Articles | Volume 19, issue 5
https://doi.org/10.5194/acp-19-2881-2019
https://doi.org/10.5194/acp-19-2881-2019
Research article
 | 
07 Mar 2019
Research article |  | 07 Mar 2019

Advanced methods for uncertainty assessment and global sensitivity analysis of an Eulerian atmospheric chemistry transport model

Ksenia Aleksankina, Stefan Reis, Massimo Vieno, and Mathew R. Heal

Related authors

Global sensitivity and uncertainty analysis of an atmospheric chemistry transport model: the FRAME model (version 9.15.0) as a case study
Ksenia Aleksankina, Mathew R. Heal, Anthony J. Dore, Marcel Van Oijen, and Stefan Reis
Geosci. Model Dev., 11, 1653–1664, https://doi.org/10.5194/gmd-11-1653-2018,https://doi.org/10.5194/gmd-11-1653-2018, 2018
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Constraining the budget of atmospheric carbonyl sulfide using a 3-D chemical transport model
Michael P. Cartwright, Richard J. Pope, Jeremy J. Harrison, Martyn P. Chipperfield, Chris Wilson, Wuhu Feng, David P. Moore, and Parvadha Suntharalingam
Atmos. Chem. Phys., 23, 10035–10056, https://doi.org/10.5194/acp-23-10035-2023,https://doi.org/10.5194/acp-23-10035-2023, 2023
Short summary
Atmospheric CO2 inversion reveals the Amazon as a minor carbon source caused by fire emissions, with forest uptake offsetting about half of these emissions
Luana S. Basso, Chris Wilson, Martyn P. Chipperfield, Graciela Tejada, Henrique L. G. Cassol, Egídio Arai, Mathew Williams, T. Luke Smallman, Wouter Peters, Stijn Naus, John B. Miller, and Manuel Gloor
Atmos. Chem. Phys., 23, 9685–9723, https://doi.org/10.5194/acp-23-9685-2023,https://doi.org/10.5194/acp-23-9685-2023, 2023
Short summary
Rapid O3 assimilations – Part 2: Tropospheric O3 changes accompanied by declining NOx emissions in the USA and Europe in 2005–2020
Rui Zhu, Zhaojun Tang, Xiaokang Chen, Xiong Liu, and Zhe Jiang
Atmos. Chem. Phys., 23, 9745–9763, https://doi.org/10.5194/acp-23-9745-2023,https://doi.org/10.5194/acp-23-9745-2023, 2023
Short summary
High-resolution air quality simulations of ozone exceedance events during the Lake Michigan Ozone Study
R. Bradley Pierce, Monica Harkey, Allen Lenzen, Lee M. Cronce, Jason A. Otkin, Jonathan L. Case, David S. Henderson, Zac Adelman, Tsengel Nergui, and Christopher R. Hain
Atmos. Chem. Phys., 23, 9613–9635, https://doi.org/10.5194/acp-23-9613-2023,https://doi.org/10.5194/acp-23-9613-2023, 2023
Short summary
Simulations of winter ozone in the Upper Green River basin, Wyoming, using WRF-Chem
Shreta Ghimire, Zachary J. Lebo, Shane Murphy, Stefan Rahimi, and Trang Tran
Atmos. Chem. Phys., 23, 9413–9438, https://doi.org/10.5194/acp-23-9413-2023,https://doi.org/10.5194/acp-23-9413-2023, 2023
Short summary

Cited articles

Air Quality Expert Group: Mitigation of United Kingdom PM 2.5 Concentrations, available at: https://uk-air.defra.gov.uk/assets/documents/reports/cat11/1508060903_DEF-PB14161_Mitigation_of_UK_PM25.pdf (last access: 15 May 2018), 2013. 
Aleksankina, K.: Advanced methods for uncertainty assessment and global sensitivity analysis of a Eulerian atmospheric chemistry transport model [Data set], Zenodo, available at: https://doi.org/10.5281/zenodo.2213633, 2018. 
Aleksankina, K., Heal, M. R., Dore, A. J., Van Oijen, M., and Reis, S.: Global sensitivity and uncertainty analysis of an atmospheric chemistry transport model: the FRAME model (version 9.15.0) as a case study, Geosci. Model Dev., 11, 1653–1664, https://doi.org/10.5194/gmd-11-1653-2018, 2018. 
Asher, M. J., Croke, B. F. W., Jakeman, A. J., and Peeters, L. J. M.: A review of surrogate models and their application to groundwater modeling, Water Resour. Res., 51, 5957–5973, https://doi.org/10.1002/2015WR016967, 2015. 
Beddows, A. V., Kitwiroon, N., Williams, M. L., and Beevers, S. D.: Emulation and Sensitivity Analysis of the Community Multiscale Air Quality Model for a UK Ozone Pollution Episode, Environ. Sci. Technol., 51, 6229–6236, https://doi.org/10.1021/acs.est.6b05873, 2017. 
Download
Short summary
Atmospheric chemistry transport models are widely used to underpin policies to mitigate the detrimental effects of air pollution on human health and ecosystems. Understanding the level of confidence in model predictions is thus vital. We present a comprehensive approach for uncertainty assessment and global variance-based sensitivity analysis to propagate uncertainty from model input data and identify the extent to which uncertainty in different emissions drives the model output uncertainty.
Altmetrics
Final-revised paper
Preprint