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Abstract. Environmentally persistent free radicals (EPFRs)
are a new type of substance with potential health risks.
EPFRs are widely present in atmospheric particulates, but
there is a limited understanding of the size-resolved health
risks of these radicals. This study reports the exposure risks
and source of EPFRs in atmospheric particulate matter (PM)
of different particle sizes (< 10 µm) in Linfen, a typical coal-
burning city in China. The type of EPFRs in fine particles
(< 2.1 µm) is different from that in coarse particles (2.1–
10 µm) in both winter and summer. However, the EPFR con-
centration is higher in coarse particles than in fine particles
in summer, and the opposite trend is found in winter. In both
seasons, combustion sources are the main sources of EPFRs,
with coal combustion as the major contributor in winter,
while other fuels are the major source in summer. Dust con-
tributes part of the EPFRs, and it is mainly present in coarse
particles in winter and the opposite in summer. The upper
respiratory tract was found to be the area with the highest
risk of exposure to EPFRs of the studied aerosols, with an ex-
posure equivalent to that of approximately 21 cigarettes per
person per day. Alveolar exposure to EPFRs is equivalent to
8 cigarettes per person per day, with combustion sources con-
tributing the most to EPFRs in the alveoli. This study helps us
to better understand the potential health risks of atmospheric
PM with different particle sizes.

1 Introduction

Free radicals are atoms or groups containing unpaired elec-
trons, such as hydroxyl radicals and superoxide radicals, and
they usually have strong chemical reactivity and short life-
times (Pryor et al., 1986; Finkelstein, 1982). Free radicals
with long lifetimes (months or even years) in the environment
are currently called environmentally persistent free radicals
(EPFRs), which have received much attention in recent years
as new environmentally hazardous substances (Vejerano et
al., 2018; Gehling and Dellinger, 2013; Chen et al., 2019c).
EPFRs can be used as an active intermediate to catalyze
the production of reactive oxygen species (ROS) by oxy-
gen molecules, thus endangering human health (D’Arienzo
et al., 2017; Thevenot et al., 2013; Harmon et al., 2018; Blak-
ley et al., 2001; Khachatryan and Dellinger, 2011). Studies
have found that EPFRs are present in different environmen-
tal media, such as water and soil, and even in the atmosphere
(Dellinger et al., 2001; Truong et al., 2010; Vejerano et al.,
2012a).

A number of studies have investigated the occurrences,
sources and formation process of EPFRs in atmospheric par-
ticulates in different regions. For example, in the studies
of Rostock in Germany, Taif in Saudi Arabia and Xuan-
wei in China, the average concentration of EPFRs in atmo-
spheric particulate matter (PM) was reported to be in the
range of ∼ 1016–1018 spins g−1 (Wang et al., 2019; Aran-
gio et al., 2016; Shaltout et al., 2015). Atmospheric EPFRs
are mainly carbon-centered radicals with adjacent oxygen
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atoms (Gehling and Dellinger, 2013). EPFRs of different
lifetimes are present in atmospheric PM, with only a few
hours for short-lifetime EPFRs and several years for long-
lifetime EPFRs that show no signs of decay (Gehling and
Dellinger, 2013; Chen et al., 2019c). Most studies indicate
that sources of transportation and combustion may be the pri-
mary EPFR sources in atmospheric PM (Wang et al., 2018;
Yang et al., 2017; Chen et al., 2019b). Chen et al. (2018b,
2019b) found that strong atmospheric photochemical effects
in summer and dust particles may also be important sources
of EPFRs. The process of electron transfer and stabilization
between the surface of metal oxides (such as iron, copper,
zinc and nickel) and substituted aromatic molecules under
high temperatures is considered to be the main process for the
formation of EPFRs in atmospheric particles (Truong, 2010;
Vejerano et al., 2012a; Patterson et al., 2013; Vejerano et al.,
2011, 2012b). However, the study by Chen et al. (2018a) sug-
gests that EPFRs in atmospheric particulates are mainly de-
rived from graphite oxide-like substances produced during
combustion. In addition to primary sources such as combus-
tion, secondary chemical processes in the atmosphere may
also be an important source of EPFRs in atmospheric PM
(Chen et al., 2019b, d; Tong et al., 2018).

