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Abstract. North China experiences severe haze pollution in
early winter, resulting in many premature deaths and consid-
erable economic losses. The number of haze days in early
winter (December and January) in North China (HDNC) in-
creased rapidly after 2010 but declined slowly before 2010,
reflecting a trend reversal. Global warming and emissions
were two fundamental drivers of the long-term increasing
trend of haze, but no studies have focused on this trend rever-
sal. The autumn sea surface temperature (SST) in the Pacific
and Atlantic, Eurasian snow cover and central Siberian soil
moisture, which exhibited completely opposite trends before
and after 2010, might have close relationships with identi-
cal trends of meteorological conditions related to haze pol-
lution in North China. Numerical experiments with a fixed
emission level confirmed the physical relationships between
the climate drivers and HDNC during both decreasing and in-
creasing periods. These external drivers induced a larger de-
creasing trend of HDNC than the observations, and combined
with the persistently increasing trend of anthropogenic emis-
sions, resulted in a realistic, slowly decreasing trend. How-
ever, after 2010, the increasing trends driven by these climate
divers and human emissions jointly led to a rapid increase in
HDNC.

1 Introduction

Haze pollution, characterized by low visibility and a high
concentration of fine particulate matter (PM2.5), has become

a serious environmental and social problem in China, as haze
dramatically endangers human health, ecological sustainabil-
ity and economic development (Ding and Liu, 2014; Wang
and Chen, 2016). Exposure to PM2.5 was estimated to cause
4.2 million premature deaths worldwide in 2015 (Cohen et
al., 2017), and PM2.5 caused up to 0.96 million premature
mortalities in China in 2017 (Lu et al., 2019). Air pollution
accounts for a loss of 1.2 %–3.8 % of the gross national prod-
uct (GNP) annually (Zhang and Crooks, 2012). The most
polluted areas in China are North China (NC; 34–42 ◦ N,
114–120◦ E), the Fenwei Plain, the Sichuan Basin and the
Yangtze River Delta; among them, NC is the most polluted
(Yin et al., 2015). Meteorological conditions characterized
by low surface wind speeds and a shallow boundary layer re-
sult in stagnant air, which limits the horizontal and vertical
dispersion of particles and induces the accumulation of pol-
lutants (Niu et al., 2010; Wu et al., 2017; Shi et al., 2019).
High relative humidity favors the hygroscopic growth of pol-
lutants (Ding and Liu, 2014; Yin et al., 2015), and anomalous
ascending motions weaken the downward invasion of cold
and clear air from high altitudes (Zhong et al., 2019). The
forecasting of meteorological conditions is more accurate on
the synoptic scale, but the predictions of interannual varia-
tions are not good enough. Thus, the prediction of haze is a
considerable challenge.

Previous studies have proven that the interannual to
decadal variations in winter haze have strong responses to
external forcing factors, such as the sea surface temperature
(SST) in the Pacific and Atlantic, snow cover and soil mois-
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ture (Xiao et al., 2015; Yin and Wang, 2016a, b; Zou et al.,
2017). Anomalies of these factors exerted their impacts to
modulate local dispersion conditions by atmospheric tele-
connections and greatly intensified haze pollution in NC. The
eastern Atlantic/western Russia (EA/WR), western Pacific
(WP) and Eurasian (EU) patterns served as effective atmo-
spheric bridges linking distant and preceding external factors
to the anomalous anticyclonic circulations over northeastern
Asia (Yin and Wang, 2017; Yin et al., 2017). With enhanced
anticyclonic anomalies, the haze pollution in NC was signif-
icantly aggravated by poor ventilation conditions and high
moisture.

The long-term trend of haze pollution has always been
attributed to increasing human activities directly related to
aerosol emissions (Yang et al., 2016; Li et al., 2018). It is
true that emissions are important in the formation of haze, but
their role varies from region to region (Mao et al., 2019). The
trend of haze days in Yangtze River Delta and Pearl River
Delta was closely related to the trend of particle emissions
(Fig. S1b, c), whereas a weak correlation existed in Fenwei
Plain (Fig. S1d). A surprising phenomenon can be seen in
NC: the number of winter haze days and particle emissions
showed similar trends before the early 1990s, but their close
relationship disappeared afterward (Fig. S1a). Many recent
studies have also shown that the long-term trend in the haze
problem has likely been driven by global warming (Horton
et al, 2014; Cai et al., 2017). Weakening surface winds have
been reported over land over the last few decades, while
the global surface air temperature (SAT) has warmed sig-
nificantly (Mcvicar et al., 2012). In addition, enhanced ver-
tical stability, which favors the accumulation of pollutants,
has been observed with global warming (Liu et al., 2013).
However, none of the abovementioned studies focused on
the change in the haze trend. Over the past few decades, the
global and Northern hemispheric SAT averages have gener-
ally displayed a continuous warming trend, which was not
exactly similar to the trend of haze days in NC (Fig. S2). It
follows that haze pollution, especially the change in its trend,
is regulated by multiple drivers and that the long-term im-
pacts of external forcing factors, which efficiently modulate
the interannual and decadal variations in haze, deserve fur-
ther investigation.

