Articles | Volume 20, issue 19
https://doi.org/10.5194/acp-20-11569-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-11569-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
New insights into Rossby wave packet properties in the extratropical UTLS using GNSS radio occultations
Marine Meteorology Department, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Katja Matthes
Marine Meteorology Department, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Faculty of Mathematics and Natural Sciences, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
Karl Bumke
Marine Meteorology Department, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Related authors
Mona Zolghadrshojaee, Susann Tegtmeier, Sean M. Davis, Robin Pilch Kedzierski, and Leopold Haimberger
Atmos. Chem. Phys., 25, 12213–12232, https://doi.org/10.5194/acp-25-12213-2025, https://doi.org/10.5194/acp-25-12213-2025, 2025
Short summary
Short summary
The tropical tropopause layer (TTL) is a crucial region where the troposphere transitions into the stratosphere, influencing air mass transport. This study examines temperature trends in the TTL and lower stratosphere using data from weather balloons, satellites and reanalysis datasets. We found cooling trends in the TTL from 1980 to 2001, followed by warming from 2002 to 2023. These shifts are linked to changes in atmospheric circulation and impact water vapour transport into the stratosphere.
Sabine Bischof, Pia Undine Rethmeier, Wenjuan Huo, Sebastian Wahl, and Robin Pilch Kedzierski
EGUsphere, https://doi.org/10.5194/egusphere-2025-3990, https://doi.org/10.5194/egusphere-2025-3990, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
In 2019, a stratospheric warming event over Antarctica contributed to extreme heat and drought in Australia, intensifying that year's fire season. The impact of climate change on the occurrence of such events remains uncertain. Our climate model simulations indicate that in the coming decades, stratospheric warming events over Antarctica are likely to continue influencing extreme heat in regions such as Australia and Southern Africa, compounding the direct effects of global warming.
Mona Zolghadrshojaee, Susann Tegtmeier, Sean M. Davis, and Robin Pilch Kedzierski
Atmos. Chem. Phys., 24, 7405–7419, https://doi.org/10.5194/acp-24-7405-2024, https://doi.org/10.5194/acp-24-7405-2024, 2024
Short summary
Short summary
Satellite data challenge the idea of an overall cooling trend in the tropical tropopause layer. From 2002 to 2022, a warming trend was observed, diverging from earlier findings. Tropopause height changes indicate dynamic processes alongside radiative effects. Upper-tropospheric warming contrasts with lower-stratosphere temperatures. The study highlights the complex interplay of factors shaping temperature trends.
Tabea Rahm, Robin Pilch Kedzierski, Martje Hänsch, and Katja Matthes
EGUsphere, https://doi.org/10.5194/egusphere-2024-667, https://doi.org/10.5194/egusphere-2024-667, 2024
Preprint archived
Short summary
Short summary
Sudden Stratospheric Warmings (SSWs) are extreme wintertime events that can impact surface weather. However, a distinct surface response is not observed for every SSW. Here, we classify SSWs that do and do not impact the troposphere in ERA5 reanalysis data. In addition, we evaluate the effects of two kinds of waves: planetary and synoptic-scale. Our findings emphasize that the lower stratosphere and synoptic-scale waves play crucial roles in coupling the SSW signal to the surface.
Abhishek Savita, Joakim Kjellsson, Robin Pilch Kedzierski, Mojib Latif, Tabea Rahm, Sebastian Wahl, and Wonsun Park
Geosci. Model Dev., 17, 1813–1829, https://doi.org/10.5194/gmd-17-1813-2024, https://doi.org/10.5194/gmd-17-1813-2024, 2024
Short summary
Short summary
The OpenIFS model is used to examine the impact of horizontal resolutions (HR) and model time steps. We find that the surface wind biases over the oceans, in particular the Southern Ocean, are sensitive to the model time step and HR, with the HR having the smallest biases. When using a coarse-resolution model with a shorter time step, a similar improvement is also found. Climate biases can be reduced in the OpenIFS model at a cheaper cost by reducing the time step rather than increasing the HR.
Mona Zolghadrshojaee, Susann Tegtmeier, Sean M. Davis, Robin Pilch Kedzierski, and Leopold Haimberger
Atmos. Chem. Phys., 25, 12213–12232, https://doi.org/10.5194/acp-25-12213-2025, https://doi.org/10.5194/acp-25-12213-2025, 2025
Short summary
Short summary
The tropical tropopause layer (TTL) is a crucial region where the troposphere transitions into the stratosphere, influencing air mass transport. This study examines temperature trends in the TTL and lower stratosphere using data from weather balloons, satellites and reanalysis datasets. We found cooling trends in the TTL from 1980 to 2001, followed by warming from 2002 to 2023. These shifts are linked to changes in atmospheric circulation and impact water vapour transport into the stratosphere.
Sabine Bischof, Pia Undine Rethmeier, Wenjuan Huo, Sebastian Wahl, and Robin Pilch Kedzierski
EGUsphere, https://doi.org/10.5194/egusphere-2025-3990, https://doi.org/10.5194/egusphere-2025-3990, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
In 2019, a stratospheric warming event over Antarctica contributed to extreme heat and drought in Australia, intensifying that year's fire season. The impact of climate change on the occurrence of such events remains uncertain. Our climate model simulations indicate that in the coming decades, stratospheric warming events over Antarctica are likely to continue influencing extreme heat in regions such as Australia and Southern Africa, compounding the direct effects of global warming.
Wenjuan Huo, Tobias Spiegl, Sebastian Wahl, Katja Matthes, Ulrike Langematz, Holger Pohlmann, and Jürgen Kröger
Atmos. Chem. Phys., 25, 2589–2612, https://doi.org/10.5194/acp-25-2589-2025, https://doi.org/10.5194/acp-25-2589-2025, 2025
Short summary
Short summary
Uncertainties of the solar signals in the middle atmosphere are assessed based on large ensemble simulations with multiple climate models. Our results demonstrate that the 11-year solar signals in the shortwave heating rate, temperature, and ozone anomalies are significant and robust. The simulated dynamical responses are model-dependent, and solar imprints in the polar night jet are influenced by biases in the model used.
