoon favors strong haze formation; however, the circulation pattern was reversed in the next month due to the phase change of the AO.
Yujiao Zhu, Kai Li, Yanjie Shen, Yang Gao, Xiaohuan Liu, Yang Yu, Huiwang Gao, and Xiaohong Yao
Atmos. Chem. Phys., 19, 89–113, https://doi.org/10.5194/acp-19-89-2019, https://doi.org/10.5194/acp-19-89-2019, 2019
Short summary
Short summary
In this paper, we investigate new particle formation (NPF) events during seven cruises. NPF events were observed on 25 days and were most likely associated with the long-range transport of anthropogenic air pollutants. The relationship between the net generated amount of new particles and their apparent formation rate is established and explained in terms of the roles of different vapor precursors. The survival probability of new particles to CCN size is also discussed.
Lei Liu, Jian Zhang, Liang Xu, Qi Yuan, Dao Huang, Jianmin Chen, Zongbo Shi, Yele Sun, Pingqing Fu, Zifa Wang, Daizhou Zhang, and Weijun Li
Atmos. Chem. Phys., 18, 14681–14693, https://doi.org/10.5194/acp-18-14681-2018, https://doi.org/10.5194/acp-18-14681-2018, 2018
Short summary
Short summary
Using transmission electron microscopy, we studied individual cloud droplet residual and interstitial particles collected in cloud events at Mt. Tai in the polluted North China region. We found that individual cloud droplets were an extremely complicated mixture containing abundant refractory soot (i.e., black carbon), fly ash, and metals. The complicated cloud droplets have not been reported in clean continental or marine air before.
Li Luo, Shuh-Ji Kao, Hongyan Bao, Huayun Xiao, Hongwei Xiao, Xiaohong Yao, Huiwang Gao, Jiawei Li, and Yangyang Lu
Atmos. Chem. Phys., 18, 6207–6222, https://doi.org/10.5194/acp-18-6207-2018, https://doi.org/10.5194/acp-18-6207-2018, 2018
Chao Zhang, Huiwang Gao, Xiaohong Yao, Zongbo Shi, Jinhui Shi, Yang Yu, Ling Meng, and Xinyu Guo
Biogeosciences, 15, 749–765, https://doi.org/10.5194/bg-15-749-2018, https://doi.org/10.5194/bg-15-749-2018, 2018
Short summary
Short summary
This study compares the response of phytoplankton growth in the northwest Pacific to those in the Yellow Sea. In general, larger positive responses of phytoplankton induced by combined nutrients (in the subtropical gyre of the northwest Pacific) than those induced by a single nutrient (in the Kuroshio Extension and the Yellow Sea) from the dust are observed. We also emphasize the importance of an increase in bioavailable P stock for phytoplankton growth following dust addition.
Jianhua Qi, Xiaohuan Liu, Xiaohong Yao, Ruifeng Zhang, Xiaojing Chen, Xuehui Lin, Huiwang Gao, and Ruhai Liu
Atmos. Chem. Phys., 18, 571–586, https://doi.org/10.5194/acp-18-571-2018, https://doi.org/10.5194/acp-18-571-2018, 2018
Short summary
Short summary
Inorganic nitrogen has a great impact on marine productivity when deposited to the ocean via atmospheric deposition. Do dust events always increase the atmospheric input of inorganic nitrogen to the ocean? The estimated deposition flux of NNH4++NO3- varied greatly from event to event. A simple assumption of a linear increase in inorganic nitrogen with increasing dust load could lead to a considerable overestimation of the dry deposition flux of nutrients into the oceans.
Feng Wu, Daizhou Zhang, Junji Cao, Xiao Guo, Yao Xia, Ting Zhang, Hui Lu, and Yan Cheng
Atmos. Chem. Phys., 17, 14473–14484, https://doi.org/10.5194/acp-17-14473-2017, https://doi.org/10.5194/acp-17-14473-2017, 2017
Short summary
Short summary
Sulfate and nitrate in dust particles at a desert site and a 700 km downwind urban site in China were compared. The production of the two salts during the transport of dust particles was limited because of the adiabatic process of the dust-loading air movement. Significant sulfate and nitrate previously reported in dust-associated samples were very likely from locally emitted and urban aerosols or soil-derived particles rather than the products of chemical reactions on desert dust particles.
Caihong Xu, Min Wei, Jianmin Chen, Chao Zhu, Jiarong Li, Ganglin Lv, Xianmang Xu, Lulu Zheng, Guodong Sui, Weijun Li, Bing Chen, Wenxing Wang, Qingzhu Zhang, Aijun Ding, and Abdelwahid Mellouki
Atmos. Chem. Phys., 17, 11247–11260, https://doi.org/10.5194/acp-17-11247-2017, https://doi.org/10.5194/acp-17-11247-2017, 2017
Short summary
Short summary
Fungi are ubiquitous throughout the near-surface atmosphere, where they represent an important component of primary biological aerosol particles. The diversity and composition of the fungal communities varied over the different seasons between the fine (PM2.5) and submicron (PM1) particles at the summit of Mt. Tai located in the North China Plain, China. This work may serve as an important reference for the fungal contribution to primary biological aerosol particles.
Jiarong Li, Xinfeng Wang, Jianmin Chen, Chao Zhu, Weijun Li, Chengbao Li, Lu Liu, Caihong Xu, Liang Wen, Likun Xue, Wenxing Wang, Aijun Ding, and Hartmut Herrmann
Atmos. Chem. Phys., 17, 9885–9896, https://doi.org/10.5194/acp-17-9885-2017, https://doi.org/10.5194/acp-17-9885-2017, 2017
Short summary
Short summary
Cloud events at Mt. Tai were investigated for the chemical composition and size distribution of cloud droplets. An obvious rise in pH was found for elevated NH+4 during the last decade. Higher PM2.5 levels resulted in higher concentrations of water-soluble ions, smaller sizes and higher numbers of cloud droplets. The mechanism of cloud-droplet formation and the mass transfer between aerosol–gas–cloud phases were summarized to enrich the knowledge of cloud chemical and microphysical properties.
Yujiao Zhu, Caiqing Yan, Renyi Zhang, Zifa Wang, Mei Zheng, Huiwang Gao, Yang Gao, and Xiaohong Yao
Atmos. Chem. Phys., 17, 9469–9484, https://doi.org/10.5194/acp-17-9469-2017, https://doi.org/10.5194/acp-17-9469-2017, 2017
Short summary
Short summary
This study reports the distinct effects of street canyons on new particle formation (NPF) under warm or cold ambient temperature conditions because of on-road vehicle emissions; i.e., stronger condensation sinks are responsible for the reduced NPF in the springtime, but efficient nucleation and partitioning of gaseous species contribute to the enhanced NPF in the wintertime. The oxidization of biogenic organics is suggested to play an important role in growing new particles.
Xiang Gong, Wensheng Jiang, Linhui Wang, Huiwang Gao, Emmanuel Boss, Xiaohong Yao, Shuh-Ji Kao, and Jie Shi
Biogeosciences, 14, 2371–2386, https://doi.org/10.5194/bg-14-2371-2017, https://doi.org/10.5194/bg-14-2371-2017, 2017
Short summary
Short summary
The subsurface chlorophyll maximum layer (SCML) forms near the nitracline. By incorporating a piecewise function for the approximate Gaussian vertical profile of chlorophyll, we derive analytical solutions of a specified nutrient–phytoplankton model. Nitracline depth is deeper than SCML depth, and a thinner SCML corresponds to a steeper nitracline. A higher light attenuation coefficient leads to a shallower but steeper nitracline. Nitracline steepness is independent of surface light intensity.
Shurui Chen, Liang Xu, Yinxiao Zhang, Bing Chen, Xinfeng Wang, Xiaoye Zhang, Mei Zheng, Jianmin Chen, Wenxing Wang, Yele Sun, Pingqing Fu, Zifa Wang, and Weijun Li
Atmos. Chem. Phys., 17, 1259–1270, https://doi.org/10.5194/acp-17-1259-2017, https://doi.org/10.5194/acp-17-1259-2017, 2017
Short summary
Short summary
Many studies have focused on the unusually severe hazes instead of the more frequent light and moderate hazes (22–63 %) in winter in the North China Plain (NCP). The morphology, mixing state, and size of organic aerosols in the L & M hazes were characterized. We conclude that the direct emissions from residential coal stoves without any pollution controls in rural and urban outskirts contribute large amounts of primary OM particles to the regional L & M hazes in winter in the NCP.
Xiaohong Yao and Leiming Zhang
Atmos. Chem. Phys., 16, 11465–11475, https://doi.org/10.5194/acp-16-11465-2016, https://doi.org/10.5194/acp-16-11465-2016, 2016
Short summary
Short summary
Atmospheric NH3 plays an important role in forming secondary aerosols and has a direct impact on sensitive ecosystems. This study aims to study its long-term variation and find that the long-term trend can be affected by climate change as well as other anthropogenic factors, depending on sites. A large percentage increase of atmospheric NH3 at remote American sites is surprising and may cause a potential threat to sensitive ecosystems in the future.
Wolfgang Woiwode, Michael Höpfner, Lei Bi, Michael C. Pitts, Lamont R. Poole, Hermann Oelhaf, Sergej Molleker, Stephan Borrmann, Marcus Klingebiel, Gennady Belyaev, Andreas Ebersoldt, Sabine Griessbach, Jens-Uwe Grooß, Thomas Gulde, Martina Krämer, Guido Maucher, Christof Piesch, Christian Rolf, Christian Sartorius, Reinhold Spang, and Johannes Orphal
Atmos. Chem. Phys., 16, 9505–9532, https://doi.org/10.5194/acp-16-9505-2016, https://doi.org/10.5194/acp-16-9505-2016, 2016
Short summary
Short summary
The analysis of spectral signatures of a polar stratospheric cloud in airborne infrared remote sensing observations in the Arctic in combination with further collocated measurements supports the view that the observed cloud consisted of highly aspherical nitric acid trihydrate particles. A characteristic "shoulder-like" spectral signature may be exploited for identification of large, highly aspherical nitric acid trihydrate particles involved in denitrification of the polar winter stratosphere.
