Articles | Volume 21, issue 17
https://doi.org/10.5194/acp-21-12835-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-12835-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Does the coupling of the semiannual oscillation with the quasi-biennial oscillation provide predictability of Antarctic sudden stratospheric warmings?
Viktoria J. Nordström
Department of Physics, University of Otago, Dunedin, New Zealand
Annika Seppälä
CORRESPONDING AUTHOR
Department of Physics, University of Otago, Dunedin, New Zealand
Related authors
No articles found.
Hannah E. Kessenich, Annika Seppälä, Dan Smale, Craig J. Rodger, and Mark Weber
EGUsphere, https://doi.org/10.5194/egusphere-2025-873, https://doi.org/10.5194/egusphere-2025-873, 2025
Short summary
Short summary
We use observational data to track a mass of mesospheric air which descends into the Antarctic polar vortex each spring. The altitude of the air mass at the end of October is used to create a new diagnostic metric. The metric captures the dynamical conditions of the vortex and can be used to estimate the amount of poleward ozone transport in October. When used as a proxy for October polar total column ozone, the metric explains the majority (63%) of the observed variance from 2004–2024.
Bernd Funke, Thierry Dudok de Wit, Ilaria Ermolli, Margit Haberreiter, Doug Kinnison, Daniel Marsh, Hilde Nesse, Annika Seppälä, Miriam Sinnhuber, and Ilya Usoskin
Geosci. Model Dev., 17, 1217–1227, https://doi.org/10.5194/gmd-17-1217-2024, https://doi.org/10.5194/gmd-17-1217-2024, 2024
Short summary
Short summary
We outline a road map for the preparation of a solar forcing dataset for the upcoming Phase 7 of the Coupled Model Intercomparison Project (CMIP7), considering the latest scientific advances made in the reconstruction of solar forcing and in the understanding of climate response while also addressing the issues that were raised during CMIP6.
Ville Maliniemi, Pavle Arsenovic, Annika Seppälä, and Hilde Nesse Tyssøy
Atmos. Chem. Phys., 22, 8137–8149, https://doi.org/10.5194/acp-22-8137-2022, https://doi.org/10.5194/acp-22-8137-2022, 2022
Short summary
Short summary
We simulate the effect of energetic particle precipitation (EPP) on Antarctic stratospheric ozone chemistry over the whole 20th century. We find a significant increase of reactive nitrogen due to EP, which can deplete ozone via a catalytic reaction. Furthermore, significant modulation of active chlorine is obtained related to EPP, which impacts ozone depletion by both active chlorine and EPP. Our results show that EPP has been a significant modulator of ozone chemistry during the CFC era.
Ioannis A. Daglis, Loren C. Chang, Sergio Dasso, Nat Gopalswamy, Olga V. Khabarova, Emilia Kilpua, Ramon Lopez, Daniel Marsh, Katja Matthes, Dibyendu Nandy, Annika Seppälä, Kazuo Shiokawa, Rémi Thiéblemont, and Qiugang Zong
Ann. Geophys., 39, 1013–1035, https://doi.org/10.5194/angeo-39-1013-2021, https://doi.org/10.5194/angeo-39-1013-2021, 2021
Short summary
Short summary
We present a detailed account of the science programme PRESTO (PREdictability of the variable Solar–Terrestrial cOupling), covering the period 2020 to 2024. PRESTO was defined by a dedicated committee established by SCOSTEP (Scientific Committee on Solar-Terrestrial Physics). We review the current state of the art and discuss future studies required for the most effective development of solar–terrestrial physics.
Emily M. Gordon, Annika Seppälä, Bernd Funke, Johanna Tamminen, and Kaley A. Walker
Atmos. Chem. Phys., 21, 2819–2836, https://doi.org/10.5194/acp-21-2819-2021, https://doi.org/10.5194/acp-21-2819-2021, 2021
Short summary
Short summary
Energetic particle precipitation (EPP) is the rain of solar energetic particles into the Earth's atmosphere. EPP is known to deplete O3 in the polar mesosphere–upper stratosphere via the formation of NOx. NOx also causes chlorine deactivation in the lower stratosphere and has, thus, been proposed to potentially result in reduced ozone depletion in the spring. We provide the first evidence to show that NOx formed by EPP is able to remove active chlorine, resulting in enhanced total ozone column.