Mona Zolghadrshojaee, Susann Tegtmeier, Sean M. Davis, and Robin Pilch Kedzierski
Atmos. Chem. Phys., 24, 7405–7419, https://doi.org/10.5194/acp-24-7405-2024, https://doi.org/10.5194/acp-24-7405-2024, 2024
Short summary
Short summary
Satellite data challenge the idea of an overall cooling trend in the tropical tropopause layer. From 2002 to 2022, a warming trend was observed, diverging from earlier findings. Tropopause height changes indicate dynamic processes alongside radiative effects. Upper-tropospheric warming contrasts with lower-stratosphere temperatures. The study highlights the complex interplay of factors shaping temperature trends.
Tabea Rahm, Robin Pilch Kedzierski, Martje Hänsch, and Katja Matthes
EGUsphere, https://doi.org/10.5194/egusphere-2024-667, https://doi.org/10.5194/egusphere-2024-667, 2024
Preprint archived
Short summary
Short summary
Sudden Stratospheric Warmings (SSWs) are extreme wintertime events that can impact surface weather. However, a distinct surface response is not observed for every SSW. Here, we classify SSWs that do and do not impact the troposphere in ERA5 reanalysis data. In addition, we evaluate the effects of two kinds of waves: planetary and synoptic-scale. Our findings emphasize that the lower stratosphere and synoptic-scale waves play crucial roles in coupling the SSW signal to the surface.
Abhishek Savita, Joakim Kjellsson, Robin Pilch Kedzierski, Mojib Latif, Tabea Rahm, Sebastian Wahl, and Wonsun Park
Geosci. Model Dev., 17, 1813–1829, https://doi.org/10.5194/gmd-17-1813-2024, https://doi.org/10.5194/gmd-17-1813-2024, 2024
Short summary
Short summary
The OpenIFS model is used to examine the impact of horizontal resolutions (HR) and model time steps. We find that the surface wind biases over the oceans, in particular the Southern Ocean, are sensitive to the model time step and HR, with the HR having the smallest biases. When using a coarse-resolution model with a shorter time step, a similar improvement is also found. Climate biases can be reduced in the OpenIFS model at a cheaper cost by reducing the time step rather than increasing the HR.
Annika Drews, Wenjuan Huo, Katja Matthes, Kunihiko Kodera, and Tim Kruschke
Atmos. Chem. Phys., 22, 7893–7904, https://doi.org/10.5194/acp-22-7893-2022, https://doi.org/10.5194/acp-22-7893-2022, 2022
Short summary
Short summary
Solar irradiance varies with a period of approximately 11 years. Using a unique large chemistry–climate model dataset, we investigate the solar surface signal in the North Atlantic and European region and find that it changes over time, depending on the strength of the solar cycle. For the first time, we estimate the potential predictability associated with including realistic solar forcing in a model. These results may improve seasonal to decadal predictions of European climate.
Ioana Ivanciu, Katja Matthes, Arne Biastoch, Sebastian Wahl, and Jan Harlaß
Weather Clim. Dynam., 3, 139–171, https://doi.org/10.5194/wcd-3-139-2022, https://doi.org/10.5194/wcd-3-139-2022, 2022
Short summary
Short summary
Greenhouse gas concentrations continue to increase, while the Antarctic ozone hole is expected to recover during the twenty-first century. We separate the effects of ozone recovery and of greenhouse gases on the Southern Hemisphere atmospheric and oceanic circulation, and we find that ozone recovery is generally reducing the impact of greenhouse gases, with the exception of certain regions of the stratosphere during spring, where the two effects reinforce each other.
Ioannis A. Daglis, Loren C. Chang, Sergio Dasso, Nat Gopalswamy, Olga V. Khabarova, Emilia Kilpua, Ramon Lopez, Daniel Marsh, Katja Matthes, Dibyendu Nandy, Annika Seppälä, Kazuo Shiokawa, Rémi Thiéblemont, and Qiugang Zong
Ann. Geophys., 39, 1013–1035, https://doi.org/10.5194/angeo-39-1013-2021, https://doi.org/10.5194/angeo-39-1013-2021, 2021
Short summary
Short summary
We present a detailed account of the science programme PRESTO (PREdictability of the variable Solar–Terrestrial cOupling), covering the period 2020 to 2024. PRESTO was defined by a dedicated committee established by SCOSTEP (Scientific Committee on Solar-Terrestrial Physics). We review the current state of the art and discuss future studies required for the most effective development of solar–terrestrial physics.
Ioana Ivanciu, Katja Matthes, Sebastian Wahl, Jan Harlaß, and Arne Biastoch
Atmos. Chem. Phys., 21, 5777–5806, https://doi.org/10.5194/acp-21-5777-2021, https://doi.org/10.5194/acp-21-5777-2021, 2021
Short summary
Short summary
The Antarctic ozone hole has driven substantial dynamical changes in the Southern Hemisphere atmosphere over the past decades. This study separates the historical impacts of ozone depletion from those of rising levels of greenhouse gases and investigates how these impacts are captured in two types of climate models: one using interactive atmospheric chemistry and one prescribing the CMIP6 ozone field. The effects of ozone depletion are more pronounced in the model with interactive chemistry.
