Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
ACP | Articles | Volume 19, issue 13
Atmos. Chem. Phys., 19, 8363–8381, 2019
https://doi.org/10.5194/acp-19-8363-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 19, 8363–8381, 2019
https://doi.org/10.5194/acp-19-8363-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 02 Jul 2019

Research article | 02 Jul 2019

Contributions to local- and regional-scale formaldehyde concentrations

Lucas A. J. Bastien et al.

Related authors

Network design for quantifying urban CO2 emissions: assessing trade-offs between precision and network density
Alexander J. Turner, Alexis A. Shusterman, Brian C. McDonald, Virginia Teige, Robert A. Harley, and Ronald C. Cohen
Atmos. Chem. Phys., 16, 13465–13475, https://doi.org/10.5194/acp-16-13465-2016,https://doi.org/10.5194/acp-16-13465-2016, 2016
Short summary
Characterization of particulate matter emissions from on-road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer
T. R. Dallmann, T. B. Onasch, T. W. Kirchstetter, D. R. Worton, E. C. Fortner, S. C. Herndon, E. C. Wood, J. P. Franklin, D. R. Worsnop, A. H. Goldstein, and R. A. Harley
Atmos. Chem. Phys., 14, 7585–7599, https://doi.org/10.5194/acp-14-7585-2014,https://doi.org/10.5194/acp-14-7585-2014, 2014

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Influences of hydroxyl radicals (OH) on top-down estimates of the global and regional methane budgets
Yuanhong Zhao, Marielle Saunois, Philippe Bousquet, Xin Lin, Antoine Berchet, Michaela I. Hegglin, Josep G. Canadell, Robert B. Jackson, Edward J. Dlugokencky, Ray L. Langenfelds, Michel Ramonet, Doug Worthy, and Bo Zheng
Atmos. Chem. Phys., 20, 9525–9546, https://doi.org/10.5194/acp-20-9525-2020,https://doi.org/10.5194/acp-20-9525-2020, 2020
Short summary
Evaluation of nitrogen oxides (NOx) sources and sinks and ozone production in Colombia and surrounding areas
Johannes G. M. Barten, Laurens N. Ganzeveld, Auke J. Visser, Rodrigo Jiménez, and Maarten C. Krol
Atmos. Chem. Phys., 20, 9441–9458, https://doi.org/10.5194/acp-20-9441-2020,https://doi.org/10.5194/acp-20-9441-2020, 2020
Short summary
The impact of biomass burning on upper tropospheric carbon monoxide: a study using MOCAGE global model and IAGOS airborne data
Martin Cussac, Virginie Marécal, Valérie Thouret, Béatrice Josse, and Bastien Sauvage
Atmos. Chem. Phys., 20, 9393–9417, https://doi.org/10.5194/acp-20-9393-2020,https://doi.org/10.5194/acp-20-9393-2020, 2020
Short summary
Temporal and spatial analysis of ozone concentrations in Europe based on timescale decomposition and a multi-clustering approach
Eirini Boleti, Christoph Hueglin, Stuart K. Grange, André S. H. Prévôt, and Satoshi Takahama
Atmos. Chem. Phys., 20, 9051–9066, https://doi.org/10.5194/acp-20-9051-2020,https://doi.org/10.5194/acp-20-9051-2020, 2020
Short summary
Why is the Indo-Gangetic Plain the region with the largest NH3 column in the globe during pre-monsoon and monsoon seasons?
Tiantian Wang, Yu Song, Zhenying Xu, Mingxu Liu, Tingting Xu, Wenling Liao, Lifei Yin, Xuhui Cai, Ling Kang, Hongsheng Zhang, and Tong Zhu
Atmos. Chem. Phys., 20, 8727–8736, https://doi.org/10.5194/acp-20-8727-2020,https://doi.org/10.5194/acp-20-8727-2020, 2020
Short summary

Cited articles

BAAQMD (Bay Area Air Quality Management District): Toxics Modeling to Support the Community Air Risk Evaluation (CARE) Program, Research and Modeling Section Publication No. 200906-002-TX, San Francisco, CA, June 2009. a, b
BAAQMD (Bay Area Air Quality Management District): Improving Air Quality & Health in Bay Area Communities, Community Air Risk Evaluation Program Retrospective & Path Forward (2004–2013), San Francisco, CA, April 2014. a
Ban-Weiss, G. A., McLaughlin, J. P., Harley, R. A., Kean, A. J., Grosjean, E., and Grosjean, D.: Carbonyl and Nitrogen Dioxide Emissions From Gasoline-and Diesel-Powered Motor Vehicles, Environ. Sci. Technol., 42, 3944–3950, https://doi.org/10.1021/es8002487, 2008. a
Bastien, L. A. J., McDonald, B. C., Brown, N. J., and Harley, R. A.: High-Resolution Mapping of Sources Contributing to Urban Air Pollution Using Adjoint Sensitivity Analysis: Benzene and Diesel Black Carbon, Environ. Sci. Technol., 49, 7276–7284, https://doi.org/10.1021/acs.est.5b00686, 2015. a, b, c, d, e, f, g, h
Byun, D. and Schere, K. L.: Review of the Governing Equations, Computational Algorithms, and Other Components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System, Appl. Mech. Rev., 59, 51–77, https://doi.org/10.1115/1.2128636, 2006. a
Publications Copernicus
Download
Short summary
This work uses a computer model to identify emission sources and chemical reactions that influence ambient formaldehyde (a carcinogenic pollutant) in the San Francisco Bay Area. Results suggest that for some locations, in order to reduce summer-season formaldehyde concentrations, controlling emissions of other pollutants can be as efficient as controlling emissions of formaldehyde. In winter, however, it is more efficient to control emissions of formaldehyde than emissions of other species.
This work uses a computer model to identify emission sources and chemical reactions that...
Citation
Altmetrics
Final-revised paper
Preprint