2 Datasets and methods

2.1 Data description

Monthly mean meteorological data from 1979 to 2018 were
obtained from NCEP/NCAR Reanalysis datasets (2.5◦×
2.5◦), including the geopotential height at 500 hPa (H500),
vertical wind from the surface to 150 hPa, surface air tem-
perature (SAT), wind speed and special humidity at the
surface (Kalnay et al., 1996). The boundary layer height
(BLH, 1◦× 1◦) values were from ERA-Interim reanalysis

data obtained from the European Centre for Medium-Range
Weather Forecasts (ECMWF; Dee et al., 2011). The num-
ber of haze days was calculated from the long-term meteo-
rological data, mainly based on observed visibility and rel-
ative humidity (Yin et al., 2017). The PM2.5 concentrations
from 2009 to 2016 were acquired from the US embassy, and
the PM2.5 concentrations from 2014 to 2018 were obtained
from the China National Environmental Monitoring Centre.
Monthly total emissions of BC, NH3, NOx , OC, SO2, PM10
and PM2.5 were obtained from the Peking University emis-
sion inventory. The monthly mean extended reconstructed
SST data (2◦×2◦) were obtained from the National Oceanic
and Atmospheric Administration (Smith et al., 2008). The
monthly snow cover data were supplied by Rutgers Univer-
sity (Robinson et al., 1993). The monthly soil moisture data
(0.5◦× 0.5◦) were downloaded from NOAA’s Climate Pre-
diction Center (Huug et al., 2003).

2.2 GEOS-Chem description and experimental design

We used the GEOS-Chem model to simulate PM2.5 con-
centrations (http://acmg.seas.harvard.edu/geos/, last access:
22 October 2020). The GEOS-Chem model was driven by
MERRA-2 assimilated meteorological data (Gelaro et al.,
2017). The nested grid over Asia (11◦ S–55◦ N, 60–150◦ E)
had a horizontal resolution of 0.5◦ latitude by 0.625◦ lon-
gitude and 47 vertical layers up to 0.01 hPa. The GEOS-
Chem model includes fully coupled O3−NOx–hydrocarbon
and aerosol chemical mechanisms with more than 80 species
and 300 reactions (Bey et al., 2001; Park et al., 2004). The
PM2.5 components simulated in GEOS-Chem include sul-
fate, nitrate, ammonium, black carbon and primary organic
carbon, mineral dust, secondary organic aerosols and sea salt.
The GEOS-Chem model has been widely used. Dang and
Liao (2019) used the model to show that the simulated spa-
tial patterns and daily variations of winter PM2.5 based on
GEOS-Chem agree well with the observations from 2013 to
2017, which are the available years with measured PM2.5. We
selected the year of 2015, as emission reduction just begun
to strengthen, and 2017, as this is when the air pollution pre-
vention and management plan for “2+ 26” cities launched
(Yin and Zhang, 2020), as two representative years to sim-
ulate the actual PM2.5 concentrations, so as to evaluate the
performance of the GEOS-Chem model. The simulation re-
sults are very close to the observed data (Fig. S3), with high
correlation coefficients reaching 0.88 and 0.85 in 2015 and
2017, respectively, indicating that this model could basically
reflect the change in actual PM2.5 concentrations.

In this study, we designed two kinds of experiments: one
was an experiment for simulating PM2.5, and the other was a
composite using simulated data. The simulation had chang-
ing meteorological fields in winter from 1980 to 2018 and
fixed emissions in 2010 representing a high emission level.
The emission data in 2010 were from MIX 2010 (Li et al.,
2017). The numerical experiment was performed to examine
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Figure 1. (a) Variations in the December and January emissions (unit: Tg) of black carbon (BC), ammonia (NH3), nitrogen oxide (NOx ),
organic carbon (OC), sulfur dioxide (SO2), PM10 and PM2.5 over North China from 1979 to 2013 and the variation in HDNC from 1979 to
2018 (black solid line). The blue and green solid (dashed) lines indicate the number of days when the hourly PM2.5 concentrations exceeded
75 and 100 µg m−3, respectively, from 2009 to 2016 (2014 to 2018) using Beijing (North China) observed data from the US embassy (China
National Environmental Monitoring Centre). (b) Temporal evolution of HDNC (in black) and simulated haze days (unit: days; red) in NC.
The dashed lines denote linear regressions for 1991–2010 (P1) and 2010–2018 (P2). Trend 1 and Trend 2 represent the linear trends of the
observed (black) and simulated (red) haze days in P1 and P2, respectively.

the variation in PM2.5 in the meteorological parameters dur-
ing the 1980–2018 period under fixed-emission scenarios.