Sabine Haase, Jaika Fricke, Tim Kruschke, Sebastian Wahl, and Katja Matthes
Atmos. Chem. Phys., 20, 14043–14061, https://doi.org/10.5194/acp-20-14043-2020, https://doi.org/10.5194/acp-20-14043-2020, 2020
Short summary
Short summary
Ozone depletion over Antarctica was shown to influence the tropospheric jet in the Southern Hemisphere. We investigate the atmospheric response to ozone depletion comparing climate model ensembles with interactive and prescribed ozone fields. We show that allowing feedbacks between ozone chemistry and model physics as well as including asymmetries in ozone leads to a strengthened ozone depletion signature in the stratosphere but does not significantly affect the tropospheric jet position.
Cited articles
Alexander, P., de la Torre, A., Llamedo, P., and Hierro, R.: Precision estimation in temperature
and refractivity profiles retrieved by GPS radio occultations, J. Geophys. Res.-Atmos., 119,
8624–8638, https://doi.org/10.1002/2013JD021016, 2014. a
Alexander, S. P. and Shepherd, M. G.: Planetary wave activity in the polar lower stratosphere, Atmos. Chem. Phys., 10, 707–718, https://doi.org/10.5194/acp-10-707-2010, 2010. a
Alexander, S. P., Tsuda, T., Kawatani, Y., and Takahashi, M.: Global distribution of atmospheric waves in the equatorial upper troposphere and lower stratosphere: COSMIC observations of wave mean flow interactions, J. Geophys. Res.-Atmos., 113, D24115, https://doi.org/10.1029/2008JD010039, 2008. a
Andrews,
D. G., Holton, J. R., and Leovy, C. B.: Middle atmosphere dynamics, International Geophysics
Series, Vol. 40, Academic Press, New York, 1987. a
Anthes, R. A.: Exploring Earth's atmosphere with radio
occultation: contributions to weather, climate and space weather, Atmos. Meas. Tech., 4,
1077–1103, https://doi.org/10.5194/amt-4-1077-2011, 2011. a
Anthes, R. A., Bernhardt, P. A., Chen, Y., Cucurull, L., Dymond, K. F., Ector, D., Healy, S. B., Ho, S.-P., Hunt, D. C., Kuo, Y.-H., Liu, H.,
Manning, K., McCormick, C., Meehan, T. K., Randel, W. J., Rocken, C., Schreiner, W. S.,
Sokolovskiy, S. V., Syndergaard, S., Thompson, D. C., Trenberth, K. E., Wee, T.-K., Yen, N. L.,
and Zeng, Z.: The COSMIC/FORMOSAT-3 Mission: Early Results, B. Am. Meteorol. Soc., 89, 313–334,
https://doi.org/10.1175/BAMS-89-3-313, 2008. a, b
Barnes, E. A.: Revisiting the evidence linking Arctic
amplification to extreme weather in midlatitudes, Geophys. Res. Lett., 40, 4734–4739,
https://doi.org/10.1002/grl.50880, 2013. a, b
Baumgart, M., Riemer, M., Wirth, V., Teubler, F., and
Lang, S. T. K.: Potential Vorticity Dynamics of Forecast Errors: A Quantitative Case Study,
Mon. Weather Rev., 146, 1405–1425, https://doi.org/10.1175/MWR-D-17-0196.1, 2018. a
Beyerle, G., Schmidt, T., Michalak, G., Heise, S.,
Wickert, J., and Reigber, C.: GPS radio occultation with GRACE: Atmospheric profiling
utilizing the zero difference technique, Geophys. Res. Lett., 32, L13806,
https://doi.org/10.1029/2005GL023109, 2005. a
Beyerle, G., Grunwaldt, L., Heise, S., Köhler, W., König, R., Michalak, G., Rothacher, M.,
Schmidt, T., Wickert, J., Tapley, B. D., and Giesinger, B.: First results from the GPS atmosphere
sounding experiment TOR aboard the TerraSAR-X satellite, Atmos. Chem. Phys., 11, 6687–6699,
https://doi.org/10.5194/acp-11-6687-2011, 2011. a
Birner, T.: Fine-scale structure of the extratropical
tropopause region, J. Geophys. Res.-Atmos., 111, D04104, https://doi.org/10.1029/2005JD006301, 2006. a
Birner, T., Dörnbrack, A., and Schumann, U.: How sharp is the tropopause at
midlatitudes?, Geophys. Res. Lett., 29, 1700, https://doi.org/10.1029/2002GL015142, 2002. a
Birner, T.,
Sankey, D., and Shepherd, T. G.: The tropopause inversion layer in models and analyses,
Geophys. Res. Lett., 33, L14804, https://doi.org/10.1029/2006GL026549, 2006. a
Blackmon, M. L. and White, G. H.:
zonal Wavenumber Characteristics of Northern Hemisphere Transient Eddies, J. Atmos. Sci., 39,
1985–1998, https://doi.org/10.1175/1520-0469(1982)039<1985:ZWCONH>2.0.CO;2, 1982. a, b
Cattiaux, J., Peings, Y., Saint-Martin, D., Trou-Kechout, N., and
Vavrus, S. J.: Sinuosity of midlatitude atmospheric flow in a warming world, Geophys. Res. Lett.,
43, 8259–8268, https://doi.org/10.1002/2016GL070309, 2016. a, b
Cavallo, S. M. and Hakim, G. J.: Potential Vorticity Diagnosis of a Tropopause Polar Cyclone, Mon. Weather Rev., 137, 1358–1371, https://doi.org/10.1175/2008MWR2670.1, 2009. a
CDAAC (COSMIC Data Analysis and Archive Center): CDAAC Data Products, available at: http://cdaac-www.cosmic.ucar.edu/cdaac/products.html, last access: 15 July 2020. a
