Articles | Volume 19, issue 23
https://doi.org/10.5194/acp-19-14721-2019
https://doi.org/10.5194/acp-19-14721-2019
Research article
 | Highlight paper
 | 
11 Dec 2019
Research article | Highlight paper |  | 11 Dec 2019

An increase in methane emissions from tropical Africa between 2010 and 2016 inferred from satellite data

Mark F. Lunt, Paul I. Palmer, Liang Feng, Christopher M. Taylor, Hartmut Boesch, and Robert J. Parker

Related authors

Greenhouse gas column observations from a portable spectrometer in Uganda
Neil Humpage, Hartmut Boesch, William Okello, Jia Chen, Florian Dietrich, Mark F. Lunt, Liang Feng, Paul I. Palmer, and Frank Hase
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-234,https://doi.org/10.5194/amt-2023-234, 2023
Preprint under review for AMT
Short summary
Methane emissions are predominantly responsible for record-breaking atmospheric methane growth rates in 2020 and 2021
Liang Feng, Paul I. Palmer, Robert J. Parker, Mark F. Lunt, and Hartmut Bösch
Atmos. Chem. Phys., 23, 4863–4880, https://doi.org/10.5194/acp-23-4863-2023,https://doi.org/10.5194/acp-23-4863-2023, 2023
Short summary
Evaluation of wetland CH4 in the Joint UK Land Environment Simulator (JULES) land surface model using satellite observations
Robert J. Parker, Chris Wilson, Edward Comyn-Platt, Garry Hayman, Toby R. Marthews, A. Anthony Bloom, Mark F. Lunt, Nicola Gedney, Simon J. Dadson, Joe McNorton, Neil Humpage, Hartmut Boesch, Martyn P. Chipperfield, Paul I. Palmer, and Dai Yamazaki
Biogeosciences, 19, 5779–5805, https://doi.org/10.5194/bg-19-5779-2022,https://doi.org/10.5194/bg-19-5779-2022, 2022
Short summary
Atmospheric observations consistent with reported decline in the UK's methane emissions (2013–2020)
Mark F. Lunt, Alistair J. Manning, Grant Allen, Tim Arnold, Stéphane J.-B. Bauguitte, Hartmut Boesch, Anita L. Ganesan, Aoife Grant, Carole Helfter, Eiko Nemitz, Simon J. O'Doherty, Paul I. Palmer, Joseph R. Pitt, Chris Rennick, Daniel Say, Kieran M. Stanley, Ann R. Stavert, Dickon Young, and Matt Rigby
Atmos. Chem. Phys., 21, 16257–16276, https://doi.org/10.5194/acp-21-16257-2021,https://doi.org/10.5194/acp-21-16257-2021, 2021
Short summary
Understanding the influence of combustion on atmospheric CO2 over Europe by using satellite observations of CO2 and reactive trace gases
Mehliyar Sadiq, Paul I. Palmer, Mark F. Lunt, Liang Feng, Ingrid Super, Stijn N. C. Dellaert, and Hugo A. C. Denier van der Gon
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-816,https://doi.org/10.5194/acp-2021-816, 2021
Publication in ACP not foreseen
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Bias correction of OMI HCHO columns based on FTIR and aircraft measurements and impact on top-down emission estimates
Jean-François Müller, Trissevgeni Stavrakou, Glenn-Michael Oomen, Beata Opacka, Isabelle De Smedt, Alex Guenther, Corinne Vigouroux, Bavo Langerock, Carlos Augusto Bauer Aquino, Michel Grutter, James Hannigan, Frank Hase, Rigel Kivi, Erik Lutsch, Emmanuel Mahieu, Maria Makarova, Jean-Marc Metzger, Isamu Morino, Isao Murata, Tomoo Nagahama, Justus Notholt, Ivan Ortega, Mathias Palm, Amelie Röhling, Wolfgang Stremme, Kimberly Strong, Ralf Sussmann, Yao Té, and Alan Fried
Atmos. Chem. Phys., 24, 2207–2237, https://doi.org/10.5194/acp-24-2207-2024,https://doi.org/10.5194/acp-24-2207-2024, 2024
Short summary
Investigation of the renewed methane growth post-2007 with high-resolution 3-D variational inverse modeling and isotopic constraints
Joël Thanwerdas, Marielle Saunois, Antoine Berchet, Isabelle Pison, and Philippe Bousquet
Atmos. Chem. Phys., 24, 2129–2167, https://doi.org/10.5194/acp-24-2129-2024,https://doi.org/10.5194/acp-24-2129-2024, 2024
Short summary
Revisiting day-of-week ozone patterns in an era of evolving US air quality
Heather Simon, Christian Hogrefe, Andrew Whitehill, Kristen M. Foley, Jennifer Liljegren, Norm Possiel, Benjamin Wells, Barron H. Henderson, Lukas C. Valin, Gail Tonnesen, K. Wyat Appel, and Shannon Koplitz
Atmos. Chem. Phys., 24, 1855–1871, https://doi.org/10.5194/acp-24-1855-2024,https://doi.org/10.5194/acp-24-1855-2024, 2024
Short summary
Air quality and radiative impacts of downward-propagating sudden stratospheric warmings (SSWs)
Ryan S. Williams, Michaela I. Hegglin, Patrick Jöckel, Hella Garny, and Keith P. Shine
Atmos. Chem. Phys., 24, 1389–1413, https://doi.org/10.5194/acp-24-1389-2024,https://doi.org/10.5194/acp-24-1389-2024, 2024
Short summary
Estimation of the atmospheric hydroxyl radical oxidative capacity using multiple hydrofluorocarbons (HFCs)
Rona L. Thompson, Stephen A. Montzka, Martin K. Vollmer, Jgor Arduini, Molly Crotwell, Paul B. Krummel, Chris Lunder, Jens Mühle, Simon O'Doherty, Ronald G. Prinn, Stefan Reimann, Isaac Vimont, Hsiang Wang, Ray F. Weiss, and Dickon Young
Atmos. Chem. Phys., 24, 1415–1427, https://doi.org/10.5194/acp-24-1415-2024,https://doi.org/10.5194/acp-24-1415-2024, 2024
Short summary