Josiane Mélançon, Maurice Levasseur, Martine Lizotte, Michael Scarratt, Jean-Éric Tremblay, Philippe Tortell, Gui-Peng Yang, Guang-Yu Shi, Huiwang Gao, David Semeniuk, Marie Robert, Michael Arychuk, Keith Johnson, Nes Sutherland, Marty Davelaar, Nina Nemcek, Angelica Peña, and Wendy Richardson
Biogeosciences, 13, 1677–1692, https://doi.org/10.5194/bg-13-1677-2016, https://doi.org/10.5194/bg-13-1677-2016, 2016
Short summary
Short summary
Ocean acidification is likely to affect iron-limited phytoplankton fertilization by desert dust. Short incubations of northeast subarctic Pacific waters enriched with dust and set at pH 8.0 and 7.8 were conducted. Acidification led to a significant reduction (by 16–38 %) of the final concentration of chl a reached after enrichment. These results show that dust deposition events in a low-pH iron-limited ocean are likely to stimulate phytoplankton growth to a lesser extent than in today's ocean.
L. Luo, X. H. Yao, H. W. Gao, S. C. Hsu, J. W. Li, and S. J. Kao
Atmos. Chem. Phys., 16, 325–341, https://doi.org/10.5194/acp-16-325-2016, https://doi.org/10.5194/acp-16-325-2016, 2016
Short summary
Short summary
Concentrations and depositions of various nitrogen species of water-soluble fraction in aerosols were observed during spring over the eastern China seas and northwestern Pacific Ocean. Results revealed nitrogen deposition associated with the sea fog weather was 6 times higher than that of spring supply from the Yangtze River to the ECS shelf. The DON emission had occurred most likely during sea spray. Weather conditions modulate the nitrogen exchange at the ocean-atmosphere boundary.
W. J. Li, S. R. Chen, Y. S. Xu, X. C. Guo, Y. L. Sun, X. Y. Yang, Z. F. Wang, X. D. Zhao, J. M. Chen, and W. X. Wang
Atmos. Chem. Phys., 15, 13365–13376, https://doi.org/10.5194/acp-15-13365-2015, https://doi.org/10.5194/acp-15-13365-2015, 2015
Short summary
Short summary
We found that anthropogenic soot, fly ash, and visible organic particles likely adhere to the surface of secondary inorganic particles larger than 200nm due to coagulation. Biomass burning and coal combustion both constantly contribute to anthropogenic particles in the Qinghai-Tibet Plateau (QTP) background atmosphere. Organic coating and soot on the surface of the aged particles could have different impacts on their hygroscopic and optical properties in the QTP compared to the urban aerosols.
J. W. Chi, W. J. Li, D. Z. Zhang, J. C. Zhang, Y. T. Lin, X. J. Shen, J. Y. Sun, J. M. Chen, X. Y. Zhang, Y. M. Zhang, and W. X. Wang
Atmos. Chem. Phys., 15, 11341–11353, https://doi.org/10.5194/acp-15-11341-2015, https://doi.org/10.5194/acp-15-11341-2015, 2015
Short summary
Short summary
Sea salt aerosols (SSA) are dominant particles in the Arctic atmosphere. Our result suggests that the hydrophilic MgCl2 coating in fresh SSA likely intrigued the heterogeneous reactions at the beginning of SSA and acidic gases in the Arctic. The content of organic matter increased in the aged SSA compared with the fresh SSA, which suggests organic acids (beside inorganic acids) participate in the ageing of SSA in the Arctic.
T. Li, Y. Wang, W. J. Li, J. M. Chen, T. Wang, and W. X. Wang
Atmos. Chem. Phys., 15, 8987–9002, https://doi.org/10.5194/acp-15-8987-2015, https://doi.org/10.5194/acp-15-8987-2015, 2015
Short summary
Short summary
Twelve trace elements in fine particles and clouds at a mountain site in southern China were investigated.
Long-range transport contributed the most to element concentrations, whereas the YRD and the area around Mt. Lushan exhibited the highest element solubility.
We demonstrated that cloud processing can enhance aerosol element solubility and increase sulfate concentration correspondingly, by irreversibly altering the morphology of metal particles in cloud droplet residues.
X. Gong, J. Shi, H. W. Gao, and X. H. Yao
Biogeosciences, 12, 905–919, https://doi.org/10.5194/bg-12-905-2015, https://doi.org/10.5194/bg-12-905-2015, 2015
Short summary
Short summary
Analytical solutions indicate that subsurface chlorophyll maximum (SCM) occurs at or below the depth of optimal growth of phytoplankton, and the depth of SCM layer deepens logarithmically with an increase in surface light intensity; thickness and intensity of the SCM layer are mainly affected by nutrient supply, but independent of surface light intensity; intensity of the SCM strengthens as a result of this layer being shrunk by a higher light attenuation coefficient or a large sinking velocity
X. H. Liu, Y. J. Zhu, M. Zheng, H. W. Gao, and X. H. Yao
Atmos. Chem. Phys., 14, 7941–7951, https://doi.org/10.5194/acp-14-7941-2014, https://doi.org/10.5194/acp-14-7941-2014, 2014
X. H. Yao and L. Zhang
Biogeosciences, 10, 7913–7925, https://doi.org/10.5194/bg-10-7913-2013, https://doi.org/10.5194/bg-10-7913-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Understanding the mechanism and importance of brown carbon bleaching across the visible spectrum in biomass burning plumes from the WE-CAN campaign
Influence of terrestrial and marine air mass on the constituents and intermixing of bioaerosols over a coastal atmosphere
A multi-site passive approach to studying the emissions and evolution of smoke from prescribed fires
The annual cycle and sources of relevant aerosol precursor vapors in the central Arctic during the MOSAiC expedition
Opinion: How will advances in aerosol science inform our understanding of the health impacts of outdoor particulate pollution?
Measurement report: Intra-annual variability of black carbon and brown carbon and their interrelation with meteorological conditions over Gangtok, Sikkim
Long-range transport of air pollutants increases the concentration of hazardous components of PM2.5 in northern South America
Dominant influence of biomass combustion and cross-border transport on nitrogen-containing organic compound levels in the southeastern Tibetan Plateau
Impacts of elevated anthropogenic emissions on physicochemical characteristics of black-carbon-containing particles over the Tibetan Plateau
Online characterization of primary and secondary emissions of particulate matter and acidic molecules from a modern fleet of city buses
Atmospheric evolution of environmentally persistent free radicals in the rural North China Plain: effects on water solubility and PM2.5 oxidative potential
Two distinct ship emission profiles for organic-sulfate source apportionment of PM in sulfur emission control areas
Automated compound speciation, cluster analysis, and quantification of organic vapors and aerosols using comprehensive two-dimensional gas chromatography and mass spectrometry
Measurement report: Occurrence of aminiums in PM2.5 during winter in China – aminium outbreak during polluted episodes and potential constraints
Bridging gas and aerosol properties between the northeastern US and Bermuda: analysis of eight transit flights
The behaviour of charged particles (ions) during new particle formation events in urban Leipzig, Germany
Exploring the sources of light-absorbing carbonaceous aerosols by integrating observational and modeling results: insights from Northeast China
Measurement report: Characteristics of airborne black-carbon-containing particles during the 2021 summer COVID-19 lockdown in a typical Yangtze River Delta city, China
Aerosol optical properties within the atmospheric boundary layer predicted from ground-based observations compared to Raman lidar retrievals during RITA-2021
Hygroscopic growth and activation changed submicron aerosol composition and properties in the North China Plain
Measurement report: Formation of tropospheric brown carbon in a lifting air mass
Vertical variability of aerosol properties and trace gases over a remote marine region: a case study over Bermuda
Differences in aerosol and cloud properties along the central California coast when winds change from northerly to southerly
International airport emissions and their impact on local air quality: chemical speciation of ambient aerosols at Madrid–Barajas Airport during the AVIATOR campaign
Significant role of biomass burning in heavy haze formation in a megacity: Molecular-level insights from intensive PM2.5 sampling on winter hazy days
The local ship speed reduction effect on black carbon emissions measured at a remote marine station
High-altitude aerosol chemical characterization and source identification: insights from the CALISHTO campaign
Measurement report: Impact of emission control measures on environmental persistent free radicals and reactive oxygen species – a short-term case study in Beijing
Characterizing water solubility of fresh and aged secondary organic aerosol in PM2.5 with the stable carbon isotope technique
Measurement report: Impact of cloud processes on secondary organic aerosols at a forested mountain site in southeastern China
Critical contribution of chemically diverse carbonyl molecules to the oxidative potential of atmospheric aerosols
Seasonal Investigation of Ultrafine Particle Composition in an Eastern Amazonian Rainforest
Measurement report: Vanadium-containing ship exhaust particles detected in and above the marine boundary layer in the remote atmosphere
Diverging trends in aerosol sulfate and nitrate measured in the remote North Atlantic in Barbados are attributed to clean air policies, African smoke, and anthropogenic emissions
Technical note: Quantified organic aerosol subsaturated hygroscopicity by a simple optical scatter monitor system through field measurements
Diverse sources and aging change the mixing state and ice nucleation properties of aerosol particles over the western Pacific and Southern Ocean
The water-insoluble organic carbon in PM2.5 of typical Chinese urban areas: light-absorbing properties, potential sources, radiative forcing effects, and a possible light-absorbing continuum
Measurement report: Size-resolved secondary organic aerosol formation modulated by aerosol water uptake in wintertime haze
In situ measurement of organic aerosol molecular markers in urban Hong Kong during a summer period: temporal variations and source apportionment
Technical note: Determining chemical composition of atmospheric single particles by a standard-free mass calibration algorithm
Different formation pathways of nitrogen-containing organic compounds in aerosols and fog water in northern China
Impact of weather patterns and meteorological factors on PM2.5 and O3 responses to the COVID-19 lockdown in China
Daytime and nighttime aerosol soluble iron formation in clean and slightly polluted moist air in a coastal city in eastern China
Non-negligible secondary contribution to brown carbon in autumn and winter: inspiration from particulate nitrated and oxygenated aromatic compounds in urban Beijing
Non-sea-salt aerosols that contain trace bromine and iodine are widespread in the remote troposphere
Simultaneous organic aerosol source apportionment at two Antarctic sites reveals large-scale and ecoregion-specific components
Measurement report: Optical characterization, seasonality, and sources of brown carbon in fine aerosols from Tianjin, North China: year-round observations
High-resolution analyses of concentrations and sizes of black carbon particles deposited on northwest Greenland over the past 350 years – Part 2: Seasonal and temporal trends in black carbon originated from fossil fuel combustion and biomass burning
Bayesian inference-based estimation of hourly primary and secondary organic carbon in suburban Hong Kong: multi-temporal-scale variations and evolution characteristics during PM2.5 episodes
Formation and chemical evolution of SOA in two different environments: A dual chamber study
Yingjie Shen, Rudra P. Pokhrel, Amy P. Sullivan, Ezra J. T. Levin, Lauren A. Garofalo, Delphine K. Farmer, Wade Permar, Lu Hu, Darin W. Toohey, Teresa Campos, Emily V. Fischer, and Shane M. Murphy
Atmos. Chem. Phys., 24, 12881–12901, https://doi.org/10.5194/acp-24-12881-2024, https://doi.org/10.5194/acp-24-12881-2024, 2024
Short summary
Short summary
The magnitude and evolution of brown carbon (BrC) absorption remain unclear, with uncertainty in climate models. Data from the WE-CAN airborne experiment show that model parameterizations overestimate the mass absorption cross section (MAC) of BrC. Observed decreases in BrC absorption with chemical markers are due to decreasing organic aerosol (OA) mass rather than a decreasing BrC MAC, which is currently implemented in models. Water-soluble BrC contributes 23 % of total absorption at 660 nm.
