Articles | Volume 20, issue 22
https://doi.org/10.5194/acp-20-14407-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-14407-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Size-resolved exposure risk of persistent free radicals (PFRs) in atmospheric aerosols and their potential sources
Qingcai Chen
School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
Haoyao Sun
School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
Wenhuai Song
Yale – NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing 210044, China
Fang Cao
Yale – NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing 210044, China
Chongguo Tian
Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
Yan-Lin Zhang
CORRESPONDING AUTHOR
Yale – NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing 210044, China
Related authors
Haibiao Chen, Caiqing Yan, Liubin Huang, Lin Du, Yang Yue, Xinfeng Wang, Qingcai Chen, Mingjie Xie, Junwen Liu, Fengwen Wang, Shuhong Fang, Qiaoyun Yang, Hongya Niu, Mei Zheng, Yan Wu, and Likun Xue
Atmos. Chem. Phys., 25, 3647–3667, https://doi.org/10.5194/acp-25-3647-2025, https://doi.org/10.5194/acp-25-3647-2025, 2025
Short summary
Short summary
A comprehensive understanding of the optical properties of brown carbon (BrC) is essential to accurately assess its climatic effects. Based on multi-site spectroscopic measurements, this study demonstrated the significant spatial heterogeneity in the optical and structural properties of water-soluble organic carbon (WSOC) in different regions of China and revealed factors affecting WSOC light absorption and the relationship between fluorophores and light absorption of WSOC.
Tong Sha, Siyu Yang, Qingcai Chen, Liangqing Li, Xiaoyan Ma, Yan-Lin Zhang, Zhaozhong Feng, K. Folkert Boersma, and Jun Wang
Atmos. Chem. Phys., 24, 8441–8455, https://doi.org/10.5194/acp-24-8441-2024, https://doi.org/10.5194/acp-24-8441-2024, 2024
Short summary
Short summary
Using an updated soil reactive nitrogen emission scheme in the Unified Inputs for Weather Research and Forecasting coupled with Chemistry (UI-WRF-Chem) model, we investigate the role of soil NO and HONO (Nr) emissions in air quality and temperature in North China. Contributions of soil Nr emissions to O3 and secondary pollutants are revealed, exceeding effects of soil NOx or HONO emission. Soil Nr emissions play an important role in mitigating O3 pollution and addressing climate change.
Huanhuan Zhang, Rui Li, Chengpeng Huang, Xiaofei Li, Shuwei Dong, Fu Wang, Tingting Li, Yizhu Chen, Guohua Zhang, Yan Ren, Qingcai Chen, Ru-jin Huang, Siyu Chen, Tao Xue, Xinming Wang, and Mingjin Tang
Atmos. Chem. Phys., 23, 3543–3559, https://doi.org/10.5194/acp-23-3543-2023, https://doi.org/10.5194/acp-23-3543-2023, 2023
Short summary
Short summary
This work investigated the seasonal variation of aerosol Fe solubility for coarse and fine particles in Xi’an, a megacity in northwestern China severely affected by anthropogenic emission and desert dust aerosol. In addition, we discussed in depth what controlled aerosol Fe solubility at different seasons for coarse and fine particles.
Dongjie Guan, Qingcai Chen, Jinwen Li, Hao Li, Lixin Zhang, Yuqin Wang, Xiaofei Li, and Tian Chang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-842, https://doi.org/10.5194/acp-2021-842, 2021
Preprint withdrawn
Short summary
Short summary
The photochemical reactions of atmospheric aerosols are complicated, some reaction processes exist which have not been identified at present. This study focuses on a new mechanism of photochemical reactions, namely triplet reactions (3C*), and its potential impact on aerosol aging. This study demonstrate the coupling effect of 3C* formation between different aerosol components. The result is novel and useful in explaining how complex components affect photochemical aging of atmospheric aerosol.
Zhen Mu, Qingcai Chen, Lixin Zhang, Dongjie Guan, and Hao Li
Atmos. Chem. Phys., 21, 11581–11591, https://doi.org/10.5194/acp-21-11581-2021, https://doi.org/10.5194/acp-21-11581-2021, 2021
Short summary
Short summary
Sunlight affects the life and chemical composition of atmospheric aerosols and thus alters air quality. This study demonstrated that the photo-aging process not only changed the chemical compositions of chromophoric aerosols but also changed the roles of the chromophoric organic matter in the photo-aging process of aerosol. This study adds to our understanding of how sunlight affects chromophoric aerosol aging.
Xueqin Zheng, Junwen Liu, Nima Chuduo, Bian Ba, Pengfei Yu, Phu Drolgar, Fang Cao, and Yanlin Zhang
Atmos. Chem. Phys., 25, 12451–12465, https://doi.org/10.5194/acp-25-12451-2025, https://doi.org/10.5194/acp-25-12451-2025, 2025
Short summary
Short summary
In this study, we present the first report on the annual variation of stable oxygen isotope anomalies in nitrate (NO3−) collected from the urban area of Lhasa, on the Tibetan Plateau, China. Using a Bayesian isotope mixture model, we found that the relative contribution of the NO3 + volatile organic compound (VOC) pathway to NO3− formation in spring in Lhasa was several times higher than that in urban cities, highlighting the significant influence of VOCs transported from outside the Tibetan Plateau.
Abudurexiati Abulimiti, Yanlin Zhang, Mingyuan Yu, Yihang Hong, Yu-Chi Lin, Chaman Gul, and Fang Cao
Atmos. Chem. Phys., 25, 6161–6178, https://doi.org/10.5194/acp-25-6161-2025, https://doi.org/10.5194/acp-25-6161-2025, 2025
Short summary
Short summary
To improve air quality, the Chinese government has implemented strict clean-air measures. We explored how black carbon (BC) responded to these measures and found that a reduction in liquid fuel use was the main factor driving a decrease in BC levels. Additionally, meteorological factors also played a significant role in the long-term trends of BC. These factors should be considered in future emission reduction policies to further enhance air quality improvements.