Different particle sizes of atmospheric PM pose differ-
ent health risks to humans, depending on the deposition ef-
ficiency of the particles and the chemical composition and
concentrations of hazardous substances they contain (Strak et
al., 2012; Valavanidis et al., 2008). Among various hazardous
substances, EPFRs may also be involved in the toxicity of at-
mospheric particulates. Yang et al. (2017) studied the EPFRs
that are extractable by dichloromethane in different particle
sizes in Beijing in winter and found that the concentration of
EPFRs was the highest in particles with sizes < 1 µm. Aran-
gio et al. (2016) found that the concentration of EPFRs in
180 nm particles was the highest in the 56 nm–1.8 µm parti-
cle size range. Although several studies have examined the
particle size distribution of EPFRs, systematic studies have
not been conducted on the formation process, source and ex-
posure assessment of EPFRs in atmospheric particles with
different particle sizes.

This study takes Linfen as an example. Linfen is one of the
cities in China with the most serious air pollution and is a typ-
ical coal-burning city. The particle size distribution of EPFRs
in atmospheric PM in this region was studied using electron
paramagnetic resonance (EPR) spectroscopy. The effects of
particle size and season on the source, formation process and
health risk of EPFRs were revealed. In particular, the com-
prehensive health risks of EPFRs were evaluated, and it was
found that the upper respiratory tract is the area with the
highest risk of EPFRs’ exposure, which is equivalent to 21
cigarettes per person per day. This study is of great signifi-
cance for understanding the source and formation process of
EPFRs in atmospheric particulates as well as for health risk
assessments.

2 Experimental section

2.1 Sample collection

The sampling site for this study is located in Hongdong
(36◦23′, 111◦40′ E) in Shanxi, China. To collect atmospheric
particles of different sizes (0–10 µm), this study used a
Thermo Anderson Mark II sampler to collect aerosol sam-
ples of nine sizes. The samples were collected on a prebaked
quartz filter (450 ◦C, 4.5 h), and the sampling dates were as
follows: in winter, 26 January to 4 February 2017, n= 10;
and in summer, 31 July to 24 August 2017, n= 12. The sam-
ples were placed in a −20 ◦C refrigerator prior to analysis.

2.2 EPFR analysis

The EPR spectrometer (MS5000, Freiberg, Germany) is used
to detect EPFRs in atmospheric samples. The filters were cut
into thin strips (5mm× 28mm) and put it into the sample
tank of the quartz tissue cell (the size of the sample tank is
10mm×30mm). Then the quartz tissue cell with attached fil-
ter sample was placed in a resonant cavity and analyzed by an
EPR spectrometer. The detection parameters were magnetic
field strength, 335–342 mT; detection time, 60 s; modulation
amplitude, 0.20 mT; number of detections, 1; and microwave
intensity, 8.0 mW. Specific testing protocols have been de-
scribed previously (Chen et al., 2018c).

2.3 Carbon composition analysis

The contents of organic carbon (OC) and elemental carbon
(EC) in the filter samples were analyzed using a semicon-
tinuous OC/EC analyzer (Model 4, Sunset Lab. Inc., Ore-
gon, USA) with a NIOSH 5040 detection protocol (Lin et
al., 2009).

The water-soluble organic carbon (WSOC) concentration
was analyzed using an automatic TOC-LCPH analyzer (Shi-
madzu, Japan). The WSOC extraction was performed with
ultrapure water under ultrasonication for 15 min, and all
WSOC concentrations were blank-corrected. The concentra-
tion of OC in the MSM (methanol-soluble materials) was cal-
culated as the difference between the OC and WSOC (water-
soluble organic carbon) concentrations. This calculation as-
sumes that all water-insoluble organic carbon (WISOC) in
the aerosol can be extracted with MeOH, and the rationality
of this assumption has been verified elsewhere (Mihara and
Michihiro, 2013; Liu et al., 2013; Cheng et al., 2016; Chen
et al., 2019a).