Qun He, Zhaowen Wang, Houfeng Liu, Pengju Xu, Rongbao Duan, Caihong Xu, Jianmin Chen, and Min Wei
Atmos. Chem. Phys., 24, 12775–12792, https://doi.org/10.5194/acp-24-12775-2024, https://doi.org/10.5194/acp-24-12775-2024, 2024
Short summary
Short summary
Coastal environments provide an ideal setting for investigating the intermixing of terrestrial and marine aerosols. Terrestrial air mass constituted a larger number of microbes from anthropogenic and soil emissions, whereas saprophytic and gut microbes were predominant in marine samples. Mixed air masses indicated a fusion of marine and terrestrial aerosols, characterized by alterations in the ratio of pathogenic and saprophytic microbes when compared to either terrestrial or marine samples.
Rime El Asmar, Zongrun Li, David J. Tanner, Yongtao Hu, Susan O'Neill, L. Gregory Huey, M. Talat Odman, and Rodney J. Weber
Atmos. Chem. Phys., 24, 12749–12773, https://doi.org/10.5194/acp-24-12749-2024, https://doi.org/10.5194/acp-24-12749-2024, 2024
Short summary
Short summary
Prescribed burning is an important method for managing ecosystems and preventing wildfires. However, smoke from prescribed fires can have a significant impact on air quality. Here, using a network of fixed sites and sampling throughout an extended prescribed burning period in 2 different years, we characterize emissions and evolutions of up to 8 h of PM2.5 mass, black carbon (BC), and brown carbon (BrC) in smoke from burning of forested lands in the southeastern USA.
Matthew Boyer, Diego Aliaga, Lauriane L. J. Quéléver, Silvia Bucci, Hélène Angot, Lubna Dada, Benjamin Heutte, Lisa Beck, Marina Duetsch, Andreas Stohl, Ivo Beck, Tiia Laurila, Nina Sarnela, Roseline C. Thakur, Branka Miljevic, Markku Kulmala, Tuukka Petäjä, Mikko Sipilä, Julia Schmale, and Tuija Jokinen
Atmos. Chem. Phys., 24, 12595–12621, https://doi.org/10.5194/acp-24-12595-2024, https://doi.org/10.5194/acp-24-12595-2024, 2024
Short summary
Short summary
We analyze the seasonal cycle and sources of gases that are relevant for the formation of aerosol particles in the central Arctic. Since theses gases can form new particles, they can influence Arctic climate. We show that the sources of these gases are associated with changes in the Arctic environment during the year, especially with respect to sea ice. Therefore, the concentration of these gases will likely change in the future as the Arctic continues to warm.
Imad El Haddad, Danielle Vienneau, Kaspar R. Daellenbach, Robin Modini, Jay G. Slowik, Abhishek Upadhyay, Petros N. Vasilakos, David Bell, Kees de Hoogh, and Andre S. H. Prevot
Atmos. Chem. Phys., 24, 11981–12011, https://doi.org/10.5194/acp-24-11981-2024, https://doi.org/10.5194/acp-24-11981-2024, 2024
Short summary
Short summary
This opinion paper explores how advances in aerosol science inform our understanding of the health impacts of outdoor particulate pollution. We advocate for a shift in the way we target PM pollution, focusing on the most harmful anthropogenic emissions. We highlight key observations, modelling developments, and emission measurements needed to achieve this shift.
Pramod Kumar, Khushboo Sharma, Ankita Malu, Rajeev Rajak, Aparna Gupta, Bidyutjyoti Baruah, Shailesh Yadav, Thupstan Angchuk, Jayant Sharma, Rakesh Kumar Ranjan, Anil Kumar Misra, and Nishchal Wanjari
Atmos. Chem. Phys., 24, 11585–11601, https://doi.org/10.5194/acp-24-11585-2024, https://doi.org/10.5194/acp-24-11585-2024, 2024
Short summary
Short summary
This work monitors and assesses air pollution, especially black and brown carbon, its controlling factor, and its effect on the environment of Sikkim Himalayan region. The huge urban sprawl in recent decades has led to regional human-induced air pollution in the region. Black carbon was highest in April 2021 and March 2022, exceeding the WHO limit. The monsoon season causes huge rainfall over the region, which reduces the pollutants by scavenging (rainout and washout).
Maria P. Velásquez-García, K. Santiago Hernández, James A. Vergara-Correa, Richard J. Pope, Miriam Gómez-Marín, and Angela M. Rendón
Atmos. Chem. Phys., 24, 11497–11520, https://doi.org/10.5194/acp-24-11497-2024, https://doi.org/10.5194/acp-24-11497-2024, 2024
Short summary
Short summary
In the Aburrá Valley, northern South America, local emissions determine air quality conditions. However, we found that external sources, such as regional fires, Saharan dust, and volcanic emissions, increase particulate concentrations and worsen chemical composition by introducing elements like heavy metals. Dry winds and source variability contribute to seasonal influences on these events. This study assesses the air quality risks posed by such events, which can affect broad regions worldwide.
Meng Wang, Qiyuan Wang, Steven Sai Hang Ho, Jie Tian, Yong Zhang, Shun-cheng Lee, and Junji Cao
Atmos. Chem. Phys., 24, 11175–11189, https://doi.org/10.5194/acp-24-11175-2024, https://doi.org/10.5194/acp-24-11175-2024, 2024
Short summary
Short summary
We studied nitrogen-containing organic compounds (NOCs) in particulate matter <2.5 µm particles on the southeastern Tibetan Plateau. We found that biomass burning and transboundary transport are the main sources of NOCs in the high-altitude area. Understanding these aerosol sources informs how they add to regional and potentially global climate changes. Our findings could help shape effective environmental policies to enhance air quality and address climate impacts in this sensitive region.
Jinbo Wang, Jiaping Wang, Yuxuan Zhang, Tengyu Liu, Xuguang Chi, Xin Huang, Dafeng Ge, Shiyi Lai, Caijun Zhu, Lei Wang, Qiaozhi Zha, Ximeng Qi, Wei Nie, Congbin Fu, and Aijun Ding
Atmos. Chem. Phys., 24, 11063–11080, https://doi.org/10.5194/acp-24-11063-2024, https://doi.org/10.5194/acp-24-11063-2024, 2024
Short summary
Short summary
In this study, we found large spatial discrepancies in the physical and chemical properties of black carbon over the Tibetan Plateau (TP). Elevated anthropogenic emissions from low-altitude regions can significantly change the mass concentration, mixing state and chemical composition of black-carbon-containing aerosol in the TP region, further altering its light absorption ability. Our study emphasizes the vulnerability of remote plateau regions to intense anthropogenic influences.
Liyuan Zhou, Qianyun Liu, Christian M. Salvador, Michael Le Breton, Mattias Hallquist, Jian Zhen Yu, Chak K. Chan, and Åsa M. Hallquist
Atmos. Chem. Phys., 24, 11045–11061, https://doi.org/10.5194/acp-24-11045-2024, https://doi.org/10.5194/acp-24-11045-2024, 2024
Short summary
Short summary
Our research on city bus emissions reveals that alternative fuels (compressed natural gas and biofuels) reduce fresh particle emissions compared to diesel. However, all fuels lead to secondary air pollution. Aiming at guiding better environmental policies, we studied 76 buses using advanced emission measurement techniques. This work sheds light on the complex effects of bus fuels on urban air quality, emphasizing the need for comprehensive evaluations of future transportation technologies.
Xu Yang, Fobang Liu, Shuqi Yang, Yuling Yang, Yanan Wang, Jingjing Li, Mingyu Zhao, Zhao Wang, Kai Wang, Chi He, and Haijie Tong
Atmos. Chem. Phys., 24, 11029–11043, https://doi.org/10.5194/acp-24-11029-2024, https://doi.org/10.5194/acp-24-11029-2024, 2024
Short summary
Short summary
A study in the rural North China Plain showed environmentally persistent free radicals (EPFRs) in atmospheric particulate matter (PM), with a notable water-soluble fraction likely from atmospheric oxidation during transport. Significant positive correlations between EPFRs and the water-soluble oxidative potential of PM2.5 were found, primarily attributable to the water-soluble fractions of EPFRs. These findings emphasize understanding EPFRs' atmospheric evolution for climate and health impacts.