The composite was conducted to analyze the differences
in the simulated HDNC according to the years selected for
the external forcing factors. Using the simulated dataset with
the fixed-emission scenario, we were capable of eliminating
the impacts of emissions and simply considering the effect
of the four external forcing factors. The 4 (2) years with the
largest (favored years) and smallest (unfavored years) four
external forcing indices (i.e., SSTP , −1×STA, Snowc and
−1×Soilw) were selected, and the differences in the simu-
lated HDNC under these four conditions in P1, 1991–2010,
(P2, 2010–2018) were calculated. The simulated HDNC in
favored years minus the simulated HDNC in unfavored years
was calculated to analyze the effect of these four forced fac-
tors.

2.3 Statistical methods

In this study, the statistical model of fitted HDNC was built
based on multiple linear regression (MLR). This approach,
a model-driven method, was ultimately expressed as a linear
combination ofK predictors (xi) that could generate the least

error of prediction ỹ (Wilks, 2011). With coefficients βi , in-
tercept β0 and residual ε, the MLR formula can be written in
the following form: ỹ = β0+

∑
βixi + ε.

The trends calculated in this study were obtained by lin-
ear regression after a 5 year running average. This method
removed the interannual variation and more prominent trend
characteristics. Moreover, the stage trends were calculated
according to the inflection point, which passed the Mann–
Kendall test.

3 Trend change in early winter haze

In winter in North China, the haze pollution early in the sea-
son is the most serious (Yin et al., 2019). The number of haze
days in early winter (December and January) in North China
(HDNC) reached a remarkable inflection point in 2010 (Fig.
1a), passing the Mann–Kendall test. The trend of HDNC was
vastly different before and after 2010: it slowly decreased
during the 1991–2010 period (P1) at a rate of 4.67 d per
decade but rapidly increased after 2010 (P2, 2010–2018) at
a rate of 25.43 d per decade, with both of these values pass-
ing the 95 % t test. Recent studies have generally revealed
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that, based on observations, the number of boreal winter haze
days across NC had a slightly decreasing trend after 1990
(Ding and Liu, 2014; He et al., 2019; Mao et al., 2019; Shi
et al., 2019), which is consistent with the decreasing trend
presented by the dataset in our research. Excluding the year
2010 did not affect the change in the trend of the two periods,
with a decreased rate of 3.82 d per decade during the 1991–
2009 period and an increased rate of 20.76 d per decade dur-
ing the 2011–2018 period (passing the 95 % t test). In addi-
tion, Dang and Liao (2019) confirmed the varying trend of
HDNC via simulations of the global 3-D chemical transport
(GEOS-Chem) model; using the well-simulated frequency of
serious haze days in winter, they also revealed the abovemen-
tioned changing trend of HDNC, i.e., decreasing in the early
period and increasing in the later period. To further deter-
mine the reliability of the post-2010 upward trend of HDNC,
we used hourly PM2.5 concentrations observed at the US em-
bassy in Beijing from 2009 to 2017 and the PM2.5 concen-
trations over North China monitored by China National En-
vironmental Monitoring Centre from 2014 to 2018 to count
the number of days when the PM2.5 concentrations were>75
and>100 µg m−3 (Fig. 1a). These statistics also reflected the
rising trend after 2010 as well as the improved air quality in
2017 and a rebound in pollution in 2018. Although there was
a certain gap between HDNC (based on visibility and humid-
ity) and these statistics, the two datasets revealed the same
variations after 2010, and the statistics confirmed the robust-
ness of the observed HDNC.

The above analysis substantiated the rapid aggravation of
haze pollution in early winter after 2010. With regard to the
increase in air pollution, there is no doubt that anthropogenic
emissions were the fundamental cause of this long-term vari-
ation. Before the mid-2000s, the particle emissions through-
out NC sustained stable growth but gradually began to de-
cline afterward, which is inconsistent with the trend of HDNC
or even contrary in some subperiods. The previous decreas-
ing trend of HDNC hid the effects of the increased pollutant
emissions; thus, people ignored the pollution problem and
failed to control it in time. As a consequence, the subsequent
rise in HDNC was extremely rapid and seriously harmed the
biological environment and human health. The stark discrep-
ancy between the trends of pollutant emissions and HDNC
strongly indicate that anthropogenic emissions were not the
only factor leading to a sharp deterioration in air quality after
2010 (Wei et al., 2017; Wang, 2018). Therefore, an impor-
tant question must be asked: in addition to human activities,
what factors caused the rapidly increasing trend of HDNC af-
ter 2010?