Chang, E. K. M.: Characteristics of Wave Packets in the
Upper Troposphere. Part II: Seasonal and Hemispheric Variations, J. Atmos. Sci., 56,
1729–1747, https://doi.org/10.1175/1520-0469(1999)056<1729:COWPIT>2.0.CO;2, 1999. a, b, c
Chang, E. K. M.: Wave Packets and Life Cycles of Troughs in the
Upper Troposphere: Examples from the Southern Hemisphere Summer Season of 1984/85, Mon. Weather
Rev., 128, 25–50, https://doi.org/10.1175/1520-0493(2000)128<0025:WPALCO>2.0.CO;2, 2000. a
Chang, E. K. M. and Yu, D. B.:
Characteristics of Wave Packets in the Upper Troposphere. Part I: Northern Hemisphere Winter,
J. Atmos. Sci., 56, 1708–1728,
https://doi.org/10.1175/1520-0469(1999)056<1708:COWPIT>2.0.CO;2, 1999. a
Chang, E. K. M.,
Lee, S., and Swanson, K. L.: Storm Track Dynamics, J. Clim., 15, 2163–2183,
https://doi.org/10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2, 2002. a
Chang, E. K. M., Guo,
Y., and Xia, X.: CMIP5 multimodel ensemble projection of storm track change under global
warming, J. Geophys. Res.-Atmos., 117, D23118, https://doi.org/10.1029/2012JD018578, 2012. a
Charney, J. G. and Drazin, P. G.:
Propagation of planetary-scale disturbances from the lower into the upper atmosphere,
J. Geophys. Res., 66, 83–109, https://doi.org/10.1029/JZ066i001p00083, 1961. a, b
Coumou, D., Lehmann,
J., and Beckmann, J.: The weakening summer circulation in the Northern Hemisphere mid-latitudes,
Science, 348, 324–327, https://doi.org/10.1126/science.1261768, 2015. a, b, c
Coumou, D., Di Capua, G., Vavrus, S., Wang, L., and Wang,
S.: The influence of Arctic amplification on mid-latitude summer circulation, Nat. Commun., 9,
2959, https://doi.org/10.1038/s41467-018-05256-8, 2018. a
Danzer, J., Foelsche, U., Scherllin-Pirscher, B., and Schwärz, M.: Influence of changes in
humidity on dry temperature in GPS RO climatologies, Atmos. Meas. Tech., 7, 2883–2896,
https://doi.org/10.5194/amt-7-2883-2014, 2014. a, b
Dee,
D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae,
U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de
Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer,
A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L.,
Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut,
J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data
assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a, b
Dirren, S., Didone, M.,
and Davies, H. C.: Diagnosis of “forecast-analysis” differences of a weather prediction
system, Geophys. Res. Lett., 30, 2060, https://doi.org/10.1029/2003GL017986, 2003. a
Domeisen,
D. I., Garfinkel, C. I., and Butler, A. H.: The Teleconnection of El Niño Southern Oscillation
to the Stratosphere, Rev. Geophys., 57, 5–47, https://doi.org/10.1029/2018RG000596, 2019. a
Domeisen, D. I. V., Martius, O., and Jiménez-Esteve, B.: Rossby Wave Propagation into the
Northern Hemisphere Stratosphere: The Role of Zonal Phase Speed, Geophys. Res. Lett., 45,
2064–2071, https://doi.org/10.1002/2017GL076886, 2018. a, b
ECMWF: ERA Interim, Daily, available at:
http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=pl/, last access: 15 July 2020. a
Flannaghan,
T. J. and Fueglistaler, S.: The importance of the tropical tropopause layer for equatorial
Kelvin wave propagation, J. Geophys. Res.-Atmos., 118, 5160–5175, https://doi.org/10.1002/jgrd.50418,
2013. a
Gall, R.: A Comparison of Linear Baroclinic Instability
Theory with the Eddy Statistics of a General Circulation Model, J. Atmos. Sci., 33, 349–373,
https://doi.org/10.1175/1520-0469(1976)033<0349:ACOLBI>2.0.CO;2, 1976. a, b
Gettelman, A., Hegglin, M. I., Son, S.-W., Kim, J.,
Fujiwara, M., Birner, T., Kremser, S., Rex, M., Añel, J. A., Akiyoshi, H.,
Austin, J., Bekki, S., Braesike, P., Brühl, C., Butchart, N., Chipperfield, M.,
Dameris, M., Dhomse, S., Garny, H., Hardiman, S. C., Jöckel, P., Kinnison, D. E.,
Lamarque, J. F., Mancini, E., Marchand, M., Michou, M., Morgenstern, O., Pawson, S.,
Pitari, G., Plummer, D., Pyle, J. A., Rozanov, E., Scinocca, J., Shepherd, T. G.,
Shibata, K., Smale, D., Teyssèdre, H., and Tian, W.: Multimodel assessment of the
upper troposphere and lower stratosphere: Tropics and global trends, J. Geophys. Res.-Atmos.,
115, D00M08, https://doi.org/10.1029/2009JD013638, 2010. a
Giannakaki, P. and
Martius, O.: An Object-Based Forecast Verification Tool for Synoptic-Scale Rossby Waveguides,
Weather Forecast., 31, 937–946, https://doi.org/10.1175/WAF-D-15-0147.1, 2016. a
Glatt, I. and Wirth, V.: Identifying
Rossby wave trains and quantifying their properties, Q. J. Roy. Meteorol. Soc., 140, 384–396,
https://doi.org/10.1002/qj.2139, 2014. a, b, c