Haibiao Chen, Caiqing Yan, Liubin Huang, Lin Du, Yang Yue, Xinfeng Wang, Qingcai Chen, Mingjie Xie, Junwen Liu, Fengwen Wang, Shuhong Fang, Qiaoyun Yang, Hongya Niu, Mei Zheng, Yan Wu, and Likun Xue
Atmos. Chem. Phys., 25, 3647–3667, https://doi.org/10.5194/acp-25-3647-2025, https://doi.org/10.5194/acp-25-3647-2025, 2025
Short summary
Short summary
A comprehensive understanding of the optical properties of brown carbon (BrC) is essential to accurately assess its climatic effects. Based on multi-site spectroscopic measurements, this study demonstrated the significant spatial heterogeneity in the optical and structural properties of water-soluble organic carbon (WSOC) in different regions of China and revealed factors affecting WSOC light absorption and the relationship between fluorophores and light absorption of WSOC.
Rongshuang Xu, Yu-Chi Lin, Siyu Bian, Feng Xie, and Yan-Lin Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-683, https://doi.org/10.5194/egusphere-2025-683, 2025
Short summary
Short summary
This work reported the hydroxymethanesulfonate (HMS) level in a continental city and, for the first time, in marine atmosphere. The enhancement by aerosol ionic strength (IS) on HMS formation was quantified which first rise with increasing IS, peaking at 4 mol kg–1 before declining. Given the IS range of marine (2–6) and urban aerosol (6–20 mol kg–1) and the clearly negative correlation between humidity and IS, the moderate IS level under humid condition may notably boost ambient HMS formation.
Mingjie Kang, Mengying Bao, Wenhuai Song, Aduburexiati Abulimiti, Changliu Wu, Fang Cao, Sönke Szidat, and Yanlin Zhang
Atmos. Chem. Phys., 25, 73–91, https://doi.org/10.5194/acp-25-73-2025, https://doi.org/10.5194/acp-25-73-2025, 2025
Short summary
Short summary
Reports on molecular-level knowledge of high-temporal-resolution particulate matter ≤2.5 µm in diameter (PM2.5) on hazy days are limited. We investigated various PM2.5 species and their sources. The results show biomass burning (BB) was the main source of organic carbon. Moreover, BB enhanced fungal spore emissions and secondary aerosol formation. The contribution of non-fossil sources increased with increasing haze pollution, suggesting BB may be an important driver of haze events in winter.
Zihan Song, Leiming Zhang, Chongguo Tian, Qiang Fu, Zhenxing Shen, Renjian Zhang, Dong Liu, and Song Cui
Atmos. Chem. Phys., 24, 13101–13113, https://doi.org/10.5194/acp-24-13101-2024, https://doi.org/10.5194/acp-24-13101-2024, 2024
Short summary
Short summary
A novel concept integrating crop cycle information into fire spot extraction was proposed. Spatiotemporal variations of open straw burning in Northeast China are revealed. Open straw burning in Northeast China emitted a total of 218 Tg of CO2-eq during 2001–2020. The policy of banning straw burning effectively reduced greenhouse gas emissions.
Fan Zhang, Binyu Xiao, Zeyu Liu, Yan Zhang, Chongguo Tian, Rui Li, Can Wu, Yali Lei, Si Zhang, Xinyi Wan, Yubao Chen, Yong Han, Min Cui, Cheng Huang, Hongli Wang, Yingjun Chen, and Gehui Wang
Atmos. Chem. Phys., 24, 8999–9017, https://doi.org/10.5194/acp-24-8999-2024, https://doi.org/10.5194/acp-24-8999-2024, 2024
Short summary
Short summary
Mandatory use of low-sulfur fuel due to global sulfur limit regulations means large uncertainties in volatile organic compound (VOC) emissions. On-board tests of VOCs from nine cargo ships in China were carried out. Results showed that switching from heavy-fuel oil to diesel increased emission factor VOCs by 48 % on average, enhancing O3 and the secondary organic aerosol formation potential. Thus, implementing a global ultra-low-sulfur oil policy needs to be optimized in the near future.
Tong Sha, Siyu Yang, Qingcai Chen, Liangqing Li, Xiaoyan Ma, Yan-Lin Zhang, Zhaozhong Feng, K. Folkert Boersma, and Jun Wang
Atmos. Chem. Phys., 24, 8441–8455, https://doi.org/10.5194/acp-24-8441-2024, https://doi.org/10.5194/acp-24-8441-2024, 2024
Short summary
Short summary
Using an updated soil reactive nitrogen emission scheme in the Unified Inputs for Weather Research and Forecasting coupled with Chemistry (UI-WRF-Chem) model, we investigate the role of soil NO and HONO (Nr) emissions in air quality and temperature in North China. Contributions of soil Nr emissions to O3 and secondary pollutants are revealed, exceeding effects of soil NOx or HONO emission. Soil Nr emissions play an important role in mitigating O3 pollution and addressing climate change.
Yangzhi Mo, Jun Li, Guangcai Zhong, Sanyuan Zhu, Shizhen Zhao, Jiao Tang, Hongxing Jiang, Zhineng Cheng, Chongguo Tian, Yingjun Chen, and Gan Zhang
Atmos. Chem. Phys., 24, 7755–7772, https://doi.org/10.5194/acp-24-7755-2024, https://doi.org/10.5194/acp-24-7755-2024, 2024
Short summary
Short summary
In this study, we found that biomass burning (31.0 %) and coal combustion (31.1 %) were the dominant sources of water-insoluble organic carbon in China, with coal combustion sources exhibiting the strongest light-absorbing capacity. Additionally, we propose a light-absorbing carbonaceous continuum, revealing that components enriched with fossil sources tend to have stronger light-absorbing capacity, higher aromaticity, higher molecular weights, and greater recalcitrance in the atmosphere.