2.4 PAH analysis

PAHs were detected using gas chromatography–mass spec-
trometry (GC-MS) on a GC7890B/MS5977A (Agilent Tech-
nologies, Clara, CA). Quartz-fiber filter samples (8 mm in
diameter) were cut from each 25 mm quartz-fiber filter sub-
strate used on the ELPI impactor stages using a stainless-

Atmos. Chem. Phys., 20, 14407–14417, 2020 https://doi.org/10.5194/acp-20-14407-2020



Q. Chen et al.: Size-resolved exposure risk of PFRs in atmospheric aerosols 14409

steel round punch over a clean glass dish and loaded into the
TD glass tube. Next, the TD glass tube was heated to 310 ◦C
at a rate of 12 ◦C min−1 and thermally desorbed at 310 ◦C
for 3 min. The desorbed organic compounds were trapped
on the head of a GC column (DB-5MS: 5 % diphenyl–95 %
dimethyl siloxane copolymer stationary phase, 0.25 mm i.d.,
30 m length and 0.25 mm thickness). A total of 16 tar-
get PAHs were identified based on retention time and typ-
ical ion fragments of each PAH standard, including 16
EPA parent PAHs (p-PAHs). The method detection limits
(MDLs) ranged from 0.2 pgmm−2 (Ace) to 0.6 pgmm−2

(Incdp). Naphthalene-D8, acenaphthene-D10, phenanthrene-
D10, chrysene-D12 and perylene-D12 were used for the an-
alytical recovery check. All compounds were recovered with
a desorption recovery percentage of > 90 %. Specific testing
protocols have been described previously (Han et al., 2018;
Song et al., 2020).

2.5 Metal element analysis

The concentration of metal elements in the samples was de-
termined by a Thermo X2 series inductively coupled plasma
mass spectrometer (ICP-MS, Thermo, USA). The metal el-
ements analyzed in summer were Na, Mg, K, Ca, Ti, V, Cr,
Mn, Fe, Co, Ni, Cu, Zn, As, Cd, Pb and Al, and those in win-
ter were Al, Zn, V, Cr, Mn, Co, Ni, Cu, As, Se, Sr, Cd, Ba and
Pb. The specific measurement method is based on the study
of Qi et al. (2016).

2.6 Data statistics method

The source and formation process of EPFRs in PM with dif-
ferent particle sizes were analyzed by nonnegative matrix
factorization (NMF). The method is based on the study of
Chen et al. (2016, 2019e). Briefly, NMF analysis of EPFR
data, metal element contents, OC/EC contents and PAH con-
tents was performed in MATLAB. The version of the NMF
toolbox is 1.4 (https://sites.google.com/site/nmftool/, last ac-
cess: 10 November 2017). A gradient-based multiplication
algorithm was used to find a solution from multiple random
starting values, and then the first algorithm was used to find
the final solution based on the least-squares effective-set al-
gorithm. To find a global solution, the model was run 100
times, each time with a different initial value. By compar-
ing the 1–12=factor model (Fig. S4) with the residual of the
spectral load, the 6-factor (summer) and 10-factor (winter)
NMF models were finally selected.

2.7 EPFR exposure evaluation

To assess the health risks of EPFRs, this study divided
the respiratory system into three parts based on the human
breathing model: extrathoracic (ET) areas, including the an-
terior nasal cavity, posterior nasal cavity, oral cavity and
throat; tracheobronchial (TB) areas, including the trachea,
bronchi, bronchioles and terminal bronchi; and pulmonary

(P) areas, including the alveolar ducts and alveoli. Then, the
sedimentation rates of different particle sizes in different ar-
eas of the respiratory system were determined to calculate the
exposure risk of EPFRs. Here, the human respiratory system
particulate deposition model of Salma et al. (2002) was used,
and the specific data can be found in Tables S3 and S4 in the
Supplement.

In addition, the daily inhaled concentration of EPFRs into
the concentration of free radicals in cigarettes was converted.
The specific conversion method is as follows:

Ncig = (CEPFRs ·V )/(RCcig ·Ctar), (1)

where Ncig represents the number of cigarettes (per person
per day), CEPFRs (spins m−3) represents the atmospheric con-
centration of EPFRs in PM and V represents the amount of
air inhaled by an adult per day (20 m3 d−1) (Environmen-
tal Protection Agency, 1988). RCcig (4.75× 1016 spins g−1)
(Baum et al., 2003; Blakley et al., 2001; Pryor et al., 1983;
Valavanidis and Haralambous, 2001) indicates the concen-
tration of free radicals in cigarette tar, and Ctar (0.013 g per
cigarette) indicates the amount of tar per cigarette (Gehling
and Dellinger, 2013).