Gorbunov, M. E., Benzon, H.-H., Jensen, A. S., Lohmann,
M. S., and Nielsen, A. S.: Comparative analysis of radio occultation processing approaches
based on Fourier integral operators, Radio Sci., 39, RS6004, https://doi.org/10.1029/2003RS002916, 2004. a
Gray, S. L., Dunning, C. M., Methven, J., Masato, G., and Chagnon, J. M.: Systematic
model forecast error in Rossby wave structure, Geophys. Res. Lett., 41, 2979–2987,
https://doi.org/10.1002/2014GL059282, 2014. a, b, c
Grazzini, F. and Vitart, F.:
Atmospheric predictability and Rossby wave packets, Q. J. Roy. Meteorol. Soc., 141, 2793–2802,
https://doi.org/10.1002/qj.2564, 2015. a, b, c
Hajj, G. A., Ao, C. O.,
Iijima, B. A., Kuang, D., Kursinski, E. R., Mannucci, A. J., Meehan, T. K., Romans,
L. J., de la Torre Juarez, M., and Yunck, T. P.: CHAMP and SAC-C atmospheric occultation
results and intercomparisons, J. Geophys. Res.-Atmos., 109, D06109,
https://doi.org/10.1029/2003JD003909, 2004. a, b
Hakim, G. J.: Vertical Structure of Midlatitude Analysis
and Forecast Errors, Mon. Weather Rev., 133, 567, https://doi.org/10.1175/MWR-2882.1, 2005. a, b, c
Hall, R., Erdélyi, R., Hanna, E., Jones, J. M., and Scaife, A. A.: Drivers of North
Atlantic Polar Front jet stream variability, Int. J. Climatol., 35, 1697–1720,
https://doi.org/10.1002/joc.4121, 2015. a, b
Hayashi, V. and Golder, D. G.: Transient
Planetary Waves Simulated by GFDL Spectral General Circulation Models. Part I: Effects of
Mountains, J. Atmos. Sci., 40, 941–950,
https://doi.org/10.1175/1520-0469(1983)040<0941:TPWSBG>2.0.CO;2, 1983. a
Healy, S. B. and Eyre, J. R.: Retrieving
temperature, water vapour and surface pressure information from refractive-index profiles derived
by radio occultation: A simulation study, Q. J. Roy. Meteorol. Soc., 126, 1661–1683,
https://doi.org/10.1002/qj.49712656606, 2000. a, b
Hegglin, M. I., Gettelman, A., Hoor, P., Krichevsky,
R., Manney, G. L., Pan, L. L., Son, S.-W., Stiller, G., Tilmes, S., Walker, K. A.,
Eyring, V., Shepherd, T. G., Waugh, D., Akiyoshi, H., Añel, J. A., Austin, J.,
Baumgaertner, A., Bekki, S., Braesicke, P., Brühl, C., Butchart, N., Chipperfield,
M., Dameris, M., Dhomse, S., Frith, S., Garny, H., Hardiman, S. C., Jöckel, P.,
Kinnison, D. E., Lamarque, J. F., Mancini, E., Michou, M., Morgenstern, O., Nakamura,
T., Olivié, D., Pawson, S., Pitari, G., Plummer, D. A., Pyle, J. A., Rozanov, E.,
Scinocca, J. F., Shibata, K., Smale, D., Teyssèdre, H., Tian, W., and Yamashita,
Y.: Multimodel assessment of the upper troposphere and lower stratosphere: Extratropics,
J. Geophys. Res.-Atmos., 115, D00M09, https://doi.org/10.1029/2010JD013884, 2010. a
Hirooka, T., Kuki, T.,
and Hirota, I.: An Intercomparison of Medium-Scale Waves in the Northern and Southern Hemispheres,
J. Meteorol. Soc. Jpn. Ser. II, 66, 857–868, https://doi.org/10.2151/jmsj1965.66.6_857, 1988. a
Ho, S.-P., Peng, L., and
Vömel, H.: Characterization of the long-term radiosonde temperature biases in the upper
troposphere and lower stratosphere using COSMIC and Metop-A∕GRAS data from 2006 to 2014,
Atmos. Chem. Phys., 17, 4493–4511, https://doi.org/10.5194/acp-17-4493-2017, 2017. a
Hoskins, B. J. and Valdes, P. J.:
On the Existence of Storm-Tracks, J. Atmos. Sci., 47, 1854–1864,
https://doi.org/10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2, 1990. a
Hoskins,
B. J., James, I. N., and White, G. H.: The Shape, Propagation and Mean-Flow Interaction of
Large-Scale Weather Systems, J. Atmos. Sci., 40, 1595–1612,
https://doi.org/10.1175/1520-0469(1983)040<1595:TSPAMF>2.0.CO;2, 1983. a
Hoskins, B. J., McIntyre, M. E., and Robertson, A. W.: On the use and significance of
isentropic potential vorticity maps, Q. J. Roy. Meteorol. Soc., 111, 877–946,
https://doi.org/10.1002/qj.49711147002, 1985. a, b, c, d
Hovmöller, E.: The Trough-and-Ridge
diagram, Tellus A, 1, 62–66, https://doi.org/10.1111/j.2153-3490.1949.tb01260.x, 1949. a
Karpechko, A. Y., Hitchcock, P., Peters, D. H. W.,
and Schneidereit, A.: Predictability of downward propagation of major sudden stratospheric
warmings, Q. J. Roy. Meteorol. Soc., 143, 1459–1470, https://doi.org/10.1002/qj.3017, 2017. a, b
Kidston, J., Scaife, A. A., Hardiman, S. C., Mitchell,
D. M., Butchart, N., Baldwin, M. P., and Gray, L. J.: Stratospheric influence on
tropospheric jet streams, storm tracks and surface weather, Nat. Geosci., 8, 433–440,
https://doi.org/10.1038/ngeo2424, 2015. a
Kim, J. and Son, S.-W.: Tropical Cold-Point
Tropopause: Climatology, Seasonal Cycle, and Intraseasonal Variability Derived from COSMIC GPS