Kirsten N. Fossum, Chunshui Lin, Niall O'Sullivan, Lu Lei, Stig Hellebust, Darius Ceburnis, Aqeel Afzal, Anja Tremper, David Green, Srishti Jain, Steigvilė Byčenkienė, Colin O'Dowd, John Wenger, and Jurgita Ovadnevaite
Atmos. Chem. Phys., 24, 10815–10831, https://doi.org/10.5194/acp-24-10815-2024, https://doi.org/10.5194/acp-24-10815-2024, 2024
Short summary
Short summary
The chemical composition and sources of submicron aerosol in the Dublin Port area were investigated over a month-long campaign. Two distinct types of ship emissions were identified and characterised: sulfate-rich plumes from the use of heavy fuel oil with scrubbers and organic-rich plumes from the use of low-sulfur fuels. The latter were more frequent, emitting double the particle number and having a typical V / Ni ratio for ship emission.
Xiao He, Xuan Zheng, Shuwen Guo, Lewei Zeng, Ting Chen, Bohan Yang, Shupei Xiao, Qiongqiong Wang, Zhiyuan Li, Yan You, Shaojun Zhang, and Ye Wu
Atmos. Chem. Phys., 24, 10655–10666, https://doi.org/10.5194/acp-24-10655-2024, https://doi.org/10.5194/acp-24-10655-2024, 2024
Short summary
Short summary
This study introduces an innovative method for identifying and quantifying complex organic vapors and aerosols. By combining advanced analytical techniques and new algorithms, we categorized thousands of compounds from heavy-duty diesel vehicles and ambient air and highlighted specific tracers for emission sources. The innovative approach enhances peak identification, reduces quantification uncertainties, and offers new insights for air quality management and atmospheric chemistry.
Yu Xu, Tang Liu, Yi-Jia Ma, Qi-Bin Sun, Hong-Wei Xiao, Hao Xiao, Hua-Yun Xiao, and Cong-Qiang Liu
Atmos. Chem. Phys., 24, 10531–10542, https://doi.org/10.5194/acp-24-10531-2024, https://doi.org/10.5194/acp-24-10531-2024, 2024
Short summary
Short summary
This study investigates the characteristics of aminiums and ammonium in PM2.5 on clean and polluted winter days in 11 Chinese cities, highlighting the possibility of the competitive uptake of ammonia versus amines on acidic aerosols or the displacement of aminiums by ammonia under high-ammonia conditions. The overall results deepen the understanding of the spatiotemporal differences in aminium characteristics and formation in China.
Cassidy Soloff, Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Francesca Gallo, Johnathan W. Hair, Miguel Ricardo A. Hilario, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 10385–10408, https://doi.org/10.5194/acp-24-10385-2024, https://doi.org/10.5194/acp-24-10385-2024, 2024
Short summary
Short summary
Using aircraft measurements over the northwestern Atlantic between the US East Coast and Bermuda and trajectory modeling of continental outflow, we identify trace gas and particle properties that exhibit gradients with offshore distance and quantify these changes with high-resolution measurements of concentrations and particle chemistry, size, and scattering properties. This work furthers our understanding of the complex interactions between continental and marine environments.
Alex Rowell, James Brean, David C. S. Beddows, Zongbo Shi, Avinash Kumar, Matti Rissanen, Miikka Dal Maso, Peter Mettke, Kay Weinhold, Maik Merkel, and Roy M. Harrison
Atmos. Chem. Phys., 24, 10349–10361, https://doi.org/10.5194/acp-24-10349-2024, https://doi.org/10.5194/acp-24-10349-2024, 2024
Short summary
Short summary
Ions enhance the formation and growth rates of new particles, affecting the Earth's radiation budget. Despite these effects, there is little published data exploring the sources of ions in the urban environment and their role in new particle formation (NPF). Here we show that natural ion sources dominate in urban environments, while traffic is a secondary source. Ions contribute up to 12.7 % of the formation rate of particles, indicating that they are important for forming urban PM.
Yuan Cheng, Xu-bing Cao, Sheng-qiang Zhu, Zhi-qing Zhang, Jiu-meng Liu, Hong-liang Zhang, Qiang Zhang, and Ke-bin He
Atmos. Chem. Phys., 24, 9869–9883, https://doi.org/10.5194/acp-24-9869-2024, https://doi.org/10.5194/acp-24-9869-2024, 2024
Short summary
Short summary
The agreement between observational and modeling results is essential for the development of efficient air pollution control strategies. Here we constrained the modeling results of carbonaceous aerosols by field observation in Northeast China, a historically overlooked but recently targeted region of national clean-air actions. Our study suggested that the simulation of agricultural fire emissions and secondary organic aerosols remains challenging.
Yuan Dai, Junfeng Wang, Houjun Wang, Shijie Cui, Yunjiang Zhang, Haiwei Li, Yun Wu, Ming Wang, Eleonora Aruffo, and Xinlei Ge
Atmos. Chem. Phys., 24, 9733–9748, https://doi.org/10.5194/acp-24-9733-2024, https://doi.org/10.5194/acp-24-9733-2024, 2024
Short summary
Short summary
Short-term strict emission control can improve air quality, but its effectiveness needs assessment. During the 2021 summer COVID-19 lockdown in Yangzhou, we found that PM2.5 levels did not decrease despite reduced primary emissions. Aged black-carbon particles increased substantially due to higher O3 levels and transported pollutants. High humidity and low wind also played key roles. The results highlight the importance of a regionally balanced control strategy for future air quality management.
Xinya Liu, Diego Alves Gouveia, Bas Henzing, Arnoud Apituley, Arjan Hensen, Danielle van Dinther, Rujin Huang, and Ulrike Dusek
Atmos. Chem. Phys., 24, 9597–9614, https://doi.org/10.5194/acp-24-9597-2024, https://doi.org/10.5194/acp-24-9597-2024, 2024
Short summary
Short summary
The vertical distribution of aerosol optical properties is important for their effect on climate. This is usually measured by lidar, which has limitations, most notably the assumption of a lidar ratio. Our study shows that routine surface-level aerosol measurements are able to predict this lidar ratio reasonably well within the lower layers of the atmosphere and thus provide a relatively simple and cost-effective method to improve lidar measurements.
Weiqi Xu, Ye Kuang, Wanyun Xu, Zhiqiang Zhang, Biao Luo, Xiaoyi Zhang, Jiangchuang Tao, Hongqin Qiao, Li Liu, and Yele Sun
Atmos. Chem. Phys., 24, 9387–9399, https://doi.org/10.5194/acp-24-9387-2024, https://doi.org/10.5194/acp-24-9387-2024, 2024
Short summary
Short summary
We deployed an advanced aerosol–fog sampling system at a rural site in the North China Plain to investigate impacts of aerosol hygroscopic growth and activation on the physicochemical properties of submicron aerosols. Observed results highlighted remarkably different aqueous processing of primary and secondary submicron aerosol components under distinct ambient relative humidity (RH) conditions and that RH levels significantly impact aerosol sampling through the aerosol swelling effect.
Can Wu, Xiaodi Liu, Ke Zhang, Si Zhang, Cong Cao, Jianjun Li, Rui Li, Fan Zhang, and Gehui Wang
Atmos. Chem. Phys., 24, 9263–9275, https://doi.org/10.5194/acp-24-9263-2024, https://doi.org/10.5194/acp-24-9263-2024, 2024
Short summary
Short summary
Brown carbon (BrC) is prevalent in the troposphere and can efficiently absorb solar and terrestrial radiation. Our observations show that the enhanced light absorption of BrC relative to black carbon at the tropopause can be attributed to the formation of nitrogen-containing organic compounds through the aqueous-phase reactions of carbonyls with ammonium.
Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Johnathan W. Hair, Miguel Ricardo A. Hilario, Chris A. Hostetler, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Cassidy Soloff, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9197–9218, https://doi.org/10.5194/acp-24-9197-2024, https://doi.org/10.5194/acp-24-9197-2024, 2024
Short summary
Short summary
This study uses airborne data to examine vertical profiles of trace gases, aerosol particles, and meteorological variables over a remote marine area (Bermuda). Results show distinct differences based on both air mass source region (North America, Ocean, Caribbean/North Africa) and altitude for a given air mass type. This work highlights the sensitivity of remote marine areas to long-range transport and the importance of considering the vertical dependence of trace gas and aerosol properties.
Kira Zeider, Grace Betito, Anthony Bucholtz, Peng Xian, Annette Walker, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9059–9083, https://doi.org/10.5194/acp-24-9059-2024, https://doi.org/10.5194/acp-24-9059-2024, 2024
Short summary
Short summary
The predominant wind direction along the California coast (northerly) reverses several times during the summer (to southerly). The effects of these wind reversals on aerosol and cloud characteristics are not well understood. Using data from multiple datasets we found that southerly flow periods had enhanced signatures of anthropogenic emissions due to shipping and continental sources, and clouds had more but smaller droplets.
Saleh Alzahrani, Doğuşhan Kılıç, Michael Flynn, Paul I. Williams, and James Allan
Atmos. Chem. Phys., 24, 9045–9058, https://doi.org/10.5194/acp-24-9045-2024, https://doi.org/10.5194/acp-24-9045-2024, 2024
Short summary
Short summary
This paper investigates emissions from aviation activities at an international airport to evaluate their impact on local air quality. The study provides detailed insights into the chemical composition of aerosols and key pollutants in the airport environment. Source apportionment analysis using positive matrix factorisation (PMF) identified three significant sources: less oxidised oxygenated organic aerosol, alkane organic aerosol, and more oxidised oxygenated organic aerosol.
Mingjie Kang, Mengying Bao, Wenhuai Song, Aduburexiati Abulimiti, Fang Cao, Sönke Szidat, and Yanlin Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2098, https://doi.org/10.5194/egusphere-2024-2098, 2024
Short summary
Short summary
Reports on the molecular level knowledge of high temporal resolution PM2.5 components on hazy days are still limited. This study investigated many individual PM2.5 species and sources. The results show biomass burning (BB) was the main source of organic carbon. Moreover, BB enhanced fungal spore emissions and secondary aerosol formation. The contribution of non-fossils increased with increasing haze pollution. These findings suggest BB may be an important driver of haze events in winter.