3 Results and discussion

3.1 Concentrations and types of EPFRs

Figure 1a shows the concentration distribution of EPFRs
with different particle sizes in different seasons. EPFRs were
detected in the particles of each tested size (the EPR spec-
trum is shown in Fig. S1 in the Supplement), but their
EPFR concentration levels were different. In summer, the
concentration of EPFRs in fine particles (particle size <

2.1 µm) is (3.2–8.1)×1013 spins m−3, while the concentra-
tion of EPFRs in coarse particles (particle size > 2.1 µm)
is 1–2 orders of magnitude higher than that of fine parti-
cles, reaching values of (2.2–3.5)×1014 spins m−3. Winter
samples show completely different characteristics from sum-
mer samples. The concentration of EPFRs in fine particles
(particle size < 2.1 µm) is (1.8–3.6)×1014 spins m−3, while
the concentration of EPFRs in coarse particles (particle size
> 2.1 µm) is smaller than that of fine particles, with values of
(1.0–2.1)×1014 spins m−3. In addition, the concentration of
EPFRs in particulates < 0.43 µm in winter is very high, but
it is very low in summer. According to the results of factor
analysis in Sect. 3.2 of this study, this particulate matter is
related to combustion, which indicates that coal combustion
in winter may provide an important contribution to EPFRs.
The EPFR concentration in the fine PM of Linfen reported
above is equivalent to that in the fine PM of Xi’an, but it is
10 times smaller than that in the fine PM of Beijing (Yang
et al., 2017; Chen et al., 2019b). Although the particle size
distribution characteristics of EPFRs in winter and summer
are different, their concentration levels are similar, which in-
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Figure 1. The concentration of EPFRs in PM with different particle sizes. (a) Atmospheric concentrations of EPFRs in different particle
sizes in summer and winter. (b) The relative contribution of fine particles and coarse particles to the total EPFR concentration.

dicates that the EPFR concentration is not related to the PM
concentration but is determined by the source characteristics.
The source characteristics will be discussed in detail in the
factor analysis section.

Figure 1b shows the concentration ratio of EPFRs in
coarse and fine particles. The contribution of EPFRs in fine
PM in summer is only 14.9 %, while in winter it is 58.5 %.
The differences in EPFR concentrations with particle size
may be related to the source of EPFRs. For example, coarse
particles are often associated with dust sources and bio-
genic aerosols. In another study, the results have shown that
dust particles contain large amounts of metallic EPFRs and
that they can be transported over long distances (Chen et
al., 2018b). EPFRs in fine particles may be mainly derived
from the combustion process, such as traffic sources, which
are considered to be an important source of EPFRs in at-
mospheric PM (Chen et al., 2019b). Due to winter heating
in the Linfen area, the amount of coal burning increases
sharply in this season. In 2017, the nonclean heating (coal-
fired heating) rate of urban heating energy structures in Lin-
fen was 40 % (data source: http://www.linfen.gov.cn/, last ac-
cess: 28 May 2019). With the burning of coal, large amounts
of EPFRs are produced, and in the summer, EPFRs emitted
by burning coal should be much less than those emitted in
winter. This can explain to a certain extent that the contri-
bution of fine particles to summer EPFRs is small, and the
contribution of winter EPFRs is very large.

The g factor obtained by using EPR to analyze the sample
is an important parameter to distinguish the type of EPFR. It
is the ratio of the electronic magnetic moment to its angular
momentum (Shaltout et al., 2015; Arangio et al., 2016). The
g factor of carbon-centered persistent free radicals is gener-
ally less than 2.003, the g factor of oxygen-centered persis-
tent radicals is generally greater than 2.004 and the g factor
of carbon-centered radicals with adjacent oxygen atoms is
between 2.003 and 2.004 (Cruz et al., 2012). Figure 2a shows

the g factor distribution characteristics of EPFRs in different
particle sizes in summer and winter. The g factor of fine parti-
cles and coarse particles shows different characteristics. The
g factor of EPFRs in fine particles (particle size < 2.1 µm)
ranges from 2.0034 to 2.0037, which may be from carbon-
centered radicals with adjacent oxygen atoms. However, the
g factor of EPFRs in coarse particles (particle size > 2.1 µm)
is significantly less than that of fine particles. The g fac-
tor ranges from 2.0031 to 2.0033, indicating that EPFRs in
coarse particles are more carbon-centered than those in fine
particles and are free of heteroatoms. As shown in Fig. 2b,
the g factor varied differently depending on season. The g

factor of summer PM showed a significant decreasing trend
with increasing concentration, while the g factor of win-
ter PM showed a significant increasing trend with increas-
ing EPFR concentration. Oyana et al. (2017) studied EPFRs
in the surface dust of leaves in the Memphis region of the
United States and found that the concentration of EPFRs was
positively correlated with the g factor, and they believed that
this was related to the source of EPFRs. This phenomenon
indicates that the sources and toxicity of EPFRs in winter
and summer are different.