Wenwen Ma, Rong Sun, Xiaoping Wang, Zheng Zong, Shizhen Zhao, Zeyu Sun, Chongguo Tian, Jianhui Tang, Song Cui, Jun Li, and Gan Zhang
Atmos. Chem. Phys., 24, 1509–1523, https://doi.org/10.5194/acp-24-1509-2024, https://doi.org/10.5194/acp-24-1509-2024, 2024
Short summary
Short summary
This is the first report of long-term atmospheric PAH monitoring around the Bohai Sea. The results showed that the concentrations of PAHs in the atmosphere around the Bohai Sea decreased from June 2014 to May 2019, especially the concentrations of highly toxic PAHs. This indicates that the contributions from PAH sources changed to a certain extent in different areas, and it also led to reductions in the related health risk and medical costs following pollution prevention and control.
Zeyu Sun, Zheng Zong, Yang Tan, Chongguo Tian, Zeyu Liu, Fan Zhang, Rong Sun, Yingjun Chen, Jun Li, and Gan Zhang
Atmos. Chem. Phys., 23, 12851–12865, https://doi.org/10.5194/acp-23-12851-2023, https://doi.org/10.5194/acp-23-12851-2023, 2023
Short summary
Short summary
This is the first report of ship-emitted nitrogen stable isotope composition (δ15N) of nitrogen oxides (NOx). The results showed that δ15N–NOx from ships was −18.5 ± 10.9 ‰ and increased monotonically with tightening emission regulations. The selective catalytic reduction system was the most vital factor. The temporal variation in δ15N–NOx was evaluated and can be used to select suitable δ15N–NOx for a more accurate assessment of the contribution of ship-emitted exhaust to atmospheric NOx.
Mengying Bao, Yan-Lin Zhang, Fang Cao, Yihang Hong, Yu-Chi Lin, Mingyuan Yu, Hongxing Jiang, Zhineng Cheng, Rongshuang Xu, and Xiaoying Yang
Atmos. Chem. Phys., 23, 8305–8324, https://doi.org/10.5194/acp-23-8305-2023, https://doi.org/10.5194/acp-23-8305-2023, 2023
Short summary
Short summary
The interaction between the sources and molecular compositions of humic-like substances (HULIS) at Nanjing, China, was explored. Significant fossil fuel source contributions to HULIS were found in the 14C results from biomass burnng and traffic emissions. Increasing biogenic secondary organic aerosol (SOA) products and anthropogenic aromatic compounds were detected in summer and winter, respectively.
Xiangyun Zhang, Jun Li, Sanyuan Zhu, Junwen Liu, Ping Ding, Shutao Gao, Chongguo Tian, Yingjun Chen, Ping'an Peng, and Gan Zhang
Atmos. Chem. Phys., 23, 7495–7502, https://doi.org/10.5194/acp-23-7495-2023, https://doi.org/10.5194/acp-23-7495-2023, 2023
Short summary
Short summary
The results show that 14C elemental carbon (EC) was not only related to the isolation method but also to the types and proportions of the biomass sources in the sample. The hydropyrolysis (Hypy) method, which can be used to isolate a highly stable portion of ECHypy and avoid charring, is a more effective and stable approach for the matrix-independent 14C quantification of EC in aerosols, and the 13C–ECHypy and non-fossil ECHypy values of SRM1649b were –24.9 ‰ and 11 %, respectively.
Tingting Li, Jun Li, Zeyu Sun, Hongxing Jiang, Chongguo Tian, and Gan Zhang
Atmos. Chem. Phys., 23, 6395–6407, https://doi.org/10.5194/acp-23-6395-2023, https://doi.org/10.5194/acp-23-6395-2023, 2023
Short summary
Short summary
N-NH4+ and N-NO3- were vital components in nitrogenous aerosols and contributed 69 % to total nitrogen in PM2.5. Coal combustion was still the most important source of urban atmospheric NO3-. However, the non-agriculture sources play an increasingly important role in NH4+ emissions.
Jiao Tang, Jun Li, Shizhen Zhao, Guangcai Zhong, Yangzhi Mo, Hongxing Jiang, Bin Jiang, Yingjun Chen, Jianhui Tang, Chongguo Tian, Zheng Zong, Jabir Hussain Syed, Jianzhong Song, and Gan Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2023-403, https://doi.org/10.5194/egusphere-2023-403, 2023
Preprint archived
Short summary
Short summary
This study provides a comprehensive molecular identification of atmospheric common fluorescent components and deciphers their related formation pathways. The fluorescent components varied in molecular composition, and a dominant oxidation pathway for the formation of humic-like fluorescent components was suggested, notwithstanding their different precursor types. Our findings are expected to be helpful to further studies using the EEM-PARAFAC as a tool to study atmospheric BrC.
Huanhuan Zhang, Rui Li, Chengpeng Huang, Xiaofei Li, Shuwei Dong, Fu Wang, Tingting Li, Yizhu Chen, Guohua Zhang, Yan Ren, Qingcai Chen, Ru-jin Huang, Siyu Chen, Tao Xue, Xinming Wang, and Mingjin Tang
Atmos. Chem. Phys., 23, 3543–3559, https://doi.org/10.5194/acp-23-3543-2023, https://doi.org/10.5194/acp-23-3543-2023, 2023
Short summary
Short summary
This work investigated the seasonal variation of aerosol Fe solubility for coarse and fine particles in Xi’an, a megacity in northwestern China severely affected by anthropogenic emission and desert dust aerosol. In addition, we discussed in depth what controlled aerosol Fe solubility at different seasons for coarse and fine particles.
Hao-Ran Yu, Yan-Lin Zhang, Fang Cao, Xiao-Ying Yang, Tian Xie, Yu-Xian Zhang, and Yongwen Xue
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-239, https://doi.org/10.5194/amt-2022-239, 2022
Preprint withdrawn
Short summary
Short summary
We developed a high time resolution method for determining the δ13C values of WSOCp and WSOCg by combination of wet oxidation pretreatment and IRMS. With improvement of oxidation method and determination method, δ13C value of liquid sample with a carbon content between 0.5 to 5 μg can be determined with an accuracy of 0.6 ‰. Using this method, the δ13C value of WSOCp and WSOCg in winter of 2021 at an urban site of Nanjing were determined, which were -25.9 ± 0.7 ‰ and -29.9 ± 0.9 ‰ respectively.