Mikko Heikkilä, Krista Luoma, Timo Mäkelä, and Tiia Grönholm
Atmos. Chem. Phys., 24, 8927–8941, https://doi.org/10.5194/acp-24-8927-2024, https://doi.org/10.5194/acp-24-8927-2024, 2024
Short summary
Short summary
Black carbon (BC) concentration was measured from 211 ship exhaust gas plumes at a remote marine station. Emission factors of BC were calculated in grams per kilogram of fuel. Ships with an exhaust gas cleaning system (EGCS) were found to have median BC emissions per fuel consumed 5 times lower than ships without an EGCS. However, this might be because of non-EGCS ships running at low engine loads rather than the EGCS itself. A local speed restriction would increase BC emissions of ships.
Olga Zografou, Maria Gini, Prodromos Fetfatzis, Konstantinos Granakis, Romanos Foskinis, Manousos Ioannis Manousakas, Fotios Tsopelas, Evangelia Diapouli, Eleni Dovrou, Christina N. Vasilakopoulou, Alexandros Papayannis, Spyros N. Pandis, Athanasios Nenes, and Konstantinos Eleftheriadis
Atmos. Chem. Phys., 24, 8911–8926, https://doi.org/10.5194/acp-24-8911-2024, https://doi.org/10.5194/acp-24-8911-2024, 2024
Short summary
Short summary
Characterization of PM1 and positive matrix factorization (PMF) source apportionment of organic and inorganic fractions were conducted at the high-altitude station (HAC)2. Cloud presence reduced PM1, affecting sulfate more than organics. Free-troposphere (FT) conditions showed more black carbon (eBC) than planetary boundary layer (PBL) conditions.
Yuanyuan Qin, Xinghua Zhang, Wei Huang, Juanjuan Qin, Xiaoyu Hu, Yuxuan Cao, Tianyi Zhao, Yang Zhang, Jihua Tan, Ziyin Zhang, Xinming Wang, and Zhenzhen Wang
Atmos. Chem. Phys., 24, 8737–8750, https://doi.org/10.5194/acp-24-8737-2024, https://doi.org/10.5194/acp-24-8737-2024, 2024
Short summary
Short summary
Environmental persistent free radicals (EPFRs) and reactive oxygen species (ROSs) play an active role in the atmosphere. Despite control measures having effectively reduced their emissions, reductions were less than in PM2.5. Emission control measures performed well in achieving Parade Blue, but reducing the impact of the atmosphere on human health remains challenging. Thus, there is a need to reassess emission control measures to better address the challenges posed by EPFRs and ROSs.
Fenghua Wei, Xing Peng, Liming Cao, Mengxue Tang, Ning Feng, Xiaofeng Huang, and Lingyan He
Atmos. Chem. Phys., 24, 8507–8518, https://doi.org/10.5194/acp-24-8507-2024, https://doi.org/10.5194/acp-24-8507-2024, 2024
Short summary
Short summary
The water solubility of secondary organic aerosols (SOAs) is a crucial factor in determining their hygroscopicity and climatic impact. Stable carbon isotope and mass spectrometry techniques were combined to assess the water solubility of SOAs with different aging degrees in a coastal megacity in China. This work revealed a much higher water-soluble fraction of aged SOA compared to fresh SOA, indicating that the aging degree of SOA has considerable impacts on its water solubility.
Zijun Zhang, Weiqi Xu, Yi Zhang, Wei Zhou, Xiangyu Xu, Aodong Du, Yinzhou Zhang, Hongqin Qiao, Ye Kuang, Xiaole Pan, Zifa Wang, Xueling Cheng, Lanzhong Liu, Qingyan Fu, Douglas R. Worsnop, Jie Li, and Yele Sun
Atmos. Chem. Phys., 24, 8473–8488, https://doi.org/10.5194/acp-24-8473-2024, https://doi.org/10.5194/acp-24-8473-2024, 2024
Short summary
Short summary
We investigated aerosol composition and sources and the interaction between secondary organic aerosol (SOA) and clouds at a regional mountain site in southeastern China. Clouds efficiently scavenge more oxidized SOA; however, cloud evaporation leads to the production of less oxidized SOA. The unexpectedly high presence of nitrate in aerosol particles indicates that nitrate formed in polluted areas has undergone interactions with clouds, significantly influencing the regional background site.
Feifei Li, Shanshan Tang, Jitao Lv, Shiyang Yu, Xu Sun, Dong Cao, Yawei Wang, and Guibin Jiang
Atmos. Chem. Phys., 24, 8397–8411, https://doi.org/10.5194/acp-24-8397-2024, https://doi.org/10.5194/acp-24-8397-2024, 2024
Short summary
Short summary
Targeted derivatization and non-targeted analysis with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were used to reveal the molecular composition of carbonyl molecules in PM2.5, and the important role of carbonyls in increasing the oxidative potential of organic aerosol was found in real samples.
Adam E. Thomas, Hayley S. Glicker, Alex B. Guenther, Roger Seco, Oscar Vega Bustillos, Julio Tota, Rodrigo A. F. Souza, and James N. Smith
EGUsphere, https://doi.org/10.5194/egusphere-2024-2230, https://doi.org/10.5194/egusphere-2024-2230, 2024
Short summary
Short summary
We present measurements of the composition of ultrafine particles collected from the eastern Amazon, a relatively understudied region that is subjected to increasing human influence. We find that while isoprene chemistry is likely significant to ultrafine particle growth throughout the year, compounds related to other sources such as biological spore emissions and biomass burning exhibit striking seasonal differences, implying an extensive variation in regional ultrafine particle sources.
Maya Abou-Ghanem, Daniel M. Murphy, Gregory P. Schill, Michael J. Lawler, and Karl D. Froyd
Atmos. Chem. Phys., 24, 8263–8275, https://doi.org/10.5194/acp-24-8263-2024, https://doi.org/10.5194/acp-24-8263-2024, 2024
Short summary
Short summary
Using particle analysis by laser mass spectrometry, we examine vanadium-containing ship exhaust particles measured on NASA's DC-8 during the Atmospheric Tomography Mission (ATom). Our results reveal ship exhaust particles are sufficiently widespread in the marine atmosphere and experience atmospheric aging. Finally, we use laboratory calibrations to determine the vanadium, sulfate, and organic single-particle mass fractions of vanadium-containing ship exhaust particles.
Cassandra J. Gaston, Joseph M. Prospero, Kristen Foley, Havala O. T. Pye, Lillian Custals, Edmund Blades, Peter Sealy, and James A. Christie
Atmos. Chem. Phys., 24, 8049–8066, https://doi.org/10.5194/acp-24-8049-2024, https://doi.org/10.5194/acp-24-8049-2024, 2024
Short summary
Short summary
To understand how changing emissions have impacted aerosols in remote regions, we measured nitrate and sulfate in Barbados and compared them to model predictions from EPA’s Air QUAlity TimE Series (EQUATES). Nitrate was stable, except for spikes in 2008 and 2010 due to transported smoke. Sulfate decreased in the 1990s due to reductions in sulfur dioxide (SO2) in the US and Europe; then it increased in the 2000s, likely due to anthropogenic emissions from Africa.
Jie Zhang, Tianyu Zhu, Alexandra Catena, Yaowei Li, Margaret Schwab, Pengfei Liu, Akua Asa-Awuku, and James Schwab
EGUsphere, https://doi.org/10.5194/egusphere-2024-1390, https://doi.org/10.5194/egusphere-2024-1390, 2024
Short summary
Short summary
This study shows the derived organic aerosol hygroscopicity under high humidity conditions based on a simple optical scatter monitor system, including two nephelometric monitors (pDR-1500), after knowing the aerosol chemical composition.
Jiao Xue, Tian Zhang, Keyhong Park, Jinpei Yan, Young Jun Yoon, Jiyeon Park, and Bingbing Wang
Atmos. Chem. Phys., 24, 7731–7754, https://doi.org/10.5194/acp-24-7731-2024, https://doi.org/10.5194/acp-24-7731-2024, 2024
Short summary
Short summary
Ice formation by particles is an important way of making mixed-phase and ice clouds. We found that particles collected in the marine atmosphere exhibit diverse ice nucleation abilities and mixing states. Sea salt mixed-sulfate particles were enriched in ice-nucleating particles. Selective aging on sea salt particles made particle populations more externally mixed. Characterizations of particles and their mixing state are needed for a better understanding of aerosol–cloud interactions.
Yangzhi Mo, Jun Li, Guangcai Zhong, Sanyuan Zhu, Shizhen Zhao, Jiao Tang, Hongxing Jiang, Zhineng Cheng, Chongguo Tian, Yingjun Chen, and Gan Zhang
Atmos. Chem. Phys., 24, 7755–7772, https://doi.org/10.5194/acp-24-7755-2024, https://doi.org/10.5194/acp-24-7755-2024, 2024
Short summary
Short summary
In this study, we found that biomass burning (31.0 %) and coal combustion (31.1 %) were the dominant sources of water-insoluble organic carbon in China, with coal combustion sources exhibiting the strongest light-absorbing capacity. Additionally, we propose a light-absorbing carbonaceous continuum, revealing that components enriched with fossil sources tend to have stronger light-absorbing capacity, higher aromaticity, higher molecular weights, and greater recalcitrance in the atmosphere.
Jing Duan, Ru-Jin Huang, Ying Wang, Wei Xu, Haobin Zhong, Chunshui Lin, Wei Huang, Yifang Gu, Jurgita Ovadnevaite, Darius Ceburnis, and Colin O'Dowd
Atmos. Chem. Phys., 24, 7687–7698, https://doi.org/10.5194/acp-24-7687-2024, https://doi.org/10.5194/acp-24-7687-2024, 2024
Short summary
Short summary
The chemical composition of atmospheric particles has shown significant changes in recent years. We investigated the potential effects of changes in inorganics on aerosol water uptake and, thus, secondary organic aerosol formation in wintertime haze based on the size-resolved measurements of non-refractory fine particulate matter (NR-PM2.5) in Xi’an, northwestern China. We highlight the key role of aerosol water as a medium to link inorganics and organics in their multiphase processes.