Cited articles
Albers, J. R. and Birner, T.:
Vortex Preconditioning due to Planetary and Gravity Waves prior to Sudden Stratospheric Warmings,
J. Atmos. Sci.,
71, 4028–4054, https://doi.org/10.1175/jas-d-14-0026.1, 2014. a
Allen, D. R., Bevilacqua, R. M., Nedoluha, G. E., Randall, C. E., and Manney, G. L.:
Unusual stratospheric transport and mixing during the 2002 Antarctic winter,
Geophys. Res. Lett.,
30, 1599, https://doi.org/10.1029/2003GL017117, 2003. a
Anstey, J. A. and Shepherd, T. G.:
High-latitude influence of the quasi-biennial oscillation,
Q. J. Roy. Meteor. Soc.,
140, 1–21, https://doi.org/10.1002/qj.2132, 2014. a
Baldwin, M. P. and Dunkerton, T. J.:
Stratospheric Harbingers of Anomalous Weather Regimes,
Science,
294, 581–584, https://doi.org/10.1126/science.1063315, 2001. a
Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H., Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., Horinouchi, T., Jones, D. B. A., Kinnersley, J. S., Marquardt, C., Sato, K., and Takahashi, M.:
The quasi-biennial oscillation,
Rev. Geophys.,
39, 179–229, https://doi.org/10.1029/1999RG000073, 2001. a, b
Baldwin, M. P., Ayarzagüena, B., Birner, T., Butchart, N., Butler, A. H., Charlton-Perez, A. J., Domeisen, D. I. V., Garfinkel, C. I., Garny, H., Gerber, E. P., Hegglin, M. I., Langematz, U., and Pedatella, N. M.:
Sudden Stratospheric Warmings,
Rev. Geophys.,
59, e2020RG000708, https://doi.org/10.1029/2020RG000708, 2021. a, b, c
Bosilovich, M. G., Lucchesi, R., and Suarez, M.:
2016: MERRA-2: File Specification. GMAO Office Note No. 9 (Version 1.1), Tech. rep.,
Global Modeling and Assimilation Office Earth Sciences Division NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, http://gmao.gsfc.nasa.gov/pubs/office_notes (last access: 24 November 2020), 2016. a
Bracegirdle, T. J.:
The seasonal cycle of stratosphere-troposphere coupling at southern high latitudes associated with the semi-annual oscillation in sea-level pressure,
Clim. Dynam.,
37, 2323–2333, https://doi.org/10.1007/s00382-011-1014-4, 2011. a
Byrne, N. J. and Shepherd, T. G.:
Seasonal persistence of circulation anomalies in the Southern Hemisphere stratosphere, and its implications for the troposphere,
J. Climate,
31, 3467–3483, https://doi.org/10.1175/jcli-d-17-0557.1, 2018. a
Charlton, A. J. and Polvani, L. M.:
A New Look at Stratospheric Sudden Warmings. Part I: Climatology and Modeling Benchmarks,
J. Climate,
20, 449–469, https://doi.org/10.1175/JCLI3996.1, 2007. a, b
Coy, L., Wargan, K., Molod, A. M., McCarty, W. R., and Pawson, S.:
Structure and Dynamics of the Quasi-Biennial Oscillation in MERRA-2,
J. Climate,
29, 5339–5354, https://doi.org/10.1175/JCLI-D-15-0809.1, https://doi.org/10.1175/JCLI-D-15-0809.1, 2016. a, b
de la Cámara, A., Birner, T., and Albers, J. R.:
Are Sudden Stratospheric Warmings Preceded by Anomalous Tropospheric Wave Activity?,
J. Climate,
32, 7173–7189, https://doi.org/10.1175/jcli-d-19-0269.1, 2019. a
Doddridge, E. W. and Marshall, J.:
Modulation of the Seasonal Cycle of Antarctic Sea Ice Extent Related to the Southern Annular Mode,
Geophys. Res. Lett.,
44, 9761–9768, https://doi.org/10.1002/2017GL074319, 2017. a
Domeisen, D. I. V., Butler, A. H., Perez, A. J. C., Ayarzagüena, B., Baldwin, M. P., Sigouin, E. D., Furtado, J. C., Garfinkel, C. I., Hitchcock, P., Karpechko, A. Y., Kim, H., Knight, J. R., Lang, A. L., Lim, E. P., Marshall, A., Roff, G., Schwartz, C., Simpson, I. R., Son, S.-W., and Taguchi, M.:
The role of the stratosphere in subseasonal to seasonal prediction Part II: Predictability arising from stratosphere - troposphere coupling,
J. Geophys. Res.-Atmos.,
125, e2019JD030923 , https://doi.org/10.1029/2019JD030923, 2019a. a
Domeisen, D. I. V., Garfinkel, C. I., and Butler, A. H.:
The Teleconnection of El Ni no Southern Oscillation to the Stratosphere,
Rev. Geophys.,
57, 5–47, https://doi.org/10.1029/2018RG000596, 2019b. a
Domeisen, D. I. V., Butler, A. H., Perez, A. J. C., Ayarzagüena, B., Baldwin, M. P., Sigouin, E. D., Furtado, J. C., Garfinkel, C. I., Hitchcock, P., Karpechko, A. Y., Kim, H., Knight, J. R., Lang, A. L., Lim, E. P., Marshall, A., Roff, G., Schwartz, C., Simpson, I. R., Son, S.-W., and Taguchi, M.:
The Role of the Stratosphere in Subseasonal to Seasonal Prediction: 1. Predictability of the Stratosphere,
J. Geophys. Res.-Atmos.,
125, e2019JD030920, https://doi.org/10.1029/2019jd030920, 2020. a, b, c
Edmon, H. J., Hoskins, B. J., and McIntyre, M. E.:
Eliassen–Palm Cross Sections for the Troposphere,
J. Atmos. Sci.,
37, 2600–2616, 1980. a
Eswaraiah, S., Kim, Y. H., Hong, J., Kim, J.-H., Ratnam, M. V., Chandran, A., Rao, S., and Riggin, D.:
Mesospheric signatures observed during 2010 minor stratospheric warming at King Sejong Station (62∘ S, 59∘ W),
J. Atmos. Sol.-Terr. Phy.,
140, 55–64, https://doi.org/10.1016/j.jastp.2016.02.007, 2016. a, b
Eswaraiah, S., Kim, Y. H., Lee, J., Ratnam, M. V., and Rao, S. V. B.:
Effect of Southern Hemisphere Sudden Stratospheric Warmings on Antarctica Mesospheric Tides: First Observational Study,
J. Geophys. Res.-Space,
123, 2127–2140, https://doi.org/10.1002/2017JA024839, 2018. a
Eswaraiah, S., Kim, J.-H., Lee, W., Hwang, J., Kumar, K. N., and Kim, Y. H.:
Unusual Changes in the Antarctic Middle Atmosphere During the 2019 Warming in the Southern Hemisphere,
Geophys. Res. Lett.,
47, e2020GL08919, https://doi.org/10.1029/2020GL089199, 2020a. a, b, c
Eswaraiah, S., Lee, C., Lee, W., Kim, Y. H., Kumar, K. N., and Medineni, V. R.:
Temperature tele-connections between the tropical and polar middle atmosphere in the Southern Hemisphere during the 2010 minor sudden stratospheric warming,
Atmos. Sci. Lett.,
22, e1010, https://doi.org/10.1002/asl.1010, 2020b. a
Garcia, R. R., Dunkerton, T. J., Lieberman, R. S., and Vincent, R. A.:
Climatology of the semiannual oscillation of the tropical middle atmosphere,
J. Geophys. Res.-Atmos.,
102, 26019–26032, https://doi.org/10.1029/97JD00207, 1997. a, b
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., Silva, A. M. D., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.:
The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2),
J. Climate,
30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017. a
Global Modeling and Assimilation Office (GMAO):
MERRA-2 inst6_3d_ana_Np: 3d,6-Hourly,Instantaneous,Pressure-Level,Analysis,Analyzed Meteorological Fields V5.12.4,
Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], Greenbelt, MD, USA, https://doi.org/10.5067/A7S6XP56VZWS, 2015. a
Gray, L.:
The influence of the equatorial upper stratosphere on stratospheric sudden warmings,
Geophys. Res. Lett.,
30, 1166, https://doi.org/10.1029/2002GL016430, 2003. a
Holton, J. R. and Tan, H.-C.:
The Influence of the Equatorial Quasi-Biennial Oscillation on the Global Circulation at 50 mb,
J. Atmos. Sci.,
37, 2200–2208, https://doi.org/10.1175/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2, 1980. a
Hoppel, K., Bevilacqua, R., Allen, D., Nedoluha, G., and Randall, C.:
POAM III observations of the anomalous 2002 Antarctic ozone hole,
Geophys. Res. Lett.,
30, 1394, https://doi.org/10.1029/2003GL016899, 2003. a
Kanzawa, H. and Kawaguchi, S.:
Large stratospheric sudden warming in Antarctic late winter and shallow ozone hole in 1988,
Geophys. Res. Lett.,
17, 77–80, https://doi.org/10.1029/GL017i001p00077, 1990. a, b
Klekociuk, A., Tully, M., Krummel, P., Kravchenko, V., Henderson, S., Alexander, S., Querel, R., Nichol, S., Smale, D., Milinevsky, G., Grytsai, A., Fraser, P., Xiangdong, Z., Gies, H., Schofield, R., and Shanklin, J.: The Antarctic ozone hole during 2017,
Journal of Southern Hemisphere Earth Systems Science,
69, 29–51, https://doi.org/10.1071/ES19019, 2020. a, b, c
Kuai, L., Shia, R.-L., Jiang, X., Tung, K. K., and Yung, Y. L.:
Nonstationary Synchronization of Equatorial QBO with SAO in Observations and a Model,
J. Atmos. Sci.,
66, 1654–1664, https://doi.org/10.1175/2008JAS2857.1, 2009. a
Labitzke, K.:
On the solar cycle–QBO relationship: a summary,
J. Atmos. Sol.-Terr. Phy.,
67, 45–54, https://doi.org/10.1016/j.jastp.2004.07.016, 2005. a
Lawrence, Z. D. and Manney, G. L.:
Does the Arctic Stratospheric Polar Vortex Exhibit Signs of Preconditioning Prior to Sudden Stratospheric Warmings?,
J. Atmos. Sci.,
77, 611–632, https://doi.org/10.1175/JAS-D-19-0168.1, 2020. a, b
Lim, E.-P., Hendon, H. H., and Thompson, D. W. J.:
Seasonal Evolution of Stratosphere-Troposphere Coupling in the Southern Hemisphere and Implications for the Predictability of Surface Climate,
J. Geophys. Res.-Atmos.,
123, 12002–12016, https://doi.org/10.1029/2018JD029321, 2018. a
Lim, E. P., Hendon, H. H., Boschat, G., Hudson, D., Thompson, D. W. J., Dowdy, A. J., and Arblaster, J. M.:
Australian hot and dry extremes induced by weakenings of the stratospheric polar vortex,
Nat. Geosci.,
12, 896–901, https://doi.org/10.1038/s41561-019-0456-x, 2019. a
Matsuno, T.:
A Dynamical Model of the Stratospheric Sudden Warming,
J. Atmos. Sci.,
28, 1479–1494, https://doi.org/10.1175/1520-0469(1971)028<1479:ADMOTS>2.0.CO;2, 1971. a