3.2 Factor analysis of EPFRs

To explore the possible sources and formation process of
EPFRs in atmospheric particles with different particle sizes,
the NMF model was used to statistically analyze EPFRs, car-
bon components, PAHs and metal elements in samples. The
factors obtained by the NMF model should reflect the differ-
ent sources and generation process of EPFRs. As shown in
Fig. 3a1 and b1, the three main contributing factors to EPFRs
in summer and winter are shown (see Figs. S5, S6 for spec-
tra of other factors), which explain 94.5 % and 83.8 % of the
EPFR concentrations in summer and winter, respectively.

As shown in Fig. 3a1, the typical spectral characteristic
of summer factor 1 is that it contains a small fraction of EC
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Figure 2. A g factor comparison. (a) Comparison of g factors of EPFRs in different particle sizes in different seasons. (b) Correlation analysis
of g factors and concentrations of EPFRs in summer and winter PM. The gray areas in the figure represent 95 % confidence intervals.

Figure 3. Factor analysis of EPFRs in different particle sizes in different seasons. Panels (a1) and (b1) represent the results of factor analysis
for summer and winter, respectively. Panels (a2) and (b2) represent the contribution of various factors in summer and winter, respectively, to
EPFRs and the relative contributions of each factor for different particle sizes.
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components and a large amount of OC components, which
indicates that combustion may be the source associated with
this factor. This factor has the highest loading of OC, espe-
cially WISOC; this fraction mainly contains macromolecu-
lar organic substances, which are considered to contribute to
the main atmospheric particulate EPFRs and to be graphite
oxide-like substances (Q. Chen et al., 2017, 2018a). Factor 2
is different from factor 1; factor 2 is more likely the combus-
tion of fossil fuels, while factor 1 should be other combustion
sources instead of burning coal, such as biomass combustion.
The generation process is similar to a hybrid process, which
includes the graphite oxide-like substances produced by in-
complete combustion and the EPFRs formed by some metal
oxides. The typical characteristic of factor 3 is that the con-
tribution of metal elements is relatively high, while the con-
tributions of EC and OC are very low. Metal elements such
as Al, Ti, Mn and Co are typical crust elements, so this factor
may represent dust sources (Pan et al., 2013; Srivastava et al.,
2007; Trapp et al., 2010). The generation mechanism may be
mainly due to the participation of metal oxides n the genera-
tion of EPFRs. The others are likely derived from the electro-
plating metallurgy industry (detailed in Sect. S1 in the Sup-
plement). As shown in Fig. 3a2, the contribution ratios of dif-
ferent factors show that the contribution ratios of factor 1 and
factor 2 are the highest, and factor 3 only has a small contri-
bution, which indicates that combustion sources, especially
incomplete combustion, are the main sources of EPFRs. The
particle size distribution characteristics show that factor 1 is
mainly distributed in particles larger than 2.1 µm, while fac-
tor 2 is mainly distributed in particles smaller than 0.43 µm.

The results of the factor analysis in winter are different
from those in summer. As shown in Fig. 3b1, the typical
spectral characteristic of factor 1 is that it contains a large
amount of OC components and As and Se. As and Se are
trace elements of coal combustion, as shown in many stud-
ies (Pan et al., 2013; Tian et al., 2010), so coal combustion
may be the source represented by this factor. From the gener-
ation process viewpoint, the factor does not contain EC, but
the content of OC is very high. In the particles with a parti-
cle size of less than 3.3, which is mainly present in factor 1,
the concentration of OC is 16 times that of EC. So it may
be mainly a graphite oxide-like substance formed by the ag-
glomeration of gaseous volatile organic compounds (VOCs)
generated during combustion. The typical spectral character-
istics of factor 2 are due to a large amount of V and some
Al, EC and OC. OC and EC are also typical combustion
products. V is rich in fossil fuels, especially fuel oil (Kar-
nae and John, 2011). Therefore, traffic is the source repre-
sented by this factor. The factor contains crust elements such
as Al and Mn, so it is speculated that this factor may also in-
clude traffic-related dust. The typical spectral characteristics
of factor 3 are similar to those of factor 1, and both con-
tain relatively large amounts of As and Se, with the excep-
tion that factor 3 contains a large amount of EC, indicating
that it is also mainly derived from incomplete combustion