Hongyong Li, Xiaopu Lyu, Likun Xue, Yunxi Huo, Dawen Yao, Haoxian Lu, and Hai Guo
Atmos. Chem. Phys., 24, 7085–7100, https://doi.org/10.5194/acp-24-7085-2024, https://doi.org/10.5194/acp-24-7085-2024, 2024
Short summary
Short summary
Organic aerosol is ubiquitous in the atmosphere and largely explains the gap between current levels of fine particulate matter in many cities and the World Health Organization guideline values. This study highlights the dominant contributions of cooking emissions to organic aerosol when marine air prevailed in Hong Kong, which were occasionally overwhelmed by aromatics-derived secondary organic aerosol in continental ouflows.
Shao Shi, Jinghao Zhai, Xin Yang, Yechun Ruan, Yuanlong Huang, Xujian Chen, Antai Zhang, Jianhuai Ye, Guomao Zheng, Baohua Cai, Yaling Zeng, Yixiang Wang, Chunbo Xing, Yujie Zhang, Tzung-May Fu, Lei Zhu, Huizhong Shen, and Chen Wang
Atmos. Chem. Phys., 24, 7001–7012, https://doi.org/10.5194/acp-24-7001-2024, https://doi.org/10.5194/acp-24-7001-2024, 2024
Short summary
Short summary
The determination of ions in the mass spectra of individual particles remains uncertain. We have developed a standard-free mass calibration algorithm applicable to more than 98 % of ambient particles. With our algorithm, ions with ~ 0.05 Th mass difference could be determined. Therefore, many more atmospheric species could be determined and involved in the source apportionment of aerosols, the study of chemical reaction mechanisms, and the analysis of single-particle mixing states.
Wei Sun, Xiaodong Hu, Yuzhen Fu, Guohua Zhang, Yujiao Zhu, Xinfeng Wang, Caiqing Yan, Likun Xue, He Meng, Bin Jiang, Yuhong Liao, Xinming Wang, Ping'an Peng, and Xinhui Bi
Atmos. Chem. Phys., 24, 6987–6999, https://doi.org/10.5194/acp-24-6987-2024, https://doi.org/10.5194/acp-24-6987-2024, 2024
Short summary
Short summary
The formation pathways of nitrogen-containing compounds (NOCs) in the atmosphere remain unclear. We investigated the composition of aerosols and fog water by state-of-the-art mass spectrometry and compared the formation pathways of NOCs. We found that NOCs in aerosols were mainly formed through nitration reaction, while ammonia addition played a more important role in fog water. The results deepen our understanding of the processes of organic particulate pollution.
Fuzhen Shen, Michaela I. Hegglin, and Yue Yuan
Atmos. Chem. Phys., 24, 6539–6553, https://doi.org/10.5194/acp-24-6539-2024, https://doi.org/10.5194/acp-24-6539-2024, 2024
Short summary
Short summary
We attempt to use a novel structural self-organising map and machine learning models to identify a weather system and quantify the importance of each meteorological factor in driving the unexpected PM2.5 and O3 changes under the specific weather system during the COVID-19 lockdown in China. The result highlights that temperature under the double-centre high-pressure system plays the most crucial role in abnormal events.
Wenshuai Li, Yuxuan Qi, Yingchen Liu, Guanru Wu, Yanjing Zhang, Jinhui Shi, Wenjun Qu, Lifang Sheng, Wencai Wang, Daizhou Zhang, and Yang Zhou
Atmos. Chem. Phys., 24, 6495–6508, https://doi.org/10.5194/acp-24-6495-2024, https://doi.org/10.5194/acp-24-6495-2024, 2024
Short summary
Short summary
Aerosol particles from mainland can transport to oceans and deposit, providing soluble Fe and affecting phytoplankton growth. Thus, we studied the dissolution process of aerosol Fe and found that photochemistry played a key role in promoting Fe dissolution in clean conditions. RH-dependent reactions were more influential in slightly polluted conditions. These results highlight the distinct roles of two weather-related parameters (radiation and RH) in influencing geochemical cycles related to Fe.
Yanqin Ren, Zhenhai Wu, Yuanyuan Ji, Fang Bi, Junling Li, Haijie Zhang, Hao Zhang, Hong Li, and Gehui Wang
Atmos. Chem. Phys., 24, 6525–6538, https://doi.org/10.5194/acp-24-6525-2024, https://doi.org/10.5194/acp-24-6525-2024, 2024
Short summary
Short summary
Nitrated aromatic compounds (NACs) and oxygenated derivatives of polycyclic aromatic hydrocarbons (OPAHs) in PM2.5 were examined from an urban area in Beijing during the autumn and winter. The OPAH and NAC concentrations were much higher during heating than before heating. They majorly originated from the combustion of biomass and automobile emissions, and the secondary generation was the major contributor throughout the whole sampling period.
Gregory P. Schill, Karl D. Froyd, Daniel M. Murphy, Christina J. Williamson, Charles Brock, Tomás Sherwen, Mat J. Evans, Eric A. Ray, Eric C. Apel, Rebecca S. Hornbrook, Alan J. Hills, Jeff Peischl, Tomas B. Ryerson, Chelsea R. Thompson, Ilann Bourgeois, Donald R. Blake, Joshua P. DiGangi, and Glenn S. Diskin
EGUsphere, https://doi.org/10.5194/egusphere-2024-1399, https://doi.org/10.5194/egusphere-2024-1399, 2024
Short summary
Short summary
Using single-particle mass spectrometry, we show that trace concentrations of bromine and iodine are ubiquitous in remote tropospheric aerosol, and suggest that aerosols are an important part of the global reactive iodine budget. Comparisons to a global climate model with detailed iodine chemistry are favorable in the background atmosphere; however, the model cannot replicate our measurements near the ocean surface, in biomass burning plumes, and in the stratosphere.
Marco Paglione, David C. S. Beddows, Anna Jones, Thomas Lachlan-Cope, Matteo Rinaldi, Stefano Decesari, Francesco Manarini, Mara Russo, Karam Mansour, Roy M. Harrison, Andrea Mazzanti, Emilio Tagliavini, and Manuel Dall'Osto
Atmos. Chem. Phys., 24, 6305–6322, https://doi.org/10.5194/acp-24-6305-2024, https://doi.org/10.5194/acp-24-6305-2024, 2024
Short summary
Short summary
Applying factor analysis techniques to H-NMR spectra, we present the organic aerosol (OA) source apportionment of PM1 samples collected in parallel at two Antarctic stations, namely Signy and Halley, allowing investigation of aerosol–climate interactions in an unperturbed atmosphere. Our results show remarkable differences between pelagic (open-ocean) and sympagic (sea-ice-influenced) air masses and indicate that various sources and processes are controlling Antarctic aerosols.
Zhichao Dong, Chandra Mouli Pavuluri, Peisen Li, Zhanjie Xu, Junjun Deng, Xueyan Zhao, Xiaomai Zhao, Pingqing Fu, and Cong-Qiang Liu
Atmos. Chem. Phys., 24, 5887–5905, https://doi.org/10.5194/acp-24-5887-2024, https://doi.org/10.5194/acp-24-5887-2024, 2024
Short summary
Short summary
Comprehensive study of optical properties of brown carbon (BrC) in fine aerosols from Tianjin, China, implied that biological emissions are major sources of BrC in summer, whereas fossil fuel combustion and biomass burning emissions are in cold periods. The direct radiation absorption caused by BrC in short wavelengths contributed about 40 % to that caused by BrC in 300–700 nm. Water-insoluble but methanol-soluble BrC contains more protein-like chromophores (PLOM) than that of water-soluble BrC.
Kumiko Goto-Azuma, Yoshimi Ogawa-Tsukagawa, Kaori Fukuda, Koji Fujita, Motohiro Hirabayashi, Remi Dallmayr, Jun Ogata, Nobuhiro Moteki, Tatsuhiro Mori, Sho Ohata, Yutaka Kondo, Makoto Koike, Sumito Matoba, and Teruo Aoki
EGUsphere, https://doi.org/10.5194/egusphere-2024-1498, https://doi.org/10.5194/egusphere-2024-1498, 2024
Short summary
Short summary
Monthly records spanning 350 years from a Greenland ice core reveal trends in black carbon (BC) concentrations and sizes. BC concentrations have risen since the late 19th century due to the inflow of anthropogenic BC, with these particles being larger than those from biomass burning (BB). High BB BC concentration peaks in summer originating from BB could reduce albedo. However, BB BC showed no upward trend until the early 2000s. Our findings are crucial for validating aerosol and climate models.
Shan Wang, Kezheng Liao, Zijing Zhang, Yuk Ying Cheng, Qiongqiong Wang, Hanzhe Chen, and Jian Zhen Yu
Atmos. Chem. Phys., 24, 5803–5821, https://doi.org/10.5194/acp-24-5803-2024, https://doi.org/10.5194/acp-24-5803-2024, 2024
Short summary
Short summary
In this work, hourly primary and secondary organic carbon were estimated by a novel Bayesian inference approach in suburban Hong Kong. Their multi-temporal-scale variations and evolution characteristics during PM2.5 episodes were examined. The methodology could serve as a guide for other locations with similar monitoring capabilities. The observation-based results are helpful for understanding the evolving nature of secondary organic aerosols and refining the accuracy of model simulations.
Andreas Aktypis, Dontavious Sippial, Christina Vasilakopoulou, Angeliki Matrali, Christos Kaltsonoudis, Andrea Simonati, Marco Paglione, Matteo Rinaldi, Stefano Decesari, and Spyros Pandis
EGUsphere, https://doi.org/10.5194/egusphere-2024-1317, https://doi.org/10.5194/egusphere-2024-1317, 2024
Short summary
Short summary
A dual chamber system was deployed in two different environments (Po Valley, Italy and Pertouli forest, Greece) to study the potential of ambient air directly injected into the chambers, to form secondary aerosol. In the Po Valley, the system reacts rapidly forming large amounts of SOA, while in Pertouli the corresponding SOA formation chemistry appears to have been practically terminated before the beginning of most experiments, so there is little additional SOA formation potential left.
