Articles | Volume 19, issue 5
Research article
07 Mar 2019
Research article |  | 07 Mar 2019

Advanced methods for uncertainty assessment and global sensitivity analysis of an Eulerian atmospheric chemistry transport model

Ksenia Aleksankina, Stefan Reis, Massimo Vieno, and Mathew R. Heal

Related authors

Global sensitivity and uncertainty analysis of an atmospheric chemistry transport model: the FRAME model (version 9.15.0) as a case study
Ksenia Aleksankina, Mathew R. Heal, Anthony J. Dore, Marcel Van Oijen, and Stefan Reis
Geosci. Model Dev., 11, 1653–1664,,, 2018
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
A better representation of volatile organic compound chemistry in WRF-Chem and its impact on ozone over Los Angeles
Qindan Zhu, Rebecca H. Schwantes, Matthew Coggon, Colin Harkins, Jordan Schnell, Jian He, Havala O. T. Pye, Meng Li, Barry Baker, Zachary Moon, Ravan Ahmadov, Eva Y. Pfannerstill, Bryan Place, Paul Wooldridge, Benjamin C. Schulze, Caleb Arata, Anthony Bucholtz, John H. Seinfeld, Carsten Warneke, Chelsea E. Stockwell, Lu Xu, Kristen Zuraski, Michael A. Robinson, J. Andrew Neuman, Patrick R. Veres, Jeff Peischl, Steven S. Brown, Allen H. Goldstein, Ronald C. Cohen, and Brian C. McDonald
Atmos. Chem. Phys., 24, 5265–5286,,, 2024
Short summary
High-resolution US methane emissions inferred from an inversion of 2019 TROPOMI satellite data: contributions from individual states, urban areas, and landfills
Hannah Nesser, Daniel J. Jacob, Joannes D. Maasakkers, Alba Lorente, Zichong Chen, Xiao Lu, Lu Shen, Zhen Qu, Melissa P. Sulprizio, Margaux Winter, Shuang Ma, A. Anthony Bloom, John R. Worden, Robert N. Stavins, and Cynthia A. Randles
Atmos. Chem. Phys., 24, 5069–5091,,, 2024
Short summary
Summertime tropospheric ozone source apportionment study in the Madrid region (Spain)
David de la Paz, Rafael Borge, Juan Manuel de Andrés, Luis Tovar, Golam Sarwar, and Sergey L. Napelenok
Atmos. Chem. Phys., 24, 4949–4972,,, 2024
Short summary
CO anthropogenic emissions in Europe from 2011 to 2021: insights from Measurement of Pollution in the Troposphere (MOPITT) satellite data
Audrey Fortems-Cheiney, Gregoire Broquet, Elise Potier, Robin Plauchu, Antoine Berchet, Isabelle Pison, Hugo Denier van der Gon, and Stijn Dellaert
Atmos. Chem. Phys., 24, 4635–4649,,, 2024
Short summary
Constraining long-term NOx emissions over the United States and Europe using nitrate wet deposition monitoring networks
Amy Christiansen, Loretta J. Mickley, and Lu Hu
Atmos. Chem. Phys., 24, 4569–4589,,, 2024
Short summary

Cited articles

Air Quality Expert Group: Mitigation of United Kingdom PM 2.5 Concentrations, available at: (last access: 15 May 2018), 2013. 
Aleksankina, K.: Advanced methods for uncertainty assessment and global sensitivity analysis of a Eulerian atmospheric chemistry transport model [Data set], Zenodo, available at:, 2018. 
Aleksankina, K., Heal, M. R., Dore, A. J., Van Oijen, M., and Reis, S.: Global sensitivity and uncertainty analysis of an atmospheric chemistry transport model: the FRAME model (version 9.15.0) as a case study, Geosci. Model Dev., 11, 1653–1664,, 2018. 
Asher, M. J., Croke, B. F. W., Jakeman, A. J., and Peeters, L. J. M.: A review of surrogate models and their application to groundwater modeling, Water Resour. Res., 51, 5957–5973,, 2015. 
Beddows, A. V., Kitwiroon, N., Williams, M. L., and Beevers, S. D.: Emulation and Sensitivity Analysis of the Community Multiscale Air Quality Model for a UK Ozone Pollution Episode, Environ. Sci. Technol., 51, 6229–6236,, 2017. 
Short summary
Atmospheric chemistry transport models are widely used to underpin policies to mitigate the detrimental effects of air pollution on human health and ecosystems. Understanding the level of confidence in model predictions is thus vital. We present a comprehensive approach for uncertainty assessment and global variance-based sensitivity analysis to propagate uncertainty from model input data and identify the extent to which uncertainty in different emissions drives the model output uncertainty.
Final-revised paper