sources. The generation process of factor 3 should be differ-
ent from factor 1, which may include both the graphite oxide-
like material generated by fuel coking and the EPFRs gener-
ated by the metal oxide. The other factors are mainly atmo-
spheric dust and electroplating or metallurgy (see Sect. S1).
As shown in Fig. 3b2, factor 1 and factor 2 have the high-
est proportions, and factor 3 also has a small contribution,
which indicates that winter is the same as summer, and com-
bustion sources are the main source of EPFRs. The particle
size distribution characteristics show that factor 1 is mainly
distributed in particles with a size of 0.43–3.3 µm, while fac-
tor 2 is mainly distributed in particles larger than 3.3 µm.

Based on the above analysis, it can be found that combus-
tion sources are the main sources of EPFRs, and EPFRs from
these sources are mainly graphite oxide-like substances gen-
erated by the polymerization of organic matter or fuel cok-
ing. Studies have shown that graphene oxide can cause cell
damage by generating ROS (Seabra et al., 2014). The surface
of these compounds contains not only carbon atoms but also
some heteroatoms, which leads to disorder and the presence
of defects in the carbon-based structure (Lyu et al., 2018;
Q. Chen et al., 2017; Mukome et al., 2013; Keiluweit et al.,
2010). The dust source is also a source of important EPFRs
identified in this study (with a contribution of approximately
10 %). It was shown in the above analysis that the concen-
tration of EPFRs in coarse particles has a significant correla-
tion with the concentration of metallic elements, particularly
crustal elements. Some crustal elements, such as Al and Fe,
not only have their own paramagnetism (Li et al., 2017; Yu et
al., 2017; Nikitenko et al., 1992), but also interact with aro-
matic compounds attached to the surface of the particles to
produce a stable single-electron structure.

3.3 Health risk of EPFRs

To evaluate the health risks of EPFRs in PM with different
particle sizes, this study evaluated the comprehensive expo-
sure of EPFRs based on the deposition efficiency of PM with
different particle sizes in different parts of the human body.
The results are shown in Fig. 4a. The ET region is the re-
gion with the highest EPFR exposure, while the TB and P
regions have relatively close EPFRs. This result shows that
atmospheric EPFRs are the most harmful to the health of the
human upper respiratory tract. Comparing the EPFR expo-
sure in different seasons indicates that the exposure risk in
the ET area in summer is significantly higher than that in
winter. This difference occurs because the concentration of
EPFRs in coarse particles is much higher than that of fine
particles in summer, and the deposition efficiency of large
particles in the ET area is generally higher. Fine particles are
more efficiently deposited in the P region, leading to a higher
risk of EPFR exposure in the P region in winter.

EPFRs were found early in cigarette tar and are consid-
ered one of the health risk factors in cigarette smoke (Lyons
and Spence, 1960); thus, in this study, the exposure risks of
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Figure 4. Exposure risks to EPFRs. (a) EPFR exposure in the ET,
TB and P regions. (b) Cigarette exposure to EPFRs in the human
respiratory system. (c) Exposure ratio of EPFRs with different par-
ticle sizes in different areas of the respiratory system. (d) Contribu-
tion of EPFRs from different sources to different areas of the respi-
ratory system.

EPFRs in particles deposited in the human body were con-
verted to the equivalent number of cigarettes inhaled per
adult per day. As shown in Fig. 4b, the ET area is the
most contaminated area, with an average equivalence of 21
cigarettes (25 in summer and 16 in winter). The average val-
ues for the TB area (9 in summer and 7 in winter) and P area
(7 in summer and 10 in winter) are eight. The results indi-
cate that EPFRs pose significant health risks to human lungs
in both winter and summer. Other similar studies, such as
a study of the average amount of EPFRs in PM2.5 inhaled
per person per day in Xi’an in 2017, found values equivalent
to approximately 5 cigarettes (Chen et al., 2018a). Gehling
and Dellinger (2013) found that EPFR exposure in PM2.5
is equivalent to approximately 0.3 cigarettes per person per
day in St. Joaquin County, the location with the worst air
pollution in the United States. The average exposure risk of
EPFRs in fine particles in the Linfen area (approximately 13
cigarettes) was higher than those in these two studies. How-
ever, these previous studies only studied the exposure risk of
EPFRs in fine particles. The results of this study indicate that

the health risks of EPFRs are significantly increased when
the particle size distribution of EPFRs is taken into account.
Therefore, it is important to study the source characteristics
and generation process of EPFRs with different particle sizes,
which will be discussed in detail in the following paragraph.