Hongxing Jiang, Jun Li, Jiao Tang, Min Cui, Shizhen Zhao, Yangzhi Mo, Chongguo Tian, Xiangyun Zhang, Bin Jiang, Yuhong Liao, Yingjun Chen, and Gan Zhang
Atmos. Chem. Phys., 22, 6919–6935, https://doi.org/10.5194/acp-22-6919-2022, https://doi.org/10.5194/acp-22-6919-2022, 2022
Short summary
Short summary
We conducted field observation employing Fourier transform ion cyclotron resonance mass spectrometry to characterize the molecular composition and major formation pathways or sources of organosulfur compounds in Guangzhou, where is heavily influenced by biogenic–anthropogenic interactions and has high relative humidity and temperature. We suggested that heterogeneous reactions such as SO2 uptake and heterogeneous oxidations are important to the molecular variations of organosulfur compounds.
Jiyan Wu, Chi Yang, Chunyan Zhang, Fang Cao, Aiping Wu, and Yanlin Zhang
Atmos. Meas. Tech., 15, 2623–2633, https://doi.org/10.5194/amt-15-2623-2022, https://doi.org/10.5194/amt-15-2623-2022, 2022
Short summary
Short summary
We introduced an online method to simultaneously determine the content of inorganic salt ions and reactive oxygen species (ROS) in PM2.5 hour by hour. We verified the accuracy and precision of the instrument. And we got the daily changes in ROS and the main sources that affect ROS. This breakthrough enables the quantitative assessment of atmospheric particulate matter ROS at the diurnal scale, providing an effective tool to study sources and environmental impacts of ROS.
Md. Mozammel Haque, Yanlin Zhang, Srinivas Bikkina, Meehye Lee, and Kimitaka Kawamura
Atmos. Chem. Phys., 22, 1373–1393, https://doi.org/10.5194/acp-22-1373-2022, https://doi.org/10.5194/acp-22-1373-2022, 2022
Short summary
Short summary
We attempt to understand the current state of East Asian organic aerosols with both the molecular marker approach and 14° C data of carbonaceous components. A significant positive correlation of nonfossil- and fossil-derived organic carbon with levoglucosan suggests the importance of biomass burning (BB) and coal combustion sources in the East Asian outflow. Thus, attribution of ambient levoglucosan levels over the western North Pacific to the impact of BB emission may cause large uncertainty.
Ahsan Mozaffar, Yan-Lin Zhang, Yu-Chi Lin, Feng Xie, Mei-Yi Fan, and Fang Cao
Atmos. Chem. Phys., 21, 18087–18099, https://doi.org/10.5194/acp-21-18087-2021, https://doi.org/10.5194/acp-21-18087-2021, 2021
Short summary
Short summary
We performed a long-term investigation of ambient volatile organic compounds (VOCs) in an industrial area in Nanjing, China. Followed by alkanes, halocarbons and aromatics were the most abundant VOC groups. Vehicle-related emissions were the major VOC sources in the study area. Aromatic and alkene VOCs were responsible for most of the atmospheric reactions.
Dongjie Guan, Qingcai Chen, Jinwen Li, Hao Li, Lixin Zhang, Yuqin Wang, Xiaofei Li, and Tian Chang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-842, https://doi.org/10.5194/acp-2021-842, 2021
Preprint withdrawn
Short summary
Short summary
The photochemical reactions of atmospheric aerosols are complicated, some reaction processes exist which have not been identified at present. This study focuses on a new mechanism of photochemical reactions, namely triplet reactions (3C*), and its potential impact on aerosol aging. This study demonstrate the coupling effect of 3C* formation between different aerosol components. The result is novel and useful in explaining how complex components affect photochemical aging of atmospheric aerosol.
Zhen Mu, Qingcai Chen, Lixin Zhang, Dongjie Guan, and Hao Li
Atmos. Chem. Phys., 21, 11581–11591, https://doi.org/10.5194/acp-21-11581-2021, https://doi.org/10.5194/acp-21-11581-2021, 2021
Short summary
Short summary
Sunlight affects the life and chemical composition of atmospheric aerosols and thus alters air quality. This study demonstrated that the photo-aging process not only changed the chemical compositions of chromophoric aerosols but also changed the roles of the chromophoric organic matter in the photo-aging process of aerosol. This study adds to our understanding of how sunlight affects chromophoric aerosol aging.
Jiao Tang, Jiaqi Wang, Guangcai Zhong, Hongxing Jiang, Yangzhi Mo, Bolong Zhang, Xiaofei Geng, Yingjun Chen, Jianhui Tang, Congguo Tian, Surat Bualert, Jun Li, and Gan Zhang
Atmos. Chem. Phys., 21, 11337–11352, https://doi.org/10.5194/acp-21-11337-2021, https://doi.org/10.5194/acp-21-11337-2021, 2021
Short summary
Short summary
This article provides a combined EEM–PARAFAC and statistical analysis method to explore how excitation–emission matrix (EEM) chromophores influence BrC light absorption in soluble organic matter. The application enables us to deduce that BrC absorption is mainly dependent on longer-emission-wavelength chromophores largely associated with biomass burning emissions. This method promotes the application of EEM spectroscopy and helps us understand the light absorption of BrC in the atmosphere.