Radio Occultation Measurements, J. Clim., 25, 5343–5360, https://doi.org/10.1175/JCLI-D-11-00554.1,
2012. a
Kohma, M. and Sato, K.: The effects of
atmospheric waves on the amounts of polar stratospheric clouds, Atmos. Chem. Phys., 11,
11535–11552, https://doi.org/10.5194/acp-11-11535-2011, 2011. a
Kornhuber, K., Petoukhov, V., Petri, S., Rahmstorf, S.,
and Coumou, D.: Evidence for wave resonance as a key mechanism for generating high-amplitude
quasi-stationary waves in boreal summer, Clim. Dynam., 49, 1961–1979,
https://doi.org/10.1007/s00382-016-3399-6, 2017. a, b
Kornhuber, K., Osprey, S., Coumou, D.,
Petri, S., Petoukhov, V., Rahmstorf, S., and Gray, L.: Extreme weather events in early
summer 2018 connected by a recurrent hemispheric wave-7 pattern, Environ. Res. Lett., 14,
054002, https://doi.org/10.1088/1748-9326/ab13bf, 2019. a, b
Kursinski, E. R., Hajj, G. A., Schofield, J. T., Linfield, R. P.,
and Hardy, K. R.: Observing Earth's atmosphere with radio occultation measurements using the
Global Positioning System, J. Geophys. Res.-Atmos., 102, 23429–23465, https://doi.org/10.1029/97JD01569,
1997. a, b
Lau, N.-C.: The Structure and Energetics of Transient
Disturbances in the Northern Hemisphere Wintertime Circulation, J. Atmos. Sci., 36, 982–995,
https://doi.org/10.1175/1520-0469(1979)036<0982:TSAEOT>2.0.CO;2, 1979. a, b, c
Lorenz, D. J. and Hartmann,
D. L.: Eddy-Zonal Flow Feedback in the Southern Hemisphere, J. Atmos. Sci., 58, 3312–3327,
https://doi.org/10.1175/1520-0469(2001)058<3312:EZFFIT>2.0.CO;2, 2001. a
Lorenz, D. J. and Hartmann,
D. L.: Eddy-Zonal Flow Feedback in the Northern Hemisphere Winter, J. Clim., 16, 1212–1227,
https://doi.org/10.1175/1520-0442(2003)16<1212:EFFITN>2.0.CO;2, 2003. a
Madden, R. A. and Julian, P. R.:
Observations of the 40 50-Day Tropical Oscillation – A Review, Mon. Weather Rev., 122, 814,
https://doi.org/10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2, 1994. a
Madhavi, G. N., Kishore, P., Rao, S. V. B., Velicogna, I.,
and Basha, G.: Two-day wave observations over the middle and high latitudes in the NH and SH
using COSMIC GPSRO measurements, Adv. Space Res., 55, 722–731,
https://doi.org/10.1016/j.asr.2014.09.032, 2015. a
Martínez-Alvarado, O., Madonna, E., Gray,
S. L., and Joos, H.: A route to systematic error in forecasts of Rossby waves,
Q. J. Roy. Meteorol. Soc., 142, 196–210, https://doi.org/10.1002/qj.2645, 2016. a
Martius, O.,
Schwierz, C., and Davies, H. C.: Tropopause-Level Waveguides, J. Atmos. Sci., 67, 866–879,
https://doi.org/10.1175/2009JAS2995.1, 2010. a
Nielsen-Gammon, J. W. and
Lefevre, R. J.: Piecewise Tendency Diagnosis of Dynamical Processes Governing the Development of
an Upper-Tropospheric Mobile Trough, J. Atmos. Sci., 53, 3120–3142,
https://doi.org/10.1175/1520-0469(1996)053<3120:PTDODP>2.0.CO;2, 1996. a, b
Oberländer-Hayn, S., Gerber, E. P., Abalichin, J.,
Akiyoshi, H., Kerschbaumer, A., Kubin, A., Kunze, M., Langematz, U., Meul, S., Michou, M.,
Morgenstern, O., and Oman, L. D.: Is the Brewer-Dobson circulation increasing or moving upward?,
Geophys. Res. Lett., 43, 1772–1779, https://doi.org/10.1002/2015GL067545, 2016. a
Odell, L., Knippertz, P., Pickering, S., Parkes, B., and
Roberts, A.: The Braer storm revisited, Weather, 68, 105–111, https://doi.org/10.1002/wea.2097, 2013. a, b
Orlanski, I. and Katzfey, J.:
The Life Cycle of a Cyclone Wave in the Southern Hemisphere. Part I: Eddy Energy Budget,
J. Atmos. Sci., 48, 1972–1998,
https://doi.org/10.1175/1520-0469(1991)048<1972:TLCOAC>2.0.CO;2, 1991. a, b
Orlanski, I. and Sheldon, J.:
A Case of Downstream Baroclinic Development over Western North America, Mon. Weather Rev., 121,
2929, https://doi.org/10.1175/1520-0493(1993)121<2929:ACODBD>2.0.CO;2, 1993. a
Petoukhov, V., Rahmstorf, S., Petri, S., and
Schellnhuber, H. J.: Quasiresonant amplification of planetary waves and recent Northern
Hemisphere weather extremes, P. Natl. Acad. Sci. USA, 110, 5336–5341,
https://doi.org/10.1073/pnas.1222000110, 2013. a, b, c
Pilch Kedzierski, R., Matthes, K., and Bumke, K.: The tropical
tropopause inversion layer: variability and modulation by equatorial waves, Atmos. Chem. Phys.,
16, 11617–11633, https://doi.org/10.5194/acp-16-11617-2016, 2016a. a, b, c
Pilch Kedzierski, R., Neef, L., and Matthes, K.: Tropopause
sharpening by data assimilation, Geophys. Res. Lett., 43, 8298–8305, https://doi.org/10.1002/2016GL069936,
2016b. a
Pilch Kedzierski, R., Matthes, K., and Bumke, K.: Wave modulation of the extratropical tropopause
inversion layer, Atmos. Chem. Phys., 17, 4093–4114, https://doi.org/10.5194/acp-17-4093-2017, 2017. a, b, c