Moss, A. C., Wright, C. J., Davis, R. N., and Mitchell, N. J.: Gravity-wave momentum fluxes in the mesosphere over Ascension Island (8∘ S, 14∘ W) and the anomalous zonal winds of the semi-annual oscillation in 2002, Ann. Geophys., 34, 323–330, https://doi.org/10.5194/angeo-34-323-2016, 2016. a
Pascoe, C. L., Gray, L. J., and Scaife, A. A.:
A GCM study of the influence of equatorial winds on the timing of sudden stratospheric warmings,
Geophys. Res. Lett.,
33, L06825, https://doi.org/10.1029/2005GL024715, 2006. a, b
Peña-Ortiz, C., Schmidt, H., Giorgetta, M. A., and Keller, M.:
QBO modulation of the semiannual oscillation in MAECHAM5 and HAMMONIA,
J. Geophys. Res.-Atmos.,
115, D21106, https://doi.org/10.1029/2010JD013898, 2010. a
Rao, J., Garfinkel, C. I., Chen, H., and White, I. P.:
The 2019 New Year Stratospheric Sudden Warming and Its Real-Time Predictions in Multiple S2S Models,
J. Geophys. Res.-Atmos.,
124, 11155–11174, https://doi.org/10.1029/2019jd030826, 2019. a
Rao, J., Garfinkel, C. I., and White, I. P.:
Predicting the Downward and Surface Influence of the February 2018 and January 2019 Sudden Stratospheric Warming Events in Subseasonal to Seasonal (S2S) Models,
J. Geophys. Res.-Atmos.,
125, e2019JD031919, https://doi.org/10.1029/2019jd031919, 2020a. a
Rao, J., Garfinkel, C. I., and White, I. P.:
How does the Quasi-Biennial Oscillation affect the boreal winter tropospheric circulation in CMIP5/6 models?,
J. Climate,
33, 1–54, https://doi.org/10.1175/jcli-d-20-0024.1, 2020b. a
Ricaud, P., Lefèvre, F., Berthet, G., Murtagh, D., Llewellyn, E. J., Mégie, G., Kyrölä, E., Leppelmeier, G. W., Auvinen, H., Boonne, C., Brohede, S., Degenstein, D. A., de La Noë, J., Dupuy, E., El Amraoui, L., Eriksson, P., Evans, W. F. J., Frisk, U., Gattinger, R. L., Girod, F., Haley, C. S., Hassinen, S., Hauchecorne, A., Jimenez, C., Kyrö, E., Lautié, N., Le Flochmoën, E., Lloyd, N. D., McConnell, J. C., McDade, I. C., Nordh, L., Olberg, M., Pazmino, A., Petelina, S. V., Sandqvist, A., Seppälä, A., Sioris, C. E., Solheim, B. H., Stegman, J., Strong, K., Taalas, P., Urban, J., von Savigny, C., von Scheele, F., and Witt, G.:
Polar vortex evolution during the 2002 Antarctic major warming as observed by the Odin satellite,
J. Geophys. Res.-Atmos.,
110, D05302, https://doi.org/10.1029/2004JD005018, 2005. a
Richter, J. H., Matthes, K., Calvo, N., and Gray, L. J.:
Influence of the quasi-biennial oscillation and El Ni no–Southern Oscillation on the frequency of sudden stratospheric warmings,
J. Geophys. Res.-Atmos.,
116, D20111, https://doi.org/10.1029/2011JD015757, 2011. a
Schoeberl, M. R., Stolarski, R. S., and Krueger, A. J.:
The 1988 Antarctic ozone depletion: Comparison with previous year depletions,
Geophys. Res. Lett.,
16, 377–380, https://doi.org/10.1029/GL016i005p00377, 1989. a, b
Schwartz, C. and Garfinkel, C. I.:
Relative roles of the MJO and stratospheric variability in North Atlantic and European winter climate,
J. Geophys. Res.-Atmos.,
122, 4184–4201, https://doi.org/10.1002/2016JD025829, 2017.