Mengying Bao, Yan-Lin Zhang, Fang Cao, Yu-Chi Lin, Yuhang Wang, Xiaoyan Liu, Wenqi Zhang, Meiyi Fan, Feng Xie, Robert Cary, Joshua Dixon, and Lihua Zhou
Atmos. Meas. Tech., 14, 4053–4068, https://doi.org/10.5194/amt-14-4053-2021, https://doi.org/10.5194/amt-14-4053-2021, 2021
Short summary
Short summary
We introduce a two-wavelength method for brown C measurements with a modified Sunset carbon analyzer. We defined the enhanced concentrations and gave the possibility of providing an indicator of brown C. Compared with the strong local sources of organic and elemental C, we found that differences in EC mainly originated from regional transport. Biomass burning emissions significantly contributed to high differences in EC concentrations during the heavy biomass burning periods.
Yunhua Chang, Yan-Lin Zhang, Sawaeng Kawichai, Qian Wang, Martin Van Damme, Lieven Clarisse, Tippawan Prapamontol, and Moritz F. Lehmann
Atmos. Chem. Phys., 21, 7187–7198, https://doi.org/10.5194/acp-21-7187-2021, https://doi.org/10.5194/acp-21-7187-2021, 2021
Short summary
Short summary
In this study, we integrated satellite constraints on atmospheric NH3 levels and fire intensity, discrete NH3 concentration measurement, and N isotopic analysis of NH3 in order to assess the regional-scale contribution of biomass burning to ambient atmospheric NH3 in the heartland of Southeast Asia. The combined approach provides a valuable cross-validation framework for source apportioning of NH3 in the lower atmosphere and will thus help to ameliorate predictions of biomass burning emissions.
Jianzhong Sun, Yuzhe Zhang, Guorui Zhi, Regina Hitzenberger, Wenjing Jin, Yingjun Chen, Lei Wang, Chongguo Tian, Zhengying Li, Rong Chen, Wen Xiao, Yuan Cheng, Wei Yang, Liying Yao, Yang Cao, Duo Huang, Yueyuan Qiu, Jiali Xu, Xiaofei Xia, Xin Yang, Xi Zhang, Zheng Zong, Yuchun Song, and Changdong Wu
Atmos. Chem. Phys., 21, 2329–2341, https://doi.org/10.5194/acp-21-2329-2021, https://doi.org/10.5194/acp-21-2329-2021, 2021
Short summary
Short summary
Brown carbon (BrC) emission factors from household biomass fuels were measured with an integrating sphere optics approach supported by iterative calculations. A novel algorithm to directly estimate the absorption contribution of BrC relative to that of BrC + black carbon (FBrC) was proposed based purely on the absorption exponent (AAE)
(FBrC = 0.5519 lnAAE + 0.0067). The FBrC for household biomass fuels was as high as 50.8 % across the strongest solar spectral range of 350−850 nm.
Cited articles
Arangio, A. M., Tong, H., Socorro, J., Pöschl, U., and Shiraiwa, M.: Quantification of environmentally persistent free radicals and reactive oxygen species in atmospheric aerosol particles, Atmos. Chem. Phys., 16, 13105–13119, https://doi.org/10.5194/acp-16-13105-2016, 2016.
Baum, S. L., Anderson, I. G. M., Baker, R. R., Murphy, D. M., and Rowlands, C. C.:
Electron spin resonance and spin trap investigation of free radicals in
cigarette smoke: development of a quantification procedure, Anal. Chim.
Acta., 481, 1–13, https://doi.org/10.1016/S0003-2670(03)00078-3, 2003.
Blakley, R. L., Henry, D. D., and Smith, C. J.: Lack of correlation between
cigarette mainstream smoke particulate phase radicals and hydroquinone
yield, Food. Chem. Toxicol., 39, 401–406, https://doi.org/10.1016/S0278-6915(00)00144-7, 2001.
Chen, N., Huang, Y., Hou, X., Ai, Z., and Zhang, L.: Photochemistry of
hydrochar: Reactive oxygen species generation and sulfadimidine degradation,
Environ. Sci. Technol., 51, 11278–11287, https://doi.org/10.1021/acs.est.7b02740, 2017.
Chen, Q., Miyazaki, Y., Kawamura, K., Matsumoto, K., Coburn, S., Volkamer,
R., Iwamoto, Y., Kagami, S., Deng, Y., and Ogawa, S.: Characterization of
chromophoric water-soluble organic matter in urban, forest, and marine
aerosols by HR-ToF-AMS analysis and excitation-emission matrix spectroscopy,
Environ. Sci. Technol., 50, 10351–10360, https://doi.org/10.1021/acs.est.6b01643, 2016.
Chen, Q., Ikemori, F., Nakamura Y., Vodicka, P., Kawamura, K., and Mochida,
M.: Structural and light-absorption characteristics of complex
water-insoluble organic mixtures in urban submicron aerosols, Environ. Sci.
Technol., 51, 8293–8303, https://doi.org/10.1021/acs.est.7b01630, 2017.
Chen, Q., Wang, M., Sun, H., Wang, X., Wang, Y., Li, Y., Zhang, L., and Mu,
Z.: Enhanced health risks from exposure to environmentally persistent free
radicals and the oxidative stress of PM2.5 from asian dust storms in
erenhot, Zhangbei and Jinan, China, Environ. Int., 123, 260–268, https://doi.org/10.1016/j.envint.2018.09.012, 2018b.
Chen, Q., Sun, H., Wang, M., Mu, Z., Wang, Y., Li, Y., Wang, Y., Zhang, L.,
and Zhang, Z.: Dominant fraction of EPFRs from Nonsolvent-Extractable
organic matter in fine particulates over Xi'an, China, Environ. Sci.
Technol., 52, 9646–9655, https://doi.org/10.1021/acs.est.8b01980, 2018a.
Chen, Q., Mu, Z., Song, W., Wang, Y., Yang, Z., Zhang, L., and Zhang, Y.:
Size-Resolved Characterization of the Chromophores in Atmospheric
Particulate Matter From a Typical Coal-Burning City in China, J. Geophys.
Res.-Atmos., 124, 10546–10563, https://doi.org/10.1029/2019JD031149, 2019a.