As mentioned above, local meteorological factors could
modulate the capacity to disperse and the formation of haze
particles, which have critical influences on the occurrence
of severe haze pollution. To reveal the impacts of meteoro-
logical conditions on the changing trend of HDNC, the area-
averaged linear trends of these meteorological factors in NC
during P1 and P2 were calculated – all of which exceeded the

95 % confidence level (Fig. 2). In P1, the area-averaged linear
trends of the boundary layer height (BLH), wind speed and
omega all showed significant positive trends, while specific
humidity showed a significant negative trend in NC; these
conditions favored a superior air quality (Niu et al., 2010;
Ding and Liu, 2014; Yin et al., 2017; Shi et al., 2019; Zhong
et al., 2019). However, the trends of these four meteorologi-
cal factors completely reversed in P2. Reductions in the BLH
and wind speed, the enhancement of moisture and an anoma-
lous ascending motion resisted the vertical and horizontal
dispersions of particles and helped more pollutants gather
in relatively narrow spaces. These four meteorological fac-
tors expressed an evident influence on the change trend of
HDNC and showed reversed trends between P1 and P2, sim-
ilar to HDNC. Furthermore, the magnitudes of the change
rates of these factors were stronger in P2 than in P1 (Fig.
2), and HDNC displayed this feature as well. The GEOS-
Chem simulations with changing emissions and fixed mete-
orological conditions failed to reproduce the change trend of
haze (Dang and Liao, 2019); however, with varying meteo-
rology and fixed emissions, they could recognize the inter-
annual variation in haze days. We designed an experiment
driven by changing meteorological conditions in winter from
1980 to 2018 and fixed emissions at the relatively high 2010
level. According to the technical regulation of the ambient
air quality index (Ministry of Ecology and Environment of
the People’s Republic of China, 2012), a haze day was de-
fined as a day with a daily mean PM2.5 concentration ex-
ceeding 75 µg m−3. The simulations of the frequency of haze
days in NC by GEOS-Chem reproduced the trend reversal of
haze pollution (Fig. 1b). The simulation results were highly
correlated with HDNC and showed that the trend in P2 was
stronger than that in P1, indicating that meteorological con-
ditions drove the trend change in haze pollution.

4 Climate variability drove the trend reversal

According to many previous studies, the variabilities of the
Pacific SST, Atlantic SST, Eurasian snow cover and Asian
soil moisture play key roles in the interannual variations in
haze pollution in NC (Xiao et al., 2015; Yin and Wang,
2016a, b; Zou et al., 2017), and the associated physical mech-
anisms have been evidently revealed. Thus, the following
question is raised here: did these four factors drive the trend
reversal of HDNC, and if so, how?

As shown in Figure S4a, the preceding autumn SST in
the Pacific, associated with the detrended HDNC, presented
a “triple pattern”, similar to a Pacific Decadal Oscillation
(PDO), with two significant positive regions and one non-
significant negative region (Yin and Wang, 2016a; Zhao et
al., 2016). In the following research, the SST anomalies in
the two positively correlated regions located in the Gulf of
Alaska (40–60◦ N, 125–165◦ W) and the central eastern Pa-
cific (5–25◦ N, 160◦ E–110◦W) were used to represent the
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effects originating from the North Pacific. The area-averaged
September–November SST of these two regions was cal-
culated as the SSTP index, and the correlation coefficients
with HDNC were 0.59 and 0.67 before and after remov-
ing the linear trend during the 1979–2018 period, respec-
tively; both correlation coefficients were above the 99 % con-
fidence level. The responses of the atmosphere to these posi-
tive SSTP anomalies were the positive phase of the EA/WR
pattern and the enhanced anomalous anticyclone center over
NC (Yin et al., 2017; Fig. S5). Modulating by such large-
scale atmospheric anomalies, increased moisture, anomalous
upward motion and reduced BLH and wind speed (Fig. S5)
created a favorable environment for the accumulation of fine
particles (Niu et al., 2010; Ding and Liu, 2014; Shi et al.,
2019; Zhong et al., 2019). A numerical experiment based
on the Community Atmosphere Model version 5 (CAM5)
effectively reproduced the observed enhanced anticyclonic
anomalies over Mongolia and North China in response to
positive PDO forcing, which resulted in an increase in the
number of wintertime haze days over central eastern China
(Zhao et al., 2016). The trend changes in the North Pacific
SST were examined in P1 and P2. Consistent with the chang-
ing trend of HDNC, reversed trends were also found in the
North Pacific, i.e., a significant negative trend during P1 and
a positive trend during P2 over the two Pacific areas (Fig. 3a,
b). These similar trend changes suggest that the North Pacific
SST might have been a major driver of the abrupt change in
HDNC. It is clear that SSTP underwent a significant trend
change around 2010 (Fig. 4a). Thus, the persistent decline in
SSTP during P1 (at a significant rate of −0.2 ◦C per decade,
passing the 95 % t test; Table 1) contributed to the slowly
decreasing trend of HDNC (Fig. 4a) via the modulations of
SSTP on the atmospheric circulation (Fig. S5). During P2,
the larger increase in SSTP at a rate of 2.0 ◦C per decade
(passing 95 % t test) dramatically drove the rapid increase in
HDNC.