Cited articles
Athanasopoulou, E., Tombrou, M., Pandis, S. N., and Russell, A. G.: The role of sea-salt emissions and heterogeneous chemistry in the air quality of polluted coastal areas, Atmos. Chem. Phys., 8, 5755–5769, https://doi.org/10.5194/acp-8-5755-2008, 2008.
Bondy, A. L., Wang, B., Laskin, A., Craig, R. L., Nhliziyo, M. V., Bertman,
S. B., Pratt, K. A., Shepson, P. B., and Ault, A. P.: Inland Sea Spray
Aerosol Transport and Incomplete Chloride Depletion: Varying Degrees of
Reactive Processing Observed during SOAS, Environ. Sci. Technol., 51,
9533–9542, https://doi.org/10.1021/acs.est.7b02085, 2017.
Buseck, P. R. and Pósfai, M.: Airborne minerals and related aerosol
particles: Effects on climate and the environment, P. Natl. Acad. Sci.
USA, 96, 3372–3379, https://doi.org/10.1073/pnas.96.7.3372,
1999.
Chi, J. W., Li, W. J., Zhang, D. Z., Zhang, J. C., Lin, Y. T., Shen, X. J., Sun, J. Y., Chen, J. M., Zhang, X. Y., Zhang, Y. M., and Wang, W. X.: Sea salt aerosols as a reactive surface for inorganic and organic acidic gases in the Arctic troposphere, Atmos. Chem. Phys., 15, 11341–11353, https://doi.org/10.5194/acp-15-11341-2015, 2015.
Cravigan, L. T., Mallet, M. D., Vaattovaara, P., Harvey, M. J., Law, C. S., Modini, R. L., Russell, L. M., Stelcer, E., Cohen, D. D., Olsen, G., Safi, K., Burrell, T. J., and Ristovski, Z.: Sea spray aerosol organic enrichment, water uptake and surface tension effects, Atmos. Chem. Phys., 20, 7955–7977, https://doi.org/10.5194/acp-20-7955-2020, 2020.
Feng, J. L., Guo, Z. G., Zhang, T. R., Yao, X. H., Chan, C. K., and Fang,
M.: Source and formation of secondary particulate matter in PM2.5 in
Asian continental outflow, J. Geophys. Res.-Atmos., 117, D03302, https://doi.org/10.1029/2011jd016400, 2012.
Feng, L., Shen, H., Zhu, Y., Gao, H., and Yao, X.: Insight into Generation
and Evolution of Sea-Salt Aerosols from Field Measurements in Diversified
Marine and Coastal Atmospheres, Sci. Rep., 7, 41260, https://doi.org/10.1038/srep41260, 2017.
Fu, J., Wang, B., Chen, Y., and Ma, Q.: The influence of continental air
masses on the aerosols and nutrients deposition over the western North
Pacific, Atmos. Environ., 172, 1–11, https://doi.org/10.1016/j.atmosenv.2017.10.041, 2018.
Geng, H., Ryu, J., Jung, H.-J., Chung, H., Ahn, K.-H., and Ro, C.-U.:
Single-Particle Characterization of Summertime Arctic Aerosols Collected at
Ny-Ålesund, Svalbard, Environ. Sci. Technol., 44, 2348–2353, https://doi.org/10.1021/es903268j, 2010.
George, S. K., Nair, P. R., Parameswaran, K., Jacob, S., and Abraham, A.:
Seasonal trends in chemical composition of aerosols at a tropical coastal
site of India, J. Geophys. Res.-Atmos., 113, D16209, https://doi.org/10.1029/2007JD009507, 2008.
Ghorai, S., Wang, B., Tivanski, A., and Laskin, A.: Hygroscopic Properties
of Internally Mixed Particles Composed of NaCl and Water-Soluble Organic
Acids, Environ. Sci. Technol., 48, 2234–2241, https://doi.org/10.1021/es404727u, 2014.
Guo, L., Chen, Y., Wang, F., Meng, X., Xu, Z., and Zhuang, G.: Effects of
Asian dust on the atmospheric input of trace elements to the East China Sea,
Mar. Chem., 163, 19–27, https://doi.org/10.1016/j.marchem.2014.04.003, 2014.
Hsu, S.-C., Liu, S. C., Kao, S.-J., Jeng, W.-L., Huang, Y.-T., Tseng, C.-M.,
Tsai, F., Tu, J.-Y., and Yang, Y.: Water-soluble species in the marine
aerosol from the northern South China Sea: High chloride depletion related
to air pollution, J. Geophys. Res.-Atmos., 112, D19304, https://doi.org/10.1029/2007JD008844, 2007.
Hu, R. M., Blanchet, J. P., and Girard, E.: Evaluation of the direct and
indirect radiative and climate effects of aerosols over the western Arctic,
J. Geophys. Res.-Atmos., 110, D11213, https://doi.org/10.1029/2004JD005043, 2005.
Kang, M., Fu, P., Kawamura, K., Yang, F., Zhang, H., Zang, Z., Ren, H., Ren, L., Zhao, Y., Sun, Y., and Wang, Z.: Characterization of biogenic primary and secondary organic aerosols in the marine atmosphere over the East China Sea, Atmos. Chem. Phys., 18, 13947–13967, https://doi.org/10.5194/acp-18-13947-2018, 2018.
Kanji, Z. A., Ladino, L. A., Wex, H., Boose, Y., Burkert-Kohn, M., Cziczo,
D. J., and Krämer, M.: Overview of Ice Nucleating Particles,
Meteor. Mon., 58, 1.1–1.33, https://doi.org/10.1175/amsmonographs-d-16-0006.1, 2017.
Koike, M., Kondo, Y., Kita, K., Takegawa, N., Masui, Y., Miyazaki, Y., Ko,
M. W., Weinheimer, A. J., Flocke, F., Weber, R. J., Thornton, D. C., Sachse,
G. W., Vay, S. A., Blake, D. R., Streets, D. G., Eisele, F. L., Sandholm, S.
T., Singh, H. B., and Talbot, R. W.: Export of anthropogenic reactive
nitrogen and sulfur compounds from the East Asia region in spring, J.
Geophys. Res.-Atmos., 108, 8789, https://doi.org/10.1029/2002JD003284, 2003.
Kondo, Y., Moteki, N., Oshima, N., Ohata, S., Koike, M., Shibano, Y.,
Takegawa, N., and Kita, K.: Effects of wet deposition on the abundance and
size distribution of black carbon in East Asia, J. Geophys. Res.-Atmos.,
121, 4691–4712, https://doi.org/10.1002/2015JD024479, 2016.
Kong, X., Wolf, M. J., Roesch, M., Thomson, E. S., Bartels-Rausch, T.,
Alpert, P. A., Ammann, M., Prisle, N. L., and Cziczo, D. J.: A continuous
flow diffusion chamber study of sea salt particles acting as cloud nuclei:
deliquescence and ice nucleation, Tellus B, 70, 1–11, https://doi.org/10.1080/16000889.2018.1463806, 2018.
Laskin, A., Moffet, R. C., Gilles, M. K., Fast, J. D., Zaveri, R. A., Wang,
B., Nigge, P., and Shutthanandan, J.: Tropospheric chemistry of internally
mixed sea salt and organic particles: Surprising reactivity of NaCl with
weak organic acids, J. Geophys. Res.-Atmos., 117, D15302, https://doi.org/10.1029/2012JD017743, 2012.
Lewis, E. R. and Schwartz, S. E.: Sea salt aerosol production: mechanisms,
methods, measurements, and models, American Geophysical Union, Washington,
DC, USA, 2004.
Li, W., Shao, L., Shi, Z., Chen, J., Yang, L., Yuan, Q., Yan, C., Zhang, X.,
Wang, Y., Sun, J., Zhang, Y., Shen, X., Wang, Z., and Wang, W.: Mixing state
and hygroscopicity of dust and haze particles before leaving Asian
continent, J. Geophys. Res.-Atmos., 119, 1044–1059, https://doi.org/10.1002/2013JD021003, 2014.
Li, W., Shao, L., Zhang, D., Ro, C.-U., Hu, M., Bi, X., Geng, H., Matsuki,
A., Niu, H., and Chen, J.: A review of single aerosol particle studies in
the atmosphere of East Asia: morphology, mixing state, source, and
heterogeneous reactions, J. Clean. Prod., 112, 1330–1349, https://doi.org/10.1016/j.jclepro.2015.04.050, 2016a.
Li, W., Sun, J., Xu, L., Shi, Z., Riemer, N., Sun, Y., Fu, P., Zhang, J.,
Lin, Y., Wang, X., Shao, L., Chen, J., Zhang, X., Wang, Z., and Wang, W.: A
conceptual framework for mixing structures in individual aerosol particles,
J. Geophys. Res.-Atmos., 121, 13784–13798, https://doi.org/10.1002/2016JD025252, 2016b.
Li, W., Xu, L., Liu, X., Zhang, J., Lin, Y., Yao, X., Gao, H., Zhang, D.,
Chen, J., Wang, W., Harrison, R. M., Zhang, X., Shao, L., Fu, P., Nenes, A.,
and Shi, Z.: Air pollution–aerosol interactions produce more bioavailable
iron for ocean ecosystems, Sci. Adv., 3, e1601749, https://doi.org/10.1126/sciadv.1601749, 2017.
Li, W., Liu, L., Zhang, J., Xu, L., Wang, Y., Sun, Y., and Shi, Z.:
Microscopic Evidence for Phase Separation of Organic Species and Inorganic
Salts in Fine Ambient Aerosol Particles, Environ. Sci. Technol., 55,
2234–2242, https://doi.org/10.1021/acs.est.0c02333, 2021.
Luo, L., Yao, X. H., Gao, H. W., Hsu, S. C., Li, J. W., and Kao, S. J.: Nitrogen speciation in various types of aerosols in spring over the northwestern Pacific Ocean, Atmos. Chem. Phys., 16, 325–341, https://doi.org/10.5194/acp-16-325-2016, 2016.
Mahowald, N. M., Hamilton, D. S., Mackey, K. R. M., Moore, J. K., Baker, A.