Chen, Q., Sun, H., Mu, Z., Wang, Y., Li, Y., Zhang, L., Wang, M., and Zhang,
Z.: Characteristics of environmentally persistent free radicals in
PM2.5: Concentrations, species and sources in Xi'an, Northwestern
China, Environ. Pollut., 247, 18–26, https://doi.org/10.1016/j.envpol.2019.01.015, 2019b.
Chen, Q., Wang, M., Wang, Y., Zhang, L., Xue, J., Sun, H., and Mu, Z.: Rapid
determination of environmentally persistent free radicals (EPFRs) in
atmospheric particles with a quartz sheet-based approach using electron
paramagnetic resonance (EPR) spectroscopy, Atmos. Environ., 184, 140–145,
https://doi.org/10.1016/j.atmosenv.2018.04.046, 2018c.
Chen, Q., Sun, H., Wang, J., Shan, M., Xue, J., Yang, X., Deng, M., Wang,
Y., and Zhang, L.: Long-life type – The dominant fraction of EPFRs in
combustion sources and ambient fine particles in Xi'an, Atmos. Environ.,
219, 117059, https://doi.org/10.1016/j.atmosenv.2019.117059,
2019c.
Chen, Q., Sun, H., Wang, M., Wang, Y., Zhang, L., and Han, Y.:
Environmentally persistent free radical (EPFR) formation by visible-light
illumination of the organic matter in atmospheric particles, Environ. Sci.
Technol., 53, 10053–10061, https://doi.org/10.1021/acs.est.9b02327, 2019d.
Chen, Q., Wang, M., Wang, Y., Zhang, L., Li, Y., and Han, Y.: Oxidative
potential of water-soluble matter associated with chromophoric substances in
PM2.5 over Xi'an, China, Environ. Sci. Technol., 53, 10053–10061,
https://doi.org/10.1021/acs.est.9b01976, 2019e.
Cheng, Y., He, K. B., Du, Z. Y., Engling, G., Liu, J. M., Ma, Y. L., Zheng,
M., and Weber, R. J.: The characteristics of brown carbon aerosol during
winter in Beijing, Atmos. Environ., 127, 355–364, https://doi.org/10.1016/j.atmosenv.2015.12.035, 2016.
Cruz, A. L. N. D., Cook, R. L., Lomnicki, S. M., and Dellinger, B.: Effect of low
temperature thermal treatment on soils contaminated with pentachlorophenol
and environmentally persistent free radicals, Environ. Sci. Technol., 46,
5971–5978, https://doi.org/10.1021/es300362k, 2012.
D'Arienzo, M., Gamba, L., Morazzoni, F., Cosention, U., Creco, C., Lasagni,
M., Pitea, D., Moro, G., Cepek, C., Butera, V., Sicilia, E., Russo, N.,
Muñoz-García, A., and Pavone, M.: Experimental and theoretical
investigation on the catalytic generation of environmentally persistent free
radicals from benzene, J. Phys. Chem. A., 121, 9381–9393, https://doi.org/10.1021/acs.jpcc.7b01449, 2017.
Dellinger, B., Pryor, W. A., Cueto, R., Squadrito, G. L., Hegde, V., and
Deutsch, W. A.: Role of free radicals in the toxicity of airborne fine
particulate matter, Chem. Res. Toxicol., 14, 1371–1377, https://doi.org/10.1021/tx010050x, 2001.
Environmental Protection Agency, Cincinnati, and OH (USA): Recommendations
for and documentation of biological values for use in risk assessment, Ntis,
PB-179874, EPA 600/6-87/008, 5195594, 1988.
Finkelstein, E., Rosen, G. M., and Rauckman, E. J.: Production of hydroxyl
radical by decomposition of superoxide spin-trapped adducts, Mol.
Pharmacol., 21, 262–265, 1982.
Gehling, W. and Dellinger, B.: Environmentally persistent free radicals and
their lifetimes in PM2.5, Environ. Sci. Technol., 47, 8172–8178,
https://doi.org/10.1021/es401767m, 2013.
Han, Y., Chen, Y. J., Saud, A., Feng, Y. L., Zhang, F., Song, W. H., Cao,
F., Zhang, Y., Yang, X., Li, J., and Zhang, G.: High time- and size-resolved
measurements of PM and chemical composition from coal combustion:
Implications for the EC formation process, Environ. Sci. Technol., 52,
6676–6685, https://doi.org/10.1021/acs.est.7b05786, 2018.
Harmon, A. C., Hebert, V. Y., Cormier, S. A., Subramanian, B., Reed, J. R.,
Backes, W. L., and Dugas, T. R.: Particulate matter containing
environmentally persistent free radicals induces AhRdependent cytokine and
reactive oxygen species production in human bronchial epithelial cells,
Plos One, 13, e0205412, https://doi.org/10.1371/journal.pone.0205412, 2018.
Karnae, S. and John, K.: Source apportionment of fine particulate matter
measured in an industrialized coastal urban area of South Texas, Atmos.
Environ., 45, 3769–3776, https://doi.org/10.1016/j.atmosenv.2011.04.040, 2011.
Keiluweit, M., Nico, P. S., Johnson, M. G., and Kleber, M.: Dynamic
molecular structure of plant biomass-derived black carbon (biochar),
Environ. Sci. Technol., 44, 1247–1253, https://doi.org/10.1021/es9031419, 2010.
Khachatryan, L. and Dellinger, B.: Environmentally persistent free radicals
(EPFRs)-2. Are free hydroxyl radicals generated in aqueous solutions?,
Environ. Sci. Technol., 45, 9232–9239, https://doi.org/10.1021/es201702q, 2011.
Li, G. L., Wu, S. Y., Kuang, M. Q., Hu, X. F., and Xu, Y. Q.: Studies on the
g-factors of the copper(II)-oxygen compounds, J. Struct. Chem., 58,
700–705, https://doi.org/10.1134/S0022476617040084, 2017.