Besides the triple pattern in the Pacific, two areas exhibit-
ing significant negative correlations with HDNC were exam-
ined in the Atlantic (Shi et al., 2015): one located over south-
ern Greenland (50–68◦ N, 18–60◦W) and another located
over the equatorial Atlantic (0–15◦ N, 30–60◦W; Fig. S4a).
The area-averaged September–November SST of the two
negatively correlated regions in Atlantic was defined as the
SSTA index, whose correlation coefficients with HDNC were
−0.55 and −0.64 from 1979 to 2018 before and after de-
trending, respectively (above the 99 % confidence level). The
response of atmospheric circulation to these negative SSTA
anomalies culminated in a positive EA/WR pattern, and the
stimulated easterly weakened the intensity of East Asian jet
stream (EAJS) in the high troposphere (Fig. S6). Influenced
by the colder SSTA, there was a very obvious abnormal up-
ward movement above the boundary layer, reducing both the
BLH and the surface wind speed; thus, pollutants were prone
to gather, causing haze pollution (Niu et al., 2010; Wu et
al., 2017; Shi et al., 2019). With a linear barotropic model,

Table 1. Correlation coefficients (CCs) between HDNC and the
SSTP , SSTA, Snowc and Soilw indices after detrending, and the
trends of the SSTP , SSTA, Snowc and Soilw indices for the 1991–
2010 and 2010–2018 periods. CC1, CC2 and CC3 represent the cor-
relation coefficients from 1979 to 2018, 1979 to 2010 and 2010 to
2018, respectively. “∗∗∗” indicates that the CC was above the 99 %
confidence level, “∗∗” indicates that the CC was above the 95 %
confidence level and “∗” indicates that the CC was above the 90 %
confidence level.

CCs for HDNC Trend per decade

1991–2010 2010–2018

SSTP CC1 = 0.67∗∗∗ −0.20 ◦C∗∗∗ 1.99 ◦C∗∗∗

CC2 = 0.39∗∗

CC3 = 0.66∗∗∗

SSTA CC1 =−0.64∗∗∗ 0.55 ◦C∗∗∗ −0.52 ◦C∗∗∗

CC2 =−0.54∗∗∗

CC3 =−0.61∗∗∗

Snowc CC1 = 0.54∗∗∗ −1.79 %∗∗ 28.35 %∗∗∗

CC2 = 0.46∗∗∗

CC3 = 0.53∗∗∗

Soilw CC1 =−0.60∗∗∗ 38.78 mm∗∗∗ −51.81 mm∗∗∗

CC2 =−0.30∗

CC3 =−0.66∗∗∗

Chen et al. (2019) confirmed the important role of subtropical
northeastern Atlantic SST anomalies in contributing to the
anomalous anticyclone over northeastern Asia and anoma-
lous southerly winds over NC, which enhanced the accumu-
lation of pollutants. The spatial linear trend in the SST of
both Atlantic areas changed from positive in P1 to negative
in P2, which was completely contrary to the trend of HDNC
(Fig. 3a, b). The SSTA reached an inflection point in 2010
(Fig. 4b) and contributed to the decrease in HDNC during
P1 (change rate of SSTA of 0.55◦C per decade, passing the
95 % t test) and the increase in HDNC during P2 (change rate
of SSTA of −0.52◦C per decade, passing the 95 % t test).

