Articles | Volume 20, issue 20
https://doi.org/10.5194/acp-20-12211-2020
https://doi.org/10.5194/acp-20-12211-2020
Research article
 | 
28 Oct 2020
Research article |  | 28 Oct 2020

Roles of climate variability on the rapid increases of early winter haze pollution in North China after 2010

Yijia Zhang, Zhicong Yin, and Huijun Wang

Related authors

Evident PM2.5 drops in the east of China due to the COVID-19 quarantine measures in February
Zhicong Yin, Yijia Zhang, Huijun Wang, and Yuyan Li
Atmos. Chem. Phys., 21, 1581–1592, https://doi.org/10.5194/acp-21-1581-2021,https://doi.org/10.5194/acp-21-1581-2021, 2021
Short summary

Related subject area

Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Long-term observations of black carbon and carbon monoxide in the Poker Flat Research Range, central Alaska, with a focus on forest wildfire emissions
Takeshi Kinase, Fumikazu Taketani, Masayuki Takigawa, Chunmao Zhu, Yongwon Kim, Petr Mordovskoi, and Yugo Kanaya
Atmos. Chem. Phys., 25, 143–156, https://doi.org/10.5194/acp-25-143-2025,https://doi.org/10.5194/acp-25-143-2025, 2025
Short summary
High ice-nucleating particle concentrations associated with Arctic haze in springtime cold-air outbreaks
Erin N. Raif, Sarah L. Barr, Mark D. Tarn, James B. McQuaid, Martin I. Daily, Steven J. Abel, Paul A. Barrett, Keith N. Bower, Paul R. Field, Kenneth S. Carslaw, and Benjamin J. Murray
Atmos. Chem. Phys., 24, 14045–14072, https://doi.org/10.5194/acp-24-14045-2024,https://doi.org/10.5194/acp-24-14045-2024, 2024
Short summary
CCN estimations at a high-altitude remote site: role of organic aerosol variability and hygroscopicity
Fernando Rejano, Andrea Casans, Marta Via, Juan Andrés Casquero-Vera, Sonia Castillo, Hassan Lyamani, Alberto Cazorla, Elisabeth Andrews, Daniel Pérez-Ramírez, Andrés Alastuey, Francisco Javier Gómez-Moreno, Lucas Alados-Arboledas, Francisco José Olmo, and Gloria Titos
Atmos. Chem. Phys., 24, 13865–13888, https://doi.org/10.5194/acp-24-13865-2024,https://doi.org/10.5194/acp-24-13865-2024, 2024
Short summary
Aerosol hygroscopicity over the southeast Atlantic Ocean during the biomass burning season – Part 1: From the perspective of scattering enhancement​​​​​​​
Lu Zhang, Michal Segal-Rozenhaimer, Haochi Che, Caroline Dang, Junying Sun, Ye Kuang, Paola Formenti, and Steven G. Howell
Atmos. Chem. Phys., 24, 13849–13864, https://doi.org/10.5194/acp-24-13849-2024,https://doi.org/10.5194/acp-24-13849-2024, 2024
Short summary
Spatial, temporal, and meteorological impact of the 26 February 2023 dust storm: increase in particulate matter concentrations across New Mexico and West Texas
Mary C. Robinson, Kaitlin Schueth, and Karin Ardon-Dryer
Atmos. Chem. Phys., 24, 13733–13750, https://doi.org/10.5194/acp-24-13733-2024,https://doi.org/10.5194/acp-24-13733-2024, 2024
Short summary

Cited articles

Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q. B., Liu, H. G. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res.-Atmos., 106, 23073–23095, https://doi.org/10.1029/2001jd000807, 2001. 
Cai, W., Li, K., Liao, H., Wang, H., and Wu, L.: Weather conditions conducive to Beijing severe haze more frequent under climate change, Nat. Clim. Change, 7, 257–262, 2017. 
Chen, S., Guo, J., Song, L., Li, J., Liu, L., and Cohen, J.: Inter-annual variation of the spring haze pollution over the North China Plain: Roles of atmospheric circulation and sea surface temperature, Int. J. Climatol., 39, 783–798, 2019. 
CNEMC: PM2.5 monitoring network, available at: http://beijingair.sinaapp.com/, last access: 22 October 2020. 
Download
Short summary
Haze events in early winter in North China exhibited rapid growth after 2010, which was completely different from the slow decline observed before 2010. However, global warming and anthropogenic emissions could not explain this trend reversal well, which was puzzling. Our study found that four climate factors, exhibiting completely opposite trends before and after 2010, effectively drove the trend reversal of the haze pollution in North China.
Altmetrics
Final-revised paper
Preprint