Lin, P., Hu, M., Deng, Z., Slanina, J., Han, S., Kondo, Y., Takegawa, N.,
Miyazaki, Y., Zhao, Y., and Sugimoto, N.: Seasonal and diurnal variations of
organic carbon in PM2.5 in Beijing and the estimation of secondary
organic carbon, J. Geophys. Res.-Atmos., 114, 1–41, https://doi.org/10.1029/2008JD010902, 2009.
Liu, J., Bergin, M., Guo, H., King, L., Kotra, N., Edgerton, E., and Weber, R. J.: Size-resolved measurements of brown carbon in water and methanol extracts and estimates of their contribution to ambient fine-particle light absorption, Atmos. Chem. Phys., 13, 12389–12404, https://doi.org/10.5194/acp-13-12389-2013, 2013.
Lyons, M. J. and Spence, J. B.: Environmental free radicals, Br. J. Canc.,
14, 703–708, https://doi.org/10.1038/bjc.1960.79, 1960.
Lyu, L., Yu, G., Zhang, L., Hu, C., and Sun, Y.:
4-Phenoxyphenolfunctionalized reduced graphene oxide nanosheets: A
metal-free fenton-like catalyst for pollutant destruction, Environ. Sci.
Technol., 52, 747–756, https://doi.org/10.1021/acs.est.7b04865, 2018.
Mihara, T. and Michihiro, M.: Characterization of solvent-extractable
organics in urban aerosols based on mass spectrum analysis and hygroscopic
growth measurement, Environ. Sci. Technol., 45, 9168–9174, https://doi.org/10.1021/es201271w, 2011.
Mukome, F. N. D., Zhang, X., Silva, L. C. R., Six, J., and Parikh, S. J.:
Use of Chemical and physical characteristics to investigate trends in
biochar feedstocks, J. Agric. Food Chem., 61, 2196–2204, https://doi.org/10.1021/jf3049142, 2013.
Nikitenko, V. A.: Luminescence and EPR of zinc oxide (review), J. Appl.
Spectrosc., 57, 783–798, https://doi.org/10.1007/BF00663923, 1992.
Oyana, T. J., Lomnicki, S. M., Guo, C., and Cormier, S. A.: A scalable field
study protocol and rationale for passive ambient air sampling: a spatial
phytosampling for leaf data collection, Environ. Sci. Technol., 51,
10663–10673, https://doi.org/10.1021/acs.est.7b03643, 2017.
Pan, Y., Wang, Y., Sun, Y., Tian, S., and Cheng, M.: Size-resolved aerosol
trace elements at a rural mountainous site in Northern China: importance of
regional transport, Sci. Total Environ., 461–462, 761–771, https://doi.org/10.1016/j.scitotenv.2013.04.065, 2013.
Patterson, M. C., Keilbart, N. D., Kiruri, L. W., Thibodeaux, C. A.,
Lomnicki, S., Kurtz, R. L., Poliakoff, E. D., Dellinger, B., and Sprunger,
P. T.: EPFR formation from phenol adsorption on Al2O3 and
TiO2: EPR and EELS studies, Chem. Phys., 422, 277–282, https://doi.org/10.1016/j.chemphys.2012.12.003, 2013.
Pryor, W. A.: Oxy-Radicals and Related Species: Their Formation, Lifetimes,
and Reactions, Annu. Rev. Physiol., 48, 657–667, https://doi.org/10.1146/annurev.ph.48.030186.003301, 1986.
Pryor, W. A., Prier, D. G., and Church, D. F.: Electron-spin resonance study of
mainstream and sidestream cigarette smoke: nature of the free radicals in
gas-phase smoke and in cigarette tar, Environ. Health Perspect., 47,
345–355, https://doi.org/10.1289/ehp.8347345, 1983.
Qi, L., Zhang, Y., Ma, Y., Chen, M., Ge, X., Ma, Y., Zheng, J., Wang, Z.,
and Li, S.: Source identification of trace elements in the atmosphere during
the second Asian Youth Games in Nanjing, China: Influence of control
measures on air quality, Atmos. Pollut. Res., 7, 547–556, https://doi.org/10.1016/j.apr.2016.01.003, 2016.
Salma, I., Balásházy, I., Winkler-Heil, R., Hofmann, W., and
Záray, G.: Effect of particle mass size distribution on the deposition
of aerosols in the human respiratory tract, J. Aerosol. Sci., 33,
119–132, https://doi.org/10.1016/S0021-8502(01)00154-9, 2002.
Seabra, A. B., Paula, A. J., Lima, R. D., Alves, O. L., and Durán, N.:
Nanotoxicity of graphene and graphene oxide, Chem. Res. Toxicol., 27,
159–168, https://doi.org/10.1021/tx400385x, 2014.
Shaltout, A. A., Boman, J., Shehadeh, Z. F., Al-Malawi, D. A. R., Hemeda, O.
M., and Morsy, M. M.: Spectroscopic investigation of PM2.5, collected
at industrial, residential and traffic sites in taif, Saudi Arabia, J.
Aerosol. Sci., 79, 97–108, https://doi.org/10.1016/j.jaerosci.2014.09.004, 2015.
Song, W., Cao, F., Lin, Y., Haque, M. M., Wu, X., Zhang, Y., Zhang, C., Xie,
F., and Zhang, Y.: Extremely high abundance of polycyclic aromatic
hydrocarbons in aerosols from a typical coal-combustion rural site in China:
Size distribution, source identification and cancer risk assessment, Atmos.
Res., 248, 105192, https://doi.org/10.1016/j.atmosres.2020.105192, 2020.
Srivastava, A. and Jain, V. K.: Size distribution and source identification
of total suspended particulate matter and associated heavy metals in the
urban atmosphere of Delhi, Chemosphere, 68, 579–589, https://doi.org/10.1016/j.chemosphere.2006.12.046, 2007.