The effect of Eurasian snow cover on the number of De-
cember haze days in NC intensified after the mid-1990s (Yin
and Wang, 2018). The roles of extensive boreal Eurasian
snow cover were also revealed by numerical experiments via
the Community Earth System Model (CESM): positive snow
cover anomalies enhanced the regional circulation mode of
poor ventilation in NC and provided conducive conditions
for extreme haze (Zou et al., 2017). The correlation between
the October–November snow cover and HDNC was signifi-
cantly positive in eastern Europe and western Siberia (46–
62◦ N, 40–85◦ E, Fig. S4b), where the spatial linear trend
of snow cover was consistent with that of HDNC. A signif-
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Figure 2. Area-averaged linear trends of the BLH (unit: m yr−1), specific humidity (unit: % 10 yr−1), surface wind speed (unit:
m s−1 102 yr−1) and omega (unit: pascals s−1 103 yr−1) over NC in early winter for the 1991–2010 (P1) and 2010–2018 (P2) periods.
All datasets were 5-year running averages before calculating the trends.

icant negative trend in P1 and a positive trend in P2 were dis-
covered (Fig. 3c, d). The area-averaged October–November
snow cover over eastern Europe and western Siberia was
defined as the Snowc index, and its correlation coefficients
with HDNC were 0.43 and 0.54 from 1979 to 2018 before
and after detrending, respectively (above the 99 % confidence
level). The features of the weakened EAJS and significant
anomalous anticyclone could be found clearly in the induced
atmospheric anomalies associated with the positive Snowc
anomalies (Fig. S7). The related abnormal upward motion
restricted the momentum to the surface. In addition, the cor-
responding lower BLH and weaker surface wind speed also
reduced the dispersion capacity, resulting in the generation of
more haze pollution (Fig. S7). The Snowc index fell slowly
until 2010 (at a rate of −1.8 % per decade, passing the 95 %
t test) and then rose rapidly (at a rate of 28.3 % per decade,
passing the 95 % t test) and experienced a large trend reversal
in 2010, in accordance with the behavior of HDNC (Fig. 4c).
Therefore, relying on the revealed physical mechanisms, the
strengthened relationship between Snowc and HDNC and the
tremendous increase in Snowc during P2 substantially trig-
gered the rapid enhancement of haze pollution in NC.

In addition to snow cover, soil moisture was another im-
portant factor affecting HDNC (Yin and Wang, 2016b). The
September–November soil moisture and HDNC were neg-
atively correlated in central Siberia (54–70◦ N, 80–130◦ E;
Fig. S4c). The area-averaged September–November soil
moisture over central Siberia was denoted as the Soilw in-
dex, whose correlation coefficients with HDNC were −0.57
and−0.60 from 1979 to 2018 before and after detrending, re-
spectively (above the 99 % confidence level). Negative Soilw
anomalies could induce a positive phase of EA/WR, and
the associated anticyclonic circulations occurred more fre-
quently and more strongly (Fig. S8). Correspondingly, the
local vertical and horizontal dispersion conditions were lim-
ited. With increasing moisture, pollutants can more easily ac-
cumulate in a confined area. The spatial linear trend of soil
moisture also shifted from increasing to decreasing in 2010,

opposite to the trend of HDNC (Fig. 3e, f). The change rate of
Soilw was 38.8 mm per decade, passing the 95 % t test (op-
posite to that of HDNC), during P1, and the rate of change be-
came more intense (−51.8 mm per decade, passing the 95 %
t test) during P2, physically driving a similar large change in
HDNC (Fig. 4d).

The varying trends of these four preceding external factors
jointly drove the trend reversal of HDNC based on their phys-
ical relationships with the haze pollution in North China. To
exclude the impacts of the stage trends of these variables on
the physical links between the climate drivers and HDNC, the
correlations between these factors and HDNC were explored
during the decreasing stage (i.e., 1979–2010) and increasing
stage (2010–2018), and all of these correlations were sig-
nificant (Table 1). Thus, the physical relationships between
HDNC and these four factors were long-standing and did
not disappear as the trend changed. These four external fac-
tors had completely opposite trends in P1 and P2. Exclud-
ing SSTA, the amplitudes of the change trends of the other
three indices in P2 were obviously stronger than those in P1
and were identical to those of HDNC (Table 1). In our study,
we composited the simulations based on the GEOS-Chem
model to determine the impact of each factor on haze pol-
lution under the fixed-emission level. The years in the top
20 % and the bottom 20 % of the four indices (i.e., SSTP ,
−1×SSTA, Snowc and −1×Soilw) in P1 and P2 were se-
lected, which could remove the effects of different trends.
The composite differences for the four external forcing fac-
tors were significant in the selected regions and passed the
Student’s t test (Fig. S9). The responses of simulated HDNC
to the original (detrended) sequences of SSTP , SSTA, Snowc
and Soilw were all positive, which is consistent with the ob-
servational results (Fig. 5). Specifically, for the four origi-
nal (detrended) drivers, the resulting differences in simulated
HDNC were 3.94 (5.28), 5.97 (5.07), 1.86 (1.86) and 6.49
(6.49) days in P1 and 4.46 (4.46), 4.26 (4.26), 7.54 (7.54)
and 7.35 (7.35) d in P2 (Fig. 5). These differences were dis-
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Figure 3. Linear trends of the Pacific and Atlantic SST (unit: ◦C yr−1; a, b), Eurasian snow cover (unit: % yr−1; c, d) and central Siberian
soil moisture (unit: mm yr−1; e, f) for the 1991–2010 (P1) and 2010–2018 (P2) periods. All datasets were 5-year running averages before
calculating the trends. The green boxes represent the regions where the four indices are defined. Black dots indicate that the trends were
above the 95% confidence level.