R., Scanza, R. A., and Zhang, Y.: Aerosol trace metal leaching and impacts
on marine microorganisms, Nat. Commun., 9, 2614, https://doi.org/10.1038/s41467-018-04970-7, 2018.
McInnes, L. M., Covert, D. S., Quinn, P. K., and Germani, M. S.:
Measurements of chloride depletion and sulfur enrichment in individual
sea-salt particles collected from the remote marine boundary layer, J.
Geophys. Res.-Atmos., 99, 8257–8268, https://doi.org/10.1029/93JD03453, 1994.
Moffet, R. C., Furutani, H., Rödel, T. C., Henn, T. R., Sprau, P. O.,
Laskin, A., Uematsu, M., and Gilles, M. K.: Iron speciation and mixing in
single aerosol particles from the Asian continental outflow, J. Geophys.
Res.-Atmos., 117, D07204, https://doi.org/10.1029/2011JD016746, 2012.
Mouri, H. and Okada, K.: Shattering and modification of sea-salt particles
in the marine atmosphere, Geophys. Res. Lett., 20, 49–52, https://doi.org/10.1029/92GL03004, 1993.
Murphy, D., Anderson, J., Quinn, P., McInnes, L., Brechtel, F., Kreidenweis,
S., Middlebrook, A., Pósfai, M., Thomson, D., and Buseck, P.: Influence
of sea-salt on aerosol radiative properties in the Southern Ocean marine
boundary layer, Nature, 392, 62–65, https://doi.org/10.1038/32138, 1998.
O'Dowd Colin, D. and de Leeuw, G.: Marine aerosol production: a review of
the current knowledge, Philos. T. Roy. Soc. A., 365, 1753–1774, https://doi.org/10.1098/rsta.2007.2043, 2007.
Oum, K. W., Lakin, M. J., DeHaan, D. O., Brauers, T., and Finlayson-Pitts,
B. J.: Formation of Molecular Chlorine from the Photolysis of Ozone and
Aqueous Sea-Salt Particles, Science, 279, 74–76, https://doi.org/10.1126/science.279.5347.74, 1998.
Pósfai, M., Anderson, J. R., Buseck, P. R., Shattuck, T. W., and
Tindale, N. W.: Constituents of a remote pacific marine aerosol: A tem
study, Atmos. Environ., 28, 1747–1756, https://doi.org/10.1016/1352-2310(94)90137-6, 1994.
Pant, V., Deshpande, C. G., and Kamra, A. K.: On the aerosol number
concentration–wind speed relationship during a severe cyclonic storm over
south Indian Ocean, J. Geophys. Res.-Atmos., 113, D02206, https://doi.org/10.1029/2006JD008035, 2008.
Pierce, J. R. and Adams, P. J.: Global evaluation of CCN formation by
direct emission of sea salt and growth of ultrafine sea salt, J. Geophys.
Res.-Atmos., 111, D06203, https://doi.org/10.1029/2005JD006186, 2006.
Quinn, P. K., Bates, T. S., Johnson, J. E., Covert, D. S., and Charlson, R.
J.: Interactions between the sulfur and reduced nitrogen cycles over the
central Pacific Ocean, J. Geophys. Res.-Atmos., 95, 16405–16416, https://doi.org/10.1029/JD095iD10p16405, 1990.
Riemer, N., Ault, A. P., West, M., Craig, R. L., and Curtis, J. H.: Aerosol
Mixing State: Measurements, Modeling, and Impacts, Rev. Geophys., 57,
187–249, https://doi.org/10.1029/2018rg000615, 2019.
Savoie, D. L., Prospero, J. M., Arimoto, R., and Duce, R. A.: Non-sea-salt
sulfate and methanesulfonate at American Samoa, J. Geophys. Res.-Atmos.,
99, 3587–3596, https://doi.org/10.1029/93JD03337, 1994.
Shi, J., Wang, N., Gao, H., Baker, A. R., Yao, X., and Zhang, D.: Phosphorus solubility in aerosol particles related to particle sources and atmospheric acidification in Asian continental outflow, Atmos. Chem. Phys., 19, 847–860, https://doi.org/10.5194/acp-19-847-2019, 2019.
Shi, Z., Krom, M. D., Jickells, T. D., Bonneville, S., Carslaw, K. S.,
Mihalopoulos, N., Baker, A. R., and Benning, L. G.: Impacts on iron
solubility in the mineral dust by processes in the source region and the
atmosphere: A review, Aeolian Res., 5, 21–42, https://doi.org/10.1016/j.aeolia.2012.03.001, 2012.
Shinozuka, Y., Clarke, A. D., Howell, S. G., Kapustin, V. N., and Huebert,
B. J.: Sea-salt vertical profiles over the Southern and tropical Pacific
oceans: Microphysics, optical properties, spatial variability, and
variations with wind speed, J. Geophys. Res.-Atmos., 109, D24201,
https://doi.org/10.1029/2004JD004975, 2004.
Sievering, H., Cainey, J., Harvey, M., McGregor, J., Nichol, S., and Quinn,
P.: Aerosol non-sea-salt sulfate in the remote marine boundary layer under
clear-sky and normal cloudiness conditions: Ocean-derived biogenic
alkalinity enhances sea-salt sulfate production by ozone oxidation, J.
Geophys. Res.-Atmos., 109, D19317, https://doi.org/10.1029/2003JD004315, 2004.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and Ngan, F.: NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System, B. Am. Meteorol. Soc., 96, 2059–2077, https://doi.org/10.1175/bams-d-14-00110.1, 2015.
Ueda, S., Osada, K., Hara, K., Yabuki, M., Hashihama, F., and Kanda, J.: Morphological features and mixing states of soot-containing particles in the marine boundary layer over the Indian and Southern oceans, Atmos. Chem. Phys., 18, 9207–9224, https://doi.org/10.5194/acp-18-9207-2018, 2018.
Uematsu, M., Hattori, H., Nakamura, T., Narita, Y., Jung, J., Matsumoto, K.,
Nakaguchi, Y., and Kumar, M. D.: Atmospheric transport and deposition of
anthropogenic substances from the Asia to the East China Sea, Mar. Chem.,
120, 108–115, https://doi.org/10.1016/j.marchem.2010.01.004,
2010.
Uno, I., Eguchi, K., Yumimoto, K., Takemura, T., Shimizu, A., Uematsu, M.,
Liu, Z., Wang, Z., Hara, Y., and Sugimoto, N.: Asian dust transported one
full circuit around the globe, Nat. Geosci., 2, 557–560, https://doi.org/10.1038/ngeo583, 2009.
Wang, J., Ye, J., Zhang, Q., Zhao, J., Wu, Y., Li, J., Liu, D., Li, W.,
Zhang, Y., Wu, C., Xie, C., Qin, Y., Lei, Y., Huang, X., Guo, J., Liu, P.,
Fu, P., Li, Y., Lee, H. C., Choi, H., Zhang, J., Liao, H., Chen, M., Sun,
Y., Ge, X., Martin, S. T., and Jacob, D. J.: Aqueous production of secondary
organic aerosol from fossil-fuel emissions in winter Beijing haze, P.
Natl. Acad. Sci. USA., 118, e2022179118, https://doi.org/10.1073/pnas.2022179118, 2021.
Wang, Z., Bi, L., Yi, B., and Zhang, X.: How the Inhomogeneity of Wet Sea
Salt Aerosols Affects Direct Radiative Forcing, Geophys. Res. Lett., 46,
1805–1813, https://doi.org/10.1029/2018GL081193, 2019.
Wise, M. E., Freney, E. J., Tyree, C. A., Allen, J. O., Martin, S. T.,
Russell, L. M., and Buseck, P. R.: Hygroscopic behavior and liquid-layer
composition of aerosol particles generated from natural and artificial
seawater, J. Geophys. Res.-Atmos., 114, D03201, https://doi.org/10.1029/2008JD010449, 2009.
Yao, X. and Zhang, L.: Chemical processes in sea-salt chloride depletion
observed at a Canadian rural coastal site, Atmos. Environ., 46, 189–194,
https://doi.org/10.1016/j.atmosenv.2011.09.081, 2012.
Zhang, D., Iwasaka, Y., Shi, G., Zang, J., Matsuki, A., and Trochkine, D.:
Mixture state and size of Asian dust particles collected at southwestern
Japan in spring 2000, J. Geophys. Res.-Atmos., 108, 4760, https://doi.org/10.1029/2003JD003869, 2003.
Zhang, X., Massoli, P., Quinn, P. K., Bates, T. S., and Cappa, C. D.:
Hygroscopic growth of submicron and supermicron aerosols in the marine
boundary layer, J. Geophys. Res.-Atmos., 119, 8384–8399, https://doi.org/10.1002/2013JD021213, 2014.
Zhang, X.-X., Sharratt, B., Liu, L.-Y., Wang, Z.-F., Pan, X.-L., Lei, J.-Q., Wu, S.-X., Huang, S.-Y., Guo, Y.-H., Li, J., Tang, X., Yang, T., Tian, Y., Chen, X.-S., Hao, J.-Q., Zheng, H.-T., Yang, Y.-Y., and Lyu, Y.-L.: East Asian dust storm in May 2017: observations, modelling, and its influence on the Asia-Pacific region, Atmos. Chem. Phys., 18, 8353–8371, https://doi.org/10.5194/acp-18-8353-2018, 2018.
Zhu, Y., Li, K., Shen, Y., Gao, Y., Liu, X., Yu, Y., Gao, H., and Yao, X.: New particle formation in the marine atmosphere during seven cruise campaigns, Atmos. Chem. Phys., 19, 89–113, https://doi.org/10.5194/acp-19-89-2019, 2019.
Short summary
We quantified different types of marine aerosols and explored the Cl depletion of sea salt aerosol (SSA) in the eastern China seas and the northwestern Pacific Ocean. We found that anthropogenic acidic gases in the troposphere were transported longer distances compared to the anthropogenic aerosols and could significantly impact remote marine aerosols. Meanwhile, variations of chloride depletion in SSA can serve as a potential indicator for anthropogenic gaseous pollutants in remote marine air.
We quantified different types of marine aerosols and explored the Cl depletion of sea salt...
Altmetrics
Final-revised paper
Preprint