This study calculated the proportion of EPFRs with differ-
ent particle sizes in different parts of the respiratory system
based on the deposition efficiency of particles with different
particle sizes. As shown in Fig. 4c, in the ET region and the
TB region, coarse particles are the dominant component in
summer and winter. In particular, in summer, the proportion
of EPFRs in coarse particles in these two regions exceeds
95 %. In the P region, there are significant differences be-
tween summer and winter. The P region in summer is still
dominated by coarse particles, but its proportion is signifi-
cantly lower than those in the ET and TB regions. In the P
region in winter, fine particles are the dominant component
(approximately 70 %). These distribution characteristics in-
dicate different sources of EPFRs in different regions. As
shown in Fig. 4d, in summer, combustion sources are the
main source of EPFRs in the respiratory system. In win-
ter, combustion and transportation sources contribute equally
in the TB and ET regions, while in the alveoli, combustion
sources are the main contributor. The ET region is the area
with the highest risk of exposure to EPFRs (21 cigarettes).
The generation process of these EPFRs is mainly attributable
to graphene oxide-like substances. Studies have shown that
graphene oxide is cytotoxic (Harmon et al., 2018). In the
alveoli, the contribution of combustion sources is signifi-
cantly increased (especially in winter). These EPFRs are
mainly generated by the action of metal oxides and organic
substances. Studies have shown that such EPFRs can gen-
erate ROS in the lung fluid environment (Khachatryan and
Dellinger, 2011).

4 Conclusions and environmental implications

This study systematically reported the particle size distribu-
tion of EPFRs in atmospheric PM in Linfen, which is one
of the most polluted cities in China and is located in a typ-
ical coal-burning area. In addition, this study evaluated the
comprehensive health risks of EPFRs and reported possi-
ble sources and the formation process of atmospheric EPFRs
with respect to different particle sizes. The following main
conclusions were obtained.

1. This study found that EPFRs are widely present in at-
mospheric particles of different particle sizes and ex-
hibit significant particle size distribution characteristics.
The results of this study demonstrate that the concen-
trations and types of EPFRs are dependent on particle
size and season. This seasonal characteristic of EPFRs
is mainly affected by the PM sources; this result also in-
dicates that the potential toxicity caused by EPFRs may
also vary with particle size and season.

https://doi.org/10.5194/acp-20-14407-2020 Atmos. Chem. Phys., 20, 14407–14417, 2020
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2. This study reported the possible source and forma-
tion process of atmospheric EPFRs in different particle
sizes. The results show that combustion is the most im-
portant source of EPFRs (> 70 %) in both winter and
summer PM samples in Linfen. The graphite oxide-like
process has the highest contribution (∼ 70 %) and is
mainly distributed in particles with a size of > 0.43 µm.
These findings deepen our understanding of the pollu-
tion characteristics of atmospheric EPFRs and are use-
ful for controlling EPFR generation in heavily polluted
areas.

3. This study assessed the exposure risk of EPFRs in dif-
ferent areas of the respiratory system. The results show
that the upper respiratory tract is the area with the high-
est EPFR exposure. The trachea and alveoli are also ex-
posed to EPFRs, and the risk of exposure is equivalent
to that of 8 cigarettes per person per day. Coarse parti-
cles are the main source of EPFRs in the upper respira-
tory tract, while fine particles are mainly involved in the
alveoli.

Through this study, the results have shown that there are sig-
nificant differences in the concentrations and types of EPFRs
in particles of different sizes, and these differences are due
to the influence of the source and generation process. In the
future, assessments of the particle size distribution and the
seasonality of EPFRs in atmospheric PM should be consid-
ered. Health risks are another focus of this study. It is found
that the upper respiratory tract is the key exposure area of
EPFRs, and the traffic source is the main source of EPFRs in
this area. This finding is significant for a systematic assess-
ment of the health risks of EPFRs. In view of the complexity
and diversity of the formation process of EPFRs in actual at-
mospheric particulates, the relative contributions of EPFRs
generated by different processes and their associated health
risks should be more comprehensively studied in the future.
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