tinct and further confirmed that each factor played a role in
the occurrence of haze pollution in NC.

These four indices were employed to linearly fit HDNC
based on a multiple linear regression (MLR) model (Wilks,
2011). As shown in Fig. 4e, the correlation coefficient be-
tween the fitted and observed HDNC was 0.82. After a 5-year
running average, the correlation coefficient reached 0.92.
This model showed good ability to fit the inflection point in
2010 and highlighted the trend changes. Such a good fitting
effect indicates that changes in the four external forcing fac-
tors could well have influenced the variation in HDNC. By
exciting stronger responses in the atmosphere, such as the

positive EA/WR phase and the strengthened anomalous anti-
cyclone over NC, the abovementioned climate drivers created
stable and stagnant environments in which the haze pollution
in NC could rapidly exacerbate after 2010 (Table 1). Among
the four indices, the correlation coefficients between SSTP
and Snowc (Pair 1) and between SSTA and Soilw (Pair 2)
were high, whereas the rest were insignificant. The variance
inflation factors of the four factors in the MLR model were
less than 2, showing that the collinearity among them was
weak. When selecting one factor from both Pair 1 and Pair
2 to refit HDNC, the correlation coefficient between the fit-
ted and observed HDNC and the trends of the fitted HDNC
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Figure 4. Variations in HDNC (in black) and the SSTP (unit: ◦C; a, red), SSTA (unit: ◦C; b, blue), Snowc (unit: %; c, yellow) and Soilw
(unit: mm; d, green) indices as well as the HDNC values fitted by the MLR model for the above four factors (unit: days; e, purple) from 1979
to 2018. Thick lines indicate 5-year running averaged time series. The rectangles and triangles indicate the inflection points of HDNC and
the four indices, which were tested by the Mann–Kendall test.

in P2 worsened (Fig. S10). Therefore, these four external
factors were all indispensable to achieve a better fitting ef-
fect. The intercorrelated climate factors of Pair 1 and Pair
2 contributed 27.8 % and 84.6 %, respectively, to the trends
of HDNC in P1 and 54.8 % and 20.4 %, respectively, to the
trends in P2. Thus, the joint effect of SSTA and Soilw played
a more important role in the decreasing trend of HDNC in P1;
however, the impacts of SSTP and Snowc were more than
twice those of SSTA and Soilw in P2. More importantly, the
fitted curve revealed a decreasing trend of HDNC (−5.24 d
per decade, passing the 95 % t test) that was larger than the
observed value (−4.67 d per decade) during P1. Many stud-
ies have noted that human activities have led to persistently
increasing trends of HDNC (Yang et al., 2016; Li et al., 2018).
The combination of the exorbitant decreased trend indicated
by climate conditions and the long-term trend from anthro-
pogenic emissions resulted in a realistic slow decline (Table
2). This proportion of the trend explained by climate drivers
(72.3 %) decreased in P2 because the increasing trend, jointly

Table 2. The contribution rate of fitted HDNC and each external
forcing factor to the trend of HDNC in P1 and P2, respectively.

Fitted HDNC SSTP SSTA Snowc Soilw

P1 112.2 % 23.3 % 43.9 % 4.5 % 40.7 %
P2 72.3 % 41.9 % 7.5 % 12.9 % 10.0 %

driven by the climate drivers and emissions, led to a rapid in-
crease in HDNC.

5 Conclusions and discussion

Haze events in early winter in North China exhibited rapid
growth after 2010, which was completely different from the
slow decline observed before 2010, showing a trend reversal
in the year 2010 (Fig. 1). The trend changes in the associated
meteorological conditions exhibited identical responses. Af-
ter 2010, the lower BLH, weakened wind speed, sufficient
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Figure 5. Composite of the simulated HDNC caused by the four
external forcing factors (favored years minus unfavored years). The
circles and crosses represent the original and detrended sequences,
respectively.

moisture and anomalous ascending motion (all with larger
tendencies than before 2010) limited the horizontal and verti-
cal dispersion conditions and, thus, enhanced the occurrence
of early winter haze pollution (Fig. 2). However, before 2010,
the climate conditions showed the opposite characteristics
and could create an environment with adequate ventilation
for the dissipation of particles.