Pirret,
J. S. R., Knippertz, P., and Trzeciak, T. M.: Drivers for the deepening of severe European
windstorms and their impacts on forecast quality, Q. J. Roy. Meteorol. Soc., 143, 309–320,
https://doi.org/10.1002/qj.2923, 2017. a, b, c
Poli, P., Joiner, J., and
Kursinski, E. R.: 1DVAR analysis of temperature and humidity using GPS radio occultation
refractivity data, J. Geophys. Res.-Atmos., 107, ACL 14–1–ACL 14–20,
https://doi.org/10.1029/2001JD000935, 2002. a, b
Quinting, J. F. and Vitart, F.:
Representation of Synoptic-Scale Rossby Wave Packets and Blocking in the S2S Prediction Project
Database, Geophys. Res. Lett., 46, 1070–1078, https://doi.org/10.1029/2018GL081381, 2019. a, b, c
Randel, W. J. and Wu, F.: Kelvin wave
variability near the equatorial tropopause observed in GPS radio occultation measurements,
J. Geophys. Res.-Atmos., 110, D03102, https://doi.org/10.1029/2004JD005006, 2005. a, b
Rossby, C.-G.: On the Propagation of Frequencies and
Energy in Certain Types of Oceanic and Atmospheric Waves, J. Atmos. Sci., 2, 187–204,
https://doi.org/10.1175/1520-0469(1945)002<0187:OTPOFA>2.0.CO;2, 1945. a
Saffin, L., Gray, S. L., Methven, J., and Williams, K. D.: Processes Maintaining
Tropopause Sharpness in Numerical Models, J. Geophys. Res.-Atmos., 122, 9611–9627,
https://doi.org/10.1002/2017JD026879, 2017. a, b
Scaife, A. A., Spangehl, T., Fereday, D. R., Cubasch,
U., Langematz, U., Akiyoshi, H., Bekki, S., Braesicke, P., Butchart, N., Chipperfield,
M. P., Gettelman, A., Hardiman, S. C., Michou, M., Rozanov, E., and Shepherd, T. G.:
Climate change projections and stratosphere-troposphere interaction, Clim. Dynam., 38,
2089–2097, https://doi.org/10.1007/s00382-011-1080-7, 2012. a
Scherllin-Pirscher, B., Randel, W. J., and Kim, J.:
Tropical temperature variability and Kelvin-wave activity in the UTLS from GPS RO measurements,
Atmos. Chem. Phys., 17, 793–806, https://doi.org/10.5194/acp-17-793-2017, 2017. a
Schmidt, T., Alexander, P., and de la Torre, A.: Stratospheric gravity wave momentum flux
from radio occultations, J. Geophys. Res.-Atmos., 121, 4443–4467, https://doi.org/10.1002/2015JD024135,
2016. a
Schreiner, W., Sokolovskiy, S., Hunt, D., Rocken, C., and Kuo,
Y.-H.: Analysis of GPS radio occultation data from the FORMOSAT-3/COSMIC and Metop/GRAS missions
at CDAAC, Atmos. Meas. Tech., 4, 2255–2272, https://doi.org/10.5194/amt-4-2255-2011, 2011. a
Sellwood, K. J., Majumdar, S. J., Mapes, B. E., and
Szunyogh, I.: Predicting the influence of observations on medium-range forecasts of atmospheric
flow, Q. J. Roy. Meteorol. Soc., 134, 2011–2027, https://doi.org/10.1002/qj.341, 2008. a
Shaw, T. A., Baldwin, M.,
Barnes, E. A., Caballero, R., Garfinkel, C. I., Hwang, Y. T., Li, C., O'Gorman, P. A.,
Rivière, G., and Simpson, I. R.: Storm track processes and the opposing influences of
climate change, Nat. Geosci., 9, 656–664, https://doi.org/10.1038/ngeo2783, 2016. a
Shepherd, M. G. and Tsuda, T.:
Large-scale planetary disturbances in stratospheric temperature at high-latitudes in the southern
summer hemisphere, Atmos. Chem. Phys., 8, 7557–7570, https://doi.org/10.5194/acp-8-7557-2008, 2008. a
Simmons, A. J. and Hoskins,
B. J.: The Life Cycles of Some Nonlinear Baroclinic Waves, J. Atmos. Sci., 35, 414–432,
https://doi.org/10.1175/1520-0469(1978)035<0414:TLCOSN>2.0.CO;2, 1978. a, b
Son, S.-W., Tandon,
N. F., and Polvani, L. M.: The fine-scale structure of the global tropopause derived from
COSMIC GPS radio occultation measurements, J. Geophys. Res.-Atmos., 116, D20113,
https://doi.org/10.1029/2011JD016030, 2011. a, b
Souders, M. B., Colle, B. A., and Chang, E. K. M.: A Description and Evaluation of an
Automated Approach for Feature-Based Tracking of Rossby Wave Packets, Mon. Weather Rev., 142,
3505–3527, https://doi.org/10.1175/MWR-D-13-00317.1, 2014a. a
Souders, M. B., Colle, B. A., and Chang, E. K. M.: The Climatology and Characteristics of
Rossby Wave Packets Using a Feature-Based Tracking Technique, Mon. Weather Rev., 142,
3528–3548, https://doi.org/10.1175/MWR-D-13-00371.1, 2014b. a, b, c
Steiner, A. K., Ladstädter, F., Ao, C. O.,
Gleisner, H., Ho, S.-P., Hunt, D., Schmidt, T., Foelsche, U., Kirchengast, G., Kuo, Y.-H.,
Lauritsen, K. B., Mannucci, A. J., Nielsen, J. K., Schreiner, W., Schwärz, M., Sokolovskiy,
S., Syndergaard, S., and Wickert, J.: Consistency and structural uncertainty of multi-mission GPS
radio occultation records, Atmos. Meas. Tech., 13, 2547–2575, https://doi.org/10.5194/amt-13-2547-2020,
2020. a
Takaya, K. and Nakamura, H.: A
Formulation of a Phase-Independent Wave-Activity Flux for Stationary and Migratory