Cited articles

Assouma, M., Lecomte, P., Hiernaux, P., Ickowicz, A., Corniaux, C., Decruyenaere, V., Diarra, A., and Vayssières, J.: How to better account for livestock diversity and fodder seasonality in assessing the fodder intake of livestock grazing semi-arid sub-Saharan Africa rangelands, Livest. Sci., 216, 16–23, https://doi.org/10.1016/j.livsci.2018.07.002, 2018. a
Awange, J., Saleem, A., Sukhadiya, R., Ouma, Y., and Kexiang, H.: Physical dynamics of Lake Victoria over the past 34 years (1984–2018): Is the lake dying?, Sci. Total Environ., 658, 199–218, https://doi.org/10.1016/j.scitotenv.2018.12.051, 2019. a
Ayantunde, A., Fernández-Rivera, S., and McCrabb, G., eds.: Coping with feed scarcity in smallholder livestock systems in developing countries, International Livestock Research Institute (ILRI), 2005. a
Bergamaschi, P., Frankenberg, C., Meirink, J. F., Krol, M., Dentener, F., Wagner, T., Platt, U., Kaplan, J. O., Körner, S., Heimann, M., Dlugokencky, E. J., and Goede, A.: Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: 2. Evaluation based on inverse model simulations, J. Geophys. Res., 112, D02304, https://doi.org/10.1029/2006jd007268, 2007. a
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res.-Atmos., 106, 23073–23095, https://doi.org/10.1029/2001jd000807, 2001. a
Download
Short summary
Using data from the GOSAT satellite between 2010 and 2016 and a Bayesian inversion approach, we estimate monthly emissions of methane from tropical Africa. We find an increase in methane emissions during this period, driven in part by rising emissions from South Sudan. Using ancillary data we attribute this short-term emissions rise to an increase in the extent of the Sudd wetlands driven by increased outflow from the East African lakes.
Altmetrics
Final-revised paper
Preprint