Strak, M., Janssen, N. A. H., Godri, K. J., Gosens, I., Mudway, I. S.,
Cassee, F. R., Lebret, E., Kelly F. J., Harrison, R. M., Brunekreef, B.,
Steenhof, M., and Hoek, G.: Respiratory health effects of airborne
particulate matter: The role of particle size, composition, and oxidative
potential-the RAPTES project, Eviron. Health. Persp., 120, 1183–1189,
https://doi.org/10.1289/ehp.1104389, 2012.
Thevenot, P. T., Saravia, J., Jin, N., Giaimo, J. D., Chustz, R. E., Mahne,
S., Kelley, M. A., Hebert, V. Y., Dellinger, B., Dugas, T. R., Demayo, F.
G., and Cormier, S. A.: Radical-containing ultrafine particulate matter
initiates epithelial-to-mesenchymal transitions in airway epithelial cells,
Am. J. Respir. Cell. Mol. Biol., 48, 188–197, https://doi.org/10.1165/rcmb.2012-0052OC, 2013.
Tian, H. Z., Wang, Y., Xue, Z. G., Cheng, K., Qu, Y. P., Chai, F. H., and Hao, J. M.: Trend and characteristics of atmospheric emissions of Hg, As, and Se from coal combustion in China, 1980–2007, Atmos. Chem. Phys., 10, 11905–11919, https://doi.org/10.5194/acp-10-11905-2010, 2010.
Tong, H., Lakey, P. S. J., Arangio, A. M., Socorro, J., Shen, F., Lucas, K.,
Brune, W. H., Pöschl, U., and Shiraiwa, M.: Reactive
oxygen species formed by secondary organic aerosols in water and surrogate
lung fluid, Environ. Sci. Technol., 52, 11642–11651, https://doi.org/10.1021/acs.est.8b03695, 2018.
Trapp, J. M., Millero, F. J., and Prospero, J. M.: Temporal variability of
the elemental composition of African dust measured in trade wind aerosols at
Barbados and Miami, Mar. Chem., 120, 71–82, https://doi.org/10.1016/j.marchem.2008.10.004, 2010.
Truong, H., Lomnicki, S., and Dellinger, B.: Potential for misidentification
of environmentally persistent free radicals as molecular pollutants in
particulate matter, Environ. Sci. Technol., 44, 1933–1939, https://doi.org/10.1021/es902648t, 2010.
Valavanidis, A. and Haralambous, E.: A comparative study by electron
paramagnetic resonance of free radical species in the mainstream and
sidestream smoke of cigarettes with conventional acetate filters and
bio-filters, Redox. Rep., 6, 161–171, https://doi.org/10.1179/135100001101536274, 2001.
Valavanidis, A., Fiotakis, K., and Vlachogianni, T.: Airborne particulate
matterand human health: toxicological assessment and importance of size and
composition of particles for oxidative damage and carcinogenic mechanisms,
J. Environ. Sci. Heal. C., 26, 339–362, https://doi.org/10.1080/10590500802494538, 2008.
Vejerano, E., Lomnicki, S., and Dellinger, B.: Formation and stabilization
of combustion-generated environmentally persistent free radicals on an
Fe(III)2O3/silica surface, Environ. Sci. Technol., 45,
589–594, https://doi.org/10.1021/es102841s, 2011.
Vejerano, E., Lomnicki, S. M., and Dellinger, B.: Formation and
stabilization of combustion-generated, environmentally persistent radicals
on Ni(II)O supported on a silica surface, Environ. Sci. Technol., 46,
9406–9411, https://doi.org/10.1021/es301136d, 2012a.
Vejerano, E., Lomnicki, S., and Dellinger, B.: Lifetime of
combustion-generated environmentally persistent free radicals on Zn(II)O and
other transition metal oxides, J. Environ. Monit., 14, 2803–2806,
https://doi.org/10.1039/c2em30545c, 2012b.
Vejerano, E. P., Rao, G., Khachatryan, L., Cormier, S. A., and Lomnicki, S.:
Environmentally persistent free radicals: Insights on a new class of
pollutants, Environ. Sci. Technol., 52, 2468–2481, https://doi.org/10.1021/acs.est.7b04439, 2018.
Wang, P., Pan, B., Li, H., Huang, Y., Dong, X., Fang, A., Liu, L., Wu, M.,
and Xing, B.: The overlooked occurrence of environmentally persistent free
radicals in an area with low-rank coal burning, Xuanwei, China, Environ.
Sci. Technol., 52, 1054–1061, https://doi.org/10.1021/acs.est.7b05453, 2018.
Wang, Y., Li, S., Wang, M., Sun, H., Mu, Z., Zhang, L., Li, Y., and Chen,
Q.: Source apportionment of environmentally persistent free radicals (EPFRs)
in PM2.5 over Xi'an, China, Sci. Total. Environ., 689, 193–202,
https://doi.org/10.1016/j.scitotenv.2019.06.424, 2019.
Yang, L., Liu, G., Zheng, M., Jin, R., Zhu, Q, Zhao, Y., Wu, X., and Yang,
X.: Highly elevated levels and particle-size distributions of
environmentally persistent free radicals in haze-associated atmosphere,
Environ. Sci. Technol., 51, 7936–7944, https://doi.org/10.1021/acs.est.7b01929, 2017.
Yu, T., Wang, J., Shen, M., and Li, W.: NH3-SCR over Cu/SAPO-34
catalysts with various acid contents and low Cu loading, Catal. Sci.
Technol., 3, 3234–3241, https://doi.org/10.1039/c3cy00453h, 2017.
Short summary
This study found environmentally persistent free radicals (EPFRs) are widely present in atmospheric particles of different particle sizes and exhibit significant particle size distribution characteristics. EPFR concentrations are higher in coarse particles than in fine particles in summer and vice versa in winter. The potential toxicity caused by EPFRs may also vary with particle size and season. Combustion is the most important source of EPFRs (>70 %).
This study found environmentally persistent free radicals (EPFRs) are widely present in...
Altmetrics
Final-revised paper
Preprint