Quasigeostrophic Eddies on a Zonally Varying Basic Flow, J. Atmos. Sci., 58, 608–627,
https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2, 2001. a
Tao, W., Zhang, J., Fu, Y., and Zhang, X.: Driving Roles of Tropospheric and
Stratospheric Thermal Anomalies in Intensification and Persistence of the Arctic Superstorm in
2012, Geophys. Res. Lett., 44, 10, https://doi.org/10.1002/2017GL074778, 2017a. a, b
Tao, W.,
Zhang, J., and Zhang, X.: The role of stratosphere vortex downward intrusion in a
long-lasting late-summer Arctic storm, Q. J. Roy. Meteorol. Soc., 143, 1953–1966,
https://doi.org/10.1002/qj.3055, 2017b. a, b
Teubler, F. and Riemer, M.:
Dynamics of Rossby Wave Packets in a Quantitative Potential Vorticity-Potential Temperature
Framework, J. Atmos. Sci., 73, 1063–1081, https://doi.org/10.1175/JAS-D-15-0162.1, 2016. a, b, c
Thorncroft, C. D., Hoskins, B. J., and McIntyre, M. E.: Two paradigms of baroclinic-wave
life-cycle behaviour, Q. J. Roy. Meteorol. Soc., 119, 17–55, https://doi.org/10.1002/qj.49711950903,
1993. a
Tsuda, T.: Characteristics of atmospheric gravity waves
observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System)
radio occultation, Proc. Jpn. Acad. Ser. B, 90, 12–27, https://doi.org/10.2183/pjab.90.12, 2014. a
Tsuda,
T., Nishida, M., Rocken, C., and Ware, R. H.: A Global Morphology of Gravity Wave Activity
in the Stratosphere Revealed by the GPS Occultation Data (GPS/MET), J. Geophys. Res., 105,
7257–7273, https://doi.org/10.1029/1999JD901005, 2000. a
von Engeln, A., Andres, Y., Marquardt, C., and Sancho,
F.: GRAS radio occultation on-board of Metop, Adv. Space Res., 47, 336–347,
https://doi.org/10.1016/j.asr.2010.07.028, 2011. a
Wang, L. and Alexander, M. J.:
Global estimates of gravity wave parameters from GPS radio occultation temperature data,
J. Geophys. Res.-Atmos., 115, D21122, https://doi.org/10.1029/2010JD013860, 2010.
a
Webster, P. J. and Keller, J. L.:
Atmospheric Variations: Vacillations and Index Cycles, J. Atmos. Sci., 32, 1283–1301,
https://doi.org/10.1175/1520-0469(1975)032<1283:AVVAIC>2.0.CO;2, 1975. a, b
Wickert, J., Reigber, C., Beyerle, G., König, R., Marquardt, C., Schmidt, T.,
Grunwaldt, L., Galas, R., Meehan, T. K., Melbourne, W. G., and Hocke, K.: Atmosphere
sounding by GPS radio occultation: First results from CHAMP, Geophys. Res. Lett., 28,
3263–3266, https://doi.org/10.1029/2001GL013117, 2001. a
Wickert, J., Michalak, G., Schmidt, T., Beyerle, G., Cheng, C. Z.,
Healy, S. B., Heise, S., Huang, C. Y., Jakowski, N., Köhler, W., Mayer, C., Offiler, D.,
Ozawa, E., Pavelyev, A. G., Rothacher, M., Tapley, B., and Arras, C.: GPS radio occultation:
results from CHAMP, GRACE and FORMOSAT-3/COSMIC, Terr. Atmos. Ocean. Sci., 20, 35–50,
https://doi.org/10.3319/TAO.2007.12.26.01(F3C), 2009. a
Williams, I. N. and Colucci,
S. J.: Characteristics of Baroclinic Wave Packets during Strong and Weak Stratospheric Polar
Vortex Events, J. Atmos. Sci., 67, 3190–3207, https://doi.org/10.1175/2010JAS3279.1, 2010. a, b
Wirth,
V., Riemer, M., Chang, E. K. M., and Martius, O.: Rossby Wave Packets on the Midlatitude
Waveguide – A Review, Mon. Weather Rev., 146, 1965–2001, https://doi.org/10.1175/MWR-D-16-0483.1, 2018. a
WMO: Meteorology-A three-dimensional science, WMO Bull., 6,
134–138, 1957. a
Zeng, Z.,
Ho, S.-P., Sokolovskiy, S., and Kuo, Y.-H.: Structural evolution of the Madden-Julian
Oscillation from COSMIC radio occultation data, J. Geophys. Res.-Atmos., 117, D22108,
https://doi.org/10.1029/2012JD017685, 2012. a
Zheng, M., Chang,
E. K. M., and Colle, B. A.: Ensemble Sensitivity Tools for Assessing Extratropical Cyclone
Intensity and Track Predictability, Weather Forecast., 28, 1133–1156,
https://doi.org/10.1175/WAF-D-12-00132.1, 2013. a
Zimin,
A. V., Szunyogh, I., Hunt, B. R., and Ott, E.: Extracting Envelopes of Nonzonally
Propagating Rossby Wave Packets, Mon. Weather Rev., 134, 1329, https://doi.org/10.1175/MWR3122.1, 2006. a
Short summary
Rossby wave packet (RWP) dynamics are crucial for weather forecasting, climate change projections and stratosphere–troposphere interactions. Our study is a first attempt to describe RWP behavior in the UTLS with global coverage directly from observations, using GNSS-RO data. Our novel results show an interesting relation of RWP vertical propagation with sudden stratospheric warmings and provide very useful information to improve RWP diagnostics in models and reanalysis.
Rossby wave packet (RWP) dynamics are crucial for weather forecasting, climate change...
Altmetrics
Final-revised paper
Preprint