In this study, the external forcing factors that are closely
related to the significant growth of HDNC after 2010 and
the associated physical mechanisms were investigated. These
factors might strongly link to the anomalous anticyclone over
NC via exciting the EA/WR teleconnection pattern, thereby
regulating the meteorological conditions, weakening the dis-
persion conditions and facilitating the accumulation of haze
pollutants. The four climate drivers physically related to
HDNC showed inverse trend changes with an inflection point
in 2010, which agrees with the behavior of HDNC (Fig. 4).
The factors of Pair 1 (SSTA and Soilw) and Pair 2 (SSTP
and Snowc) had joint effects and played more important roles
in the increasing trend of HDNC in P2 and the decreasing
trend of HDNC in P1, respectively (Table 2). The fitting re-
sult of the four factors with the trend of HDNC showed a
strongly decreasing trend in P1 and a weakly increasing trend
in P2. In combination with increasing emissions, these fac-
tors jointly led to a relatively slow decreasing trend of HDNC
before 2010 and rapid growth afterward. Therefore, both the
decreasing trend in P1 and the increasing trend in P2 were
caused by a combination of climate drivers and emissions.

Note that a number of factors contribute to the uncertain-
ties in our results. Although a high emission scenario was
used to simulate the number of haze days and emphasized
the influence of meteorology, no complete and varied emis-
sion inventories were used to drive the GEOS-Chem model
to make a comparison, which caused certain uncertainty. Fur-

thermore, when assessing the contribution percentages of the
external forcing factors, the coupling effect between climate
variability and anthropogenic emissions was not considered;
therefore, the contribution rate of climate conditions might
be overestimated.

For the long-term trend of haze, human activities are the
recognized and fundamental driver (Li et al., 2018; Yang et
al., 2016). Anthropogenic emissions have exceeded a high
level since the 1990s, providing a sufficient foundation for
the generation of severe haze pollution (Fig. 1). However, the
effects of climate variability delayed warnings before 2010.
Together with the local meteorological conditions, the trends
of the climate drivers reversed in 2010, initiating a dramatic
increase in HDNC after 2010, which quickened the worsen-
ing of haze pollution in NC (Fig. 4e; Table 1). The super-
imposed effect of high-level human emissions with strength-
ened climate anomalies loudly sounded the alarms due to the
extremely rapid rise of haze pollution.

Data availability. The monthly mean meteorological data were
obtained from NCEP/NCAR Reanalysis datasets (http://www.
esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html, last ac-
cess: 22 October 2020) (NCEP/NCAR, 2020). The boundary
layer height data are available from the ERA-Interim reanal-
ysis dataset (http://www.ecmwf.int/en/research/climate-reanalysis/
era-interim, last access: 22 October 2020) (ERA-Interim, 2020).
The number of haze days can be obtained from the authors upon
request. The PM2.5 concentrations from 2009 to 2016 can be
downloaded from the US embassy (http://www.stateair.net/web/
post/1/1.html, last access: 19 August 2019) (US embassy, 2019),
and the PM2.5 concentrations from 2014 to 2018 can be down-
loaded from China National Environmental Monitoring Centre
(http://beijingair.sinaapp.com/, last access: 22 October 2020) (CN-
MEC, 2020). The monthly total emissions of BC, NH3, NOx ,
OC, SO2, PM10 and PM2.5 were obtained from the Peking Uni-
versity emission inventory (http://inventory.pku.edu.cn/, last ac-
cess: 22 October 2020) (Peking University, 2020). SST data were
downloaded from http://www.esrl.noaa.gov/psd/data/gridded/data.
noaa.ersst.v4.html (last access: 22 October 2020) (NOAA, 2020).
Soil moisture data were obtained from http://www.esrl.noaa.gov/
psd/data/gridded/data.cpcsoil.html (last access: 22 October 2020)
(CPC, 2020). Snow cover data can be downloaded from Rut-
gers University: http://climate.rutgers.edu/snowcover/ (last access:
22 October 2020) (Rutgers University, 2020). The emissions for
2010 can be downloaded from http://geoschemdata.computecanada.
ca/ExtData/HEMCO/MIX (last access: 22 October 2020) (MIX,
2020).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/acp-20-12211-2020-supplement.
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