a
Shen, X., Wang, L., and Osprey, S.:
The Southern Hemisphere sudden stratospheric warming of September 2019,
Sci. Bull.,
65, 1800–1802, https://doi.org/10.1016/j.scib.2020.06.028, 2020. a, b, c, d
Smith, A. K., Garcia, R. R., Moss, A. C., and Mitchell, N. J.:
The Semiannual Oscillation of the Tropical Zonal Wind in the Middle Atmosphere Derived from Satellite Geopotential Height Retrievals,
J. Atmos. Sci.,
74, 2413–2425, https://doi.org/10.1175/jas-d-17-0067.1, 2017. a, b
Smith, A. K., Holt, L. A., Garcia, R. R., Anstey, J. A., Serva, F., Butchart, N., Osprey, S., Bushell, A. C., Kawatani, Y., Kim, Y.-H., Lott, F., Braesicke, P., Cagnazzo, C., Chen, C.-C., Chun, H.-Y., Gray, L., Kerzenmacher, T., Naoe, H., Richter, J., Versick, S., Schenzinger, V., Watanabe, S., and Yoshida, K.:
The equatorial stratospheric semiannual oscillation and time-mean winds in QBOi models,
Q. J. Roy. Meteor. Soc.,
pp. 1–17, https://doi.org/10.1002/qj.3690, 2020. a, b, c
Solomon, S.:
Stratospheric ozone depletion: A review of concepts and history,
Rev. Geophys.,
37, 275–316, https://doi.org/10.1029/1999RG900008, 1999. a
Solomon, S., Garcia, R. R., Rowland, F. S., and Wuebbles, D. J.:
On the depletion of Antarctic ozone,
Nature,
321, 755–758, https://doi.org/10.1038/321755a0, 1986. a
Taguchi, M. and Hartmann, D. L.:
Interference of extratropical surface climate anomalies induced by El Ni no and stratospheric sudden warmings,
Geophys. Res. Lett.,
32, L04709, https://doi.org/10.1029/2004GL022004, 2005. a
Thompson, D. W. J., Baldwin, M. P., and Solomon, S.:
Stratosphere–Troposphere Coupling in the Southern Hemisphere,
J. Atmos. Sci.,
62, 708–715, https://doi.org/10.1175/jas-3321.1, 2005. a, b
Watson, P. A. G. and Gray, L. J.:
How does the quasi-biennial oscillation affect the stratospheric polar vortex?,
J. Atmos. Sci.,
71, 391–409, https://doi.org/10.1175/JAS-D-13-096.1, 2014. a
Wheeler, M. C. and Hendon, H. H.:
An All-Season Real-Time Multivariate MJO Index: Development of an Index for Monitoring and Prediction,
Mon. Weather Rev.,
132, 1917–1932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2, 2004. a, b, c, d
Yamazaki, Y., Matthias, V., Miyoshi, Y., Stolle, C., Siddiqui, T., Kervalishvili, G., Laštovička, J., Kozubek, M., Ward, W., Themens, D. R., Kristoffersen, S., and Alken, P.:
September 2019 Antarctic Sudden Stratospheric Warming: Quasi-6-Day Wave Burst and Ionospheric Effects,
Geophys. Res. Lett.,
47, e2019GL086577, https://doi.org/10.1029/2019GL086577, 2020. a, b, c, d, e
Zhang, T., Hoell, A., Perlwitz, J., Eischeid, J., Murray, D., Hoerling, M., and Hamill, T. M.:
Towards Probabilistic Multivariate ENSO Monitoring,
Geophys. Res. Lett.,
46, 10532–10540, https://doi.org/10.1029/2019GL083946, 2019. a, b
Short summary
The winter winds over Antarctica form a stable vortex. However, in 2019 the vortex was disrupted and the temperature in the polar stratosphere rose by 50°C. This event, called a sudden stratospheric warming, is a rare event in the Southern Hemisphere, with the only known major event having taken place in 2002. The 2019 event helps us unravel its causes, which are largely unknown. We have discovered a unique behaviour of the equatorial winds in 2002 and 2019 that may signal an impending SH SSW.
The winter winds over Antarctica form a stable vortex. However, in 2019 the vortex was disrupted...
Altmetrics
Final-